mirror of
https://github.com/Richard-Sti/csiborgtools_public.git
synced 2025-05-12 13:41:13 +00:00
New matches (#69)
* Remove old file * Add velocity plotting * add smooth scale * Fix bug * Improve paths * Edit plotting * Add smoothed density * Update boundaries * Add basics * Further docs * Remove blank * Better catalog broadcasting * Update high res size * Update plotting routines * Update routine * Update plotting * Fix field saving name * Add better colormap for environemnt
This commit is contained in:
parent
73687fd8cc
commit
35ccfb5c67
9 changed files with 343 additions and 169 deletions
|
@ -16,6 +16,7 @@
|
|||
from os.path import join
|
||||
from argparse import ArgumentParser
|
||||
|
||||
import matplotlib as mpl
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy
|
||||
import healpy
|
||||
|
@ -209,8 +210,8 @@ def plot_hmf(pdf=False):
|
|||
plt.close()
|
||||
|
||||
|
||||
def load_field(kind, nsim, grid, MAS, in_rsp=False):
|
||||
"""
|
||||
def load_field(kind, nsim, grid, MAS, in_rsp=False, smooth_scale=None):
|
||||
r"""
|
||||
Load a single field.
|
||||
|
||||
Parameters
|
||||
|
@ -225,13 +226,16 @@ def load_field(kind, nsim, grid, MAS, in_rsp=False):
|
|||
Mass assignment scheme.
|
||||
in_rsp : bool, optional
|
||||
Whether to load the field in redshift space.
|
||||
smooth_scale : float, optional
|
||||
Smoothing scale in :math:`\mathrm{Mpc} / h`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
field : n-dimensional array
|
||||
"""
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
return numpy.load(paths.field(kind, MAS, grid, nsim, in_rsp=in_rsp))
|
||||
return numpy.load(paths.field(kind, MAS, grid, nsim, in_rsp=in_rsp,
|
||||
smooth_scale=smooth_scale))
|
||||
|
||||
|
||||
###############################################################################
|
||||
|
@ -239,9 +243,9 @@ def load_field(kind, nsim, grid, MAS, in_rsp=False):
|
|||
###############################################################################
|
||||
|
||||
|
||||
def plot_projected_field(kind, nsim, grid, in_rsp, MAS="PCS",
|
||||
def plot_projected_field(kind, nsim, grid, in_rsp, smooth_scale, MAS="PCS",
|
||||
highres_only=True, slice_find=None, pdf=False):
|
||||
"""
|
||||
r"""
|
||||
Plot the mean projected field, however can also plot a single slice.
|
||||
|
||||
Parameters
|
||||
|
@ -254,6 +258,8 @@ def plot_projected_field(kind, nsim, grid, in_rsp, MAS="PCS",
|
|||
Grid size.
|
||||
in_rsp : bool
|
||||
Whether to load the field in redshift space.
|
||||
smooth_scale : float
|
||||
Smoothing scale in :math:`\mathrm{Mpc} / h`.
|
||||
MAS : str, optional
|
||||
Mass assignment scheme.
|
||||
highres_only : bool, optional
|
||||
|
@ -273,11 +279,16 @@ def plot_projected_field(kind, nsim, grid, in_rsp, MAS="PCS",
|
|||
box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths)
|
||||
|
||||
if kind == "overdensity":
|
||||
field = load_field("density", nsim, grid, MAS=MAS, in_rsp=in_rsp)
|
||||
field = load_field("density", nsim, grid, MAS=MAS, in_rsp=in_rsp,
|
||||
smooth_scale=smooth_scale)
|
||||
density_gen = csiborgtools.field.DensityField(box, MAS)
|
||||
field = density_gen.overdensity_field(field) + 2
|
||||
field = density_gen.overdensity_field(field) + 1
|
||||
else:
|
||||
field = load_field(kind, nsim, grid, MAS=MAS, in_rsp=in_rsp)
|
||||
field = load_field(kind, nsim, grid, MAS=MAS, in_rsp=in_rsp,
|
||||
smooth_scale=smooth_scale)
|
||||
|
||||
if kind == "velocity":
|
||||
field = field[0, ...]
|
||||
|
||||
if highres_only:
|
||||
csiborgtools.field.fill_outside(field, numpy.nan, rmax=155.5,
|
||||
|
@ -286,10 +297,11 @@ def plot_projected_field(kind, nsim, grid, in_rsp, MAS="PCS",
|
|||
end = round(field.shape[0] * 0.73)
|
||||
field = field[start:end, start:end, start:end]
|
||||
|
||||
if kind != "environment":
|
||||
cmap = "viridis"
|
||||
if kind == "environment":
|
||||
cmap = mpl.colors.ListedColormap(
|
||||
['red', 'lightcoral', 'limegreen', 'khaki'])
|
||||
else:
|
||||
cmap = "brg"
|
||||
cmap = "viridis"
|
||||
|
||||
labels = [r"$y-z$", r"$x-z$", r"$x-y$"]
|
||||
with plt.style.context(plt_utils.mplstyle):
|
||||
|
@ -309,12 +321,15 @@ def plot_projected_field(kind, nsim, grid, in_rsp, MAS="PCS",
|
|||
else:
|
||||
ax[i].imshow(img, vmin=vmin, vmax=vmax, cmap=cmap)
|
||||
|
||||
if not highres_only:
|
||||
frad = 155.5 / 677.7
|
||||
if not highres_only and 0.5 - frad < slice_find < 0.5 + frad:
|
||||
theta = numpy.linspace(0, 2 * numpy.pi, 100)
|
||||
rad = 155.5 / 677.7 * grid
|
||||
z = (slice_find - 0.5) * grid
|
||||
R = 155.5 / 677.7 * grid
|
||||
rad = R * numpy.sqrt(1 - z**2 / R**2)
|
||||
ax[i].plot(rad * numpy.cos(theta) + grid // 2,
|
||||
rad * numpy.sin(theta) + grid // 2,
|
||||
lw=plt.rcParams["lines.linewidth"], zorder=1,
|
||||
lw=0.75 * plt.rcParams["lines.linewidth"], zorder=1,
|
||||
c="red", ls="--")
|
||||
ax[i].set_title(labels[i])
|
||||
|
||||
|
@ -343,17 +358,32 @@ def plot_projected_field(kind, nsim, grid, in_rsp, MAS="PCS",
|
|||
(xticks * size / ncells - size / 2).astype(int))
|
||||
ax[i].set_xlabel(r"$x_j ~ [\mathrm{Mpc} / h]$")
|
||||
|
||||
cbar_ax = fig.add_axes([1.0, 0.1, 0.025, 0.8])
|
||||
cbar_ax = fig.add_axes([0.982, 0.155, 0.025, 0.75],
|
||||
transform=ax[2].transAxes)
|
||||
if slice_find is None:
|
||||
clabel = "Mean projected field"
|
||||
else:
|
||||
clabel = "Sliced field"
|
||||
fig.colorbar(im, cax=cbar_ax, label=clabel)
|
||||
|
||||
if kind == "environment":
|
||||
bounds = [0, 1, 2, 3, 4]
|
||||
norm = mpl.colors.BoundaryNorm(bounds, cmap.N)
|
||||
cbar = fig.colorbar(
|
||||
mpl.cm.ScalarMappable(cmap=cmap, norm=norm), cax=cbar_ax,
|
||||
ticks=[0.5, 1.5, 2.5, 3.5])
|
||||
cbar.ax.set_yticklabels(["knot", "filament", "sheet", "void"],
|
||||
rotation=90, va="center")
|
||||
else:
|
||||
fig.colorbar(im, cax=cbar_ax, label=clabel)
|
||||
|
||||
fig.tight_layout(h_pad=0, w_pad=0)
|
||||
for ext in ["png"] if pdf is False else ["png", "pdf"]:
|
||||
fout = join(plt_utils.fout,
|
||||
f"field_{kind}_{nsim}_rsp{in_rsp}.{ext}")
|
||||
fout = join(
|
||||
plt_utils.fout,
|
||||
f"field_{kind}_{nsim}_rsp{in_rsp}_hres{highres_only}.{ext}")
|
||||
if smooth_scale is not None and smooth_scale > 0:
|
||||
smooth_scale = float(smooth_scale)
|
||||
fout = fout.replace(f".{ext}", f"_smooth{smooth_scale}.{ext}")
|
||||
print(f"Saving to `{fout}`.")
|
||||
fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
|
||||
plt.close()
|
||||
|
@ -404,8 +434,8 @@ def get_sky_label(kind, volume_weight):
|
|||
return label
|
||||
|
||||
|
||||
def plot_sky_distribution(kind, nsim, grid, nside, MAS="PCS", plot_groups=True,
|
||||
dmin=0, dmax=220, plot_halos=None,
|
||||
def plot_sky_distribution(kind, nsim, grid, nside, smooth_scale, MAS="PCS",
|
||||
plot_groups=True, dmin=0, dmax=220, plot_halos=None,
|
||||
volume_weight=True, pdf=False):
|
||||
r"""
|
||||
Plot the sky distribution of a given field kind on the sky along with halos
|
||||
|
@ -425,6 +455,8 @@ def plot_sky_distribution(kind, nsim, grid, nside, MAS="PCS", plot_groups=True,
|
|||
Grid size.
|
||||
nside : int
|
||||
Healpix nside of the sky projection.
|
||||
smooth_scale : float
|
||||
Smoothing scale in :math:`\mathrm{Mpc} / h`.
|
||||
MAS : str, optional
|
||||
Mass assignment scheme.
|
||||
plot_groups : bool, optional
|
||||
|
@ -445,11 +477,13 @@ def plot_sky_distribution(kind, nsim, grid, nside, MAS="PCS", plot_groups=True,
|
|||
box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths)
|
||||
|
||||
if kind == "overdensity":
|
||||
field = load_field("density", nsim, grid, MAS=MAS, in_rsp=False)
|
||||
field = load_field("density", nsim, grid, MAS=MAS, in_rsp=False,
|
||||
smooth_scale=smooth_scale)
|
||||
density_gen = csiborgtools.field.DensityField(box, MAS)
|
||||
field = density_gen.overdensity_field(field) + 2
|
||||
field = density_gen.overdensity_field(field) + 1
|
||||
else:
|
||||
field = load_field(kind, nsim, grid, MAS=MAS, in_rsp=False)
|
||||
field = load_field(kind, nsim, grid, MAS=MAS, in_rsp=False,
|
||||
smooth_scale=smooth_scale)
|
||||
|
||||
angpos = csiborgtools.field.nside2radec(nside)
|
||||
dist = numpy.linspace(dmin, dmax, 500)
|
||||
|
@ -519,7 +553,22 @@ if __name__ == "__main__":
|
|||
if True:
|
||||
kind = "environment"
|
||||
grid = 256
|
||||
smooth_scale = 0
|
||||
# plot_projected_field("overdensity", 7444, grid, in_rsp=True,
|
||||
# highres_only=False)
|
||||
plot_projected_field(kind, 7444, grid, in_rsp=False,
|
||||
slice_find=0.5, highres_only=False)
|
||||
smooth_scale=smooth_scale, slice_find=0.5,
|
||||
highres_only=False)
|
||||
|
||||
if False:
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
|
||||
d = csiborgtools.read.read_h5(paths.particles(7444))["particles"]
|
||||
|
||||
plt.figure()
|
||||
plt.hist(d[:100000, 4], bins="auto")
|
||||
|
||||
plt.tight_layout()
|
||||
plt.savefig("../plots/velocity_distribution.png", dpi=450,
|
||||
bbox_inches="tight")
|
||||
|
||||
|
|
|
@ -648,7 +648,32 @@ def plot_significance(simname, runs, nsim, nobs, kind, kwargs, runs_to_mass):
|
|||
plt.close()
|
||||
|
||||
|
||||
def plot_significance_vs_mass(simname, runs, nsim, nobs, kind, kwargs):
|
||||
def make_binlims(run, runs_to_mass):
|
||||
"""
|
||||
Make bin limits for the 1NN distance runs, corresponding to the first half
|
||||
of the log-mass bin.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
run : str
|
||||
Run name.
|
||||
runs_to_mass : dict
|
||||
Dictionary mapping run names to total halo mass range.
|
||||
|
||||
Returns
|
||||
-------
|
||||
xmin, xmax : floats
|
||||
"""
|
||||
xmin, xmax = runs_to_mass[run]
|
||||
xmax = xmin + (xmax - xmin) / 2
|
||||
xmin, xmax = 10**xmin, 10**xmax
|
||||
if run == "mass009":
|
||||
xmax = numpy.infty
|
||||
return xmin, xmax
|
||||
|
||||
|
||||
def plot_significance_vs_mass(simname, runs, nsim, nobs, kind, kwargs,
|
||||
runs_to_mass):
|
||||
"""
|
||||
Plot significance of the 1NN distance as a function of the total mass.
|
||||
|
||||
|
@ -667,6 +692,8 @@ def plot_significance_vs_mass(simname, runs, nsim, nobs, kind, kwargs):
|
|||
(Kolmogorov-Smirnov p-value).
|
||||
kwargs : dict
|
||||
Nearest neighbour reader keyword arguments.
|
||||
runs_to_mass : dict
|
||||
Dictionary mapping run names to total halo mass range.
|
||||
|
||||
Returns
|
||||
-------
|
||||
|
@ -686,8 +713,12 @@ def plot_significance_vs_mass(simname, runs, nsim, nobs, kind, kwargs):
|
|||
y = make_kl(simname, run, nsim, nobs, kwargs)
|
||||
else:
|
||||
y = numpy.log10(make_ks(simname, run, nsim, nobs, kwargs))
|
||||
xs.append(x)
|
||||
ys.append(y)
|
||||
|
||||
xmin, xmax = make_binlims(run, runs_to_mass)
|
||||
mask = (x >= xmin) & (x < xmax)
|
||||
xs.append(x[mask])
|
||||
ys.append(y[mask])
|
||||
|
||||
xs = numpy.concatenate(xs)
|
||||
ys = numpy.concatenate(ys)
|
||||
|
||||
|
@ -715,7 +746,7 @@ def plot_significance_vs_mass(simname, runs, nsim, nobs, kind, kwargs):
|
|||
plt.close()
|
||||
|
||||
|
||||
def plot_kl_vs_ks(simname, runs, nsim, nobs, kwargs):
|
||||
def plot_kl_vs_ks(simname, runs, nsim, nobs, kwargs, runs_to_mass):
|
||||
"""
|
||||
Plot Kullback-Leibler divergence vs Kolmogorov-Smirnov statistic p-value.
|
||||
|
||||
|
@ -731,6 +762,8 @@ def plot_kl_vs_ks(simname, runs, nsim, nobs, kwargs):
|
|||
Fiducial Quijote observer index. For CSiBORG must be set to `None`.
|
||||
kwargs : dict
|
||||
Nearest neighbour reader keyword arguments.
|
||||
runs_to_mass : dict
|
||||
Dictionary mapping run names to total halo mass range.
|
||||
|
||||
Returns
|
||||
-------
|
||||
|
@ -741,9 +774,16 @@ def plot_kl_vs_ks(simname, runs, nsim, nobs, kwargs):
|
|||
|
||||
xs, ys, cs = [], [], []
|
||||
for run in runs:
|
||||
cs.append(reader.read_single(simname, run, nsim, nobs)["mass"])
|
||||
xs.append(make_kl(simname, run, nsim, nobs, kwargs))
|
||||
ys.append(make_ks(simname, run, nsim, nobs, kwargs))
|
||||
c = reader.read_single(simname, run, nsim, nobs)["mass"]
|
||||
x = make_kl(simname, run, nsim, nobs, kwargs)
|
||||
y = make_ks(simname, run, nsim, nobs, kwargs)
|
||||
|
||||
cmin, cmax = make_binlims(run, runs_to_mass)
|
||||
mask = (c >= cmin) & (c < cmax)
|
||||
xs.append(x[mask])
|
||||
ys.append(y[mask])
|
||||
cs.append(c[mask])
|
||||
|
||||
xs = numpy.concatenate(xs)
|
||||
ys = numpy.log10(numpy.concatenate(ys))
|
||||
cs = numpy.log10(numpy.concatenate(cs))
|
||||
|
@ -768,7 +808,7 @@ def plot_kl_vs_ks(simname, runs, nsim, nobs, kwargs):
|
|||
plt.close()
|
||||
|
||||
|
||||
def plot_kl_vs_overlap(runs, nsim, kwargs):
|
||||
def plot_kl_vs_overlap(runs, nsim, kwargs, runs_to_mass):
|
||||
"""
|
||||
Plot KL divergence vs overlap for CSiBORG.
|
||||
|
||||
|
@ -780,6 +820,8 @@ def plot_kl_vs_overlap(runs, nsim, kwargs):
|
|||
Simulation index.
|
||||
kwargs : dict
|
||||
Nearest neighbour reader keyword arguments.
|
||||
runs_to_mass : dict
|
||||
Dictionary mapping run names to total halo mass range.
|
||||
|
||||
Returns
|
||||
-------
|
||||
|
@ -802,12 +844,15 @@ def plot_kl_vs_overlap(runs, nsim, kwargs):
|
|||
prob_nomatch = prob_nomatch[mask]
|
||||
mass = mass[mask]
|
||||
|
||||
kl = make_kl("csiborg", run, nsim, nobs=None, kwargs=kwargs)
|
||||
|
||||
xs.append(kl)
|
||||
ys1.append(1 - numpy.mean(prob_nomatch, axis=1))
|
||||
ys2.append(numpy.std(prob_nomatch, axis=1))
|
||||
cs.append(numpy.log10(mass))
|
||||
x = make_kl("csiborg", run, nsim, nobs=None, kwargs=kwargs)
|
||||
y1 = 1 - numpy.mean(prob_nomatch, axis=1)
|
||||
y2 = numpy.std(prob_nomatch, axis=1)
|
||||
cmin, cmax = make_binlims(run, runs_to_mass)
|
||||
mask = (mass >= cmin) & (mass < cmax)
|
||||
xs.append(x[mask])
|
||||
ys1.append(y1[mask])
|
||||
ys2.append(y2[mask])
|
||||
cs.append(numpy.log10(mass[mask]))
|
||||
|
||||
xs = numpy.concatenate(xs)
|
||||
ys1 = numpy.concatenate(ys1)
|
||||
|
@ -877,7 +922,7 @@ if __name__ == "__main__":
|
|||
delete_disk_caches_for_function(func)
|
||||
|
||||
# Plot 1NN distance distributions.
|
||||
if False:
|
||||
if True:
|
||||
for i in range(1, 10):
|
||||
run = f"mass00{i}"
|
||||
for pulled_cdf in [True, False]:
|
||||
|
@ -886,12 +931,12 @@ if __name__ == "__main__":
|
|||
plot_dist(run, "pdf", neighbour_kwargs, runs_to_mass)
|
||||
|
||||
# Plot 1NN CDF differences.
|
||||
if False:
|
||||
if True:
|
||||
runs = [f"mass00{i}" for i in range(1, 10)]
|
||||
for pulled_cdf in [True, False]:
|
||||
plot_cdf_diff(runs, neighbour_kwargs, pulled_cdf=pulled_cdf,
|
||||
runs_to_mass=runs_to_mass)
|
||||
if False:
|
||||
if True:
|
||||
runs = [f"mass00{i}" for i in range(1, 9)]
|
||||
for kind in ["kl", "ks"]:
|
||||
plot_significance("csiborg", runs, 7444, nobs=None, kind=kind,
|
||||
|
@ -902,12 +947,14 @@ if __name__ == "__main__":
|
|||
runs = [f"mass00{i}" for i in range(1, 10)]
|
||||
for kind in ["kl", "ks"]:
|
||||
plot_significance_vs_mass("csiborg", runs, 7444, nobs=None,
|
||||
kind=kind, kwargs=neighbour_kwargs)
|
||||
kind=kind, kwargs=neighbour_kwargs,
|
||||
runs_to_mass=runs_to_mass)
|
||||
|
||||
if False:
|
||||
if True:
|
||||
runs = [f"mass00{i}" for i in range(1, 10)]
|
||||
plot_kl_vs_ks("csiborg", runs, 7444, None, kwargs=neighbour_kwargs)
|
||||
plot_kl_vs_ks("csiborg", runs, 7444, None, kwargs=neighbour_kwargs,
|
||||
runs_to_mass=runs_to_mass)
|
||||
|
||||
if False:
|
||||
if True:
|
||||
runs = [f"mass00{i}" for i in range(1, 10)]
|
||||
plot_kl_vs_overlap(runs, 7444, neighbour_kwargs)
|
||||
plot_kl_vs_overlap(runs, 7444, neighbour_kwargs, runs_to_mass)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue