Fixing overlaps and halo definitions. (#80)

* Add imports

* Refactor code

* Rename fof velocities

* Clean up and add Quijote

* Edit docstrings

* Update submission script

* Fix bug

* Start loading fitted properties

* Edit docstrings

* Update fitting for new `halo`

* Update CM definition and R200c

* Tune the minimum number of particles

* Enforce crossing threshold & tune hypers

* Fix periodiity when calculating angmom

* Doc strings

* Relax checkip

* Minor edit

* Fix old kwarg bug

* Fix CSiBORG bounds

* Catch warnings!

* Add `mass_kind` and new boundaries
This commit is contained in:
Richard Stiskalek 2023-07-31 16:13:21 +02:00 committed by GitHub
parent 169a5e5bd7
commit 344ff8e091
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
10 changed files with 543 additions and 388 deletions

View file

@ -37,7 +37,8 @@ except ModuleNotFoundError:
def fit_halo(particles, box):
"""
Fit a single halo from the particle array.
Fit a single halo from the particle array. Only halos with more than 100
particles are fitted.
Parameters
----------
@ -59,12 +60,17 @@ def fit_halo(particles, box):
for i, v in enumerate(["vx", "vy", "vz"]):
out[v] = numpy.average(halo.vel[:, i], weights=halo["M"])
m200c, r200c, cm = halo.spherical_overdensity_mass(200, kind="crit",
maxiter=100)
if out["npart"] < 100:
return out
cm, dist = halo.center_of_mass()
m200c, r200c = halo.spherical_overdensity_mass(dist, 200)
angmom = halo.angular_momentum(dist, cm, r200c)
out["m200c"] = m200c
out["r200c"] = r200c
out["lambda200c"] = halo.lambda_bullock(cm, r200c)
out["conc"] = halo.nfw_concentration(cm, r200c)
out["lambda200c"] = halo.lambda_bullock(angmom, m200c, r200c)
out["conc"] = halo.nfw_concentration(dist, r200c)
return out
@ -81,9 +87,6 @@ def _main(nsim, simname, verbose):
verbose : bool
Verbosity flag.
"""
# if simname == "quijote":
# raise NotImplementedError("Quijote not implemented yet.")
cols = [("index", numpy.int32),
("npart", numpy.int32),
("totpartmass", numpy.float32),
@ -116,7 +119,6 @@ def _main(nsim, simname, verbose):
for i in trange(len(cat)) if verbose else range(len(cat)):
hid = cat["index"][i]
out["index"][i] = hid
# print("i = ", i)
part = csiborgtools.read.load_halo_particles(hid, particles, halo_map,
hid2map)
# Skip if no particles.
@ -125,7 +127,7 @@ def _main(nsim, simname, verbose):
_out = fit_halo(part, box)
for key in _out.keys():
out[key][i] = _out[key]
out[key][i] = _out.get(key, numpy.nan)
fout = paths.structfit(nsnap, nsim, simname)
if verbose:

View file

@ -66,7 +66,7 @@ def _main(nsim, simname, verbose):
if simname == "csiborg":
cat = csiborgtools.read.CSiBORGHaloCatalogue(
nsim, paths, rawdata=True, load_fitted=False, load_initial=False)
nsim, paths, bounds=None, load_fitted=False, load_initial=False)
else:
cat = csiborgtools.read.QuijoteHaloCatalogue(
nsim, paths, nsnap=4, load_fitted=False, load_initial=False)

View file

@ -11,10 +11,7 @@
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""
Script to match all pairs of CSiBORG simulations. Mathches main haloes whose
mass is above 1e12 solar masses.
"""
"""A script to match all IC pairs of a simulation."""
from argparse import ArgumentParser
from distutils.util import strtobool
from itertools import combinations
@ -34,10 +31,15 @@ except ModuleNotFoundError:
import csiborgtools
def get_combs():
def get_combs(simname):
"""
Get the list of all pairs of simulations, then permute them with a known
seed to minimise loading the same files simultaneously.
Get the list of all pairs of IC indices and permute them with a fixed
seed.
Parameters
----------
simname : str
Simulation name.
Returns
-------
@ -45,38 +47,49 @@ def get_combs():
List of pairs of simulations.
"""
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
ics = paths.get_ics("csiborg")
combs = list(combinations(ics, 2))
combs = list(combinations(paths.get_ics(simname), 2))
Random(42).shuffle(combs)
return combs
def do_work(comb):
def main(comb, simname, sigma, verbose):
"""
Match a pair of simulations.
Parameters
----------
comb : tuple
Pair of simulations.
Pair of simulation IC indices.
simname : str
Simulation name.
sigma : float
Smoothing scale in number of grid cells.
verbose : bool
Verbosity flag.
Returns
-------
None
"""
nsim0, nsimx = comb
pair_match(nsim0, nsimx, args.sigma, args.smoothen, args.verbose)
pair_match(nsim0, nsimx, simname, sigma, verbose)
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--sigma", type=float, default=None)
parser.add_argument("--smoothen", type=lambda x: bool(strtobool(x)),
default=None)
parser.add_argument("--simname", type=str, help="Simulation name.",
choices=["csiborg", "quijote"])
parser.add_argument("--sigma", type=float, default=0,
help="Smoothing scale in number of grid cells.")
parser.add_argument("--verbose", type=lambda x: bool(strtobool(x)),
default=False)
default=False, help="Verbosity flag.")
args = parser.parse_args()
comm = MPI.COMM_WORLD
combs = get_combs()
work_delegation(do_work, combs, comm, master_verbose=True)
def _main(comb):
main(comb, args.simname, args.sigma, args.verbose)
work_delegation(_main, combs, MPI.COMM_WORLD)

View file

@ -11,7 +11,13 @@
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""A script to calculate overlap between two CSiBORG realisations."""
"""
A script to calculate overlap between two IC realisations of the same
simulation. The matching is performed for haloes whose total particles mass is
- CSiBORG: > 1e13 Msun/h,
- Quijote: > 1e14 Msun/h,
since Quijote has much lower resolution than CSiBORG.
"""
from argparse import ArgumentParser
from copy import deepcopy
from datetime import datetime
@ -29,95 +35,123 @@ except ModuleNotFoundError:
import csiborgtools
def pair_match(nsim0, nsimx, sigma, smoothen, verbose):
# TODO fix this.
simname = "csiborg"
overlapper_kwargs = {"box_size": 512, "bckg_halfsize": 475}
from csiborgtools.read import CSiBORGHaloCatalogue, read_h5
def pair_match(nsim0, nsimx, simname, sigma, verbose):
"""
Calculate overlaps between two simulations.
Parameters
----------
nsim0 : int
The reference simulation IC index.
nsimx : int
The cross simulation IC index.
simname : str
Simulation name.
sigma : float
Smoothing scale in number of grid cells.
verbose : bool
Verbosity flag.
Returns
-------
None
"""
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
smooth_kwargs = {"sigma": sigma, "mode": "constant", "cval": 0.0}
overlapper = csiborgtools.match.ParticleOverlap(**overlapper_kwargs)
matcher = csiborgtools.match.RealisationsMatcher(**overlapper_kwargs)
smooth_kwargs = {"sigma": sigma, "mode": "wrap"}
# Load the raw catalogues (i.e. no selection) including the initial CM
# positions and the particle archives.
bounds = {"totpartmass": (1e12, None)}
cat0 = CSiBORGHaloCatalogue(nsim0, paths, load_initial=True, bounds=bounds,
with_lagpatch=True, load_clumps_cat=True)
catx = CSiBORGHaloCatalogue(nsimx, paths, load_initial=True, bounds=bounds,
with_lagpatch=True, load_clumps_cat=True)
if simname == "csiborg":
overlapper_kwargs = {"box_size": 2048, "bckg_halfsize": 475}
mass_kind = "fof_totpartmass"
bounds = {mass_kind: (1e13, None)}
cat0 = csiborgtools.read.CSiBORGHaloCatalogue(
nsim0, paths, bounds=bounds, load_fitted=False,
with_lagpatch=True)
catx = csiborgtools.read.CSiBORGHaloCatalogue(
nsimx, paths, bounds=bounds, load_fitted=False,
with_lagpatch=True)
elif simname == "quijote":
overlapper_kwargs = {"box_size": 512, "bckg_halfsize": 256}
mass_kind = "group_mass"
bounds = {mass_kind: (1e14, None)}
cat0 = csiborgtools.read.QuijoteHaloCatalogue(
nsim0, paths, 4, load_fitted=False, with_lagpatch=True)
catx = csiborgtools.read.QuijoteHaloCatalogue(
nsimx, paths, 4, load_fitted=False, with_lagpatch=True)
else:
raise ValueError(f"Unknown simulation name: `{simname}`.")
clumpmap0 = read_h5(paths.particles(nsim0, simname))["clumpmap"]
parts0 = read_h5(paths.initmatch(nsim0, simname, "particles"))["particles"]
clid2map0 = {clid: i for i, clid in enumerate(clumpmap0[:, 0])}
halomap0 = csiborgtools.read.read_h5(
paths.particles(nsim0, simname))["halomap"]
parts0 = csiborgtools.read.read_h5(
paths.initmatch(nsim0, simname, "particles"))["particles"]
hid2map0 = {hid: i for i, hid in enumerate(halomap0[:, 0])}
clumpmapx = read_h5(paths.particles(nsimx, simname))["clumpmap"]
partsx = read_h5(paths.initmatch(nsimx, simname, "particles"))["particles"]
clid2mapx = {clid: i for i, clid in enumerate(clumpmapx[:, 0])}
halomapx = csiborgtools.read.read_h5(
paths.particles(nsimx, simname))["halomap"]
partsx = csiborgtools.read.read_h5(
paths.initmatch(nsimx, simname, "particles"))["particles"]
hid2mapx = {hid: i for i, hid in enumerate(halomapx[:, 0])}
# We generate the background density fields. Loads halos's particles one by
# one from the archive, concatenates them and calculates the NGP density
# field.
if verbose:
print(f"{datetime.now()}: generating the background density fields.",
print(f"{datetime.now()}: calculating the background density fields.",
flush=True)
delta_bckg = overlapper.make_bckg_delta(parts0, clumpmap0, clid2map0, cat0,
overlapper = csiborgtools.match.ParticleOverlap(**overlapper_kwargs)
delta_bckg = overlapper.make_bckg_delta(parts0, halomap0, hid2map0, cat0,
verbose=verbose)
delta_bckg = overlapper.make_bckg_delta(partsx, clumpmapx, clid2mapx, catx,
delta_bckg = overlapper.make_bckg_delta(partsx, halomapx, hid2mapx, catx,
delta=delta_bckg, verbose=verbose)
# We calculate the overlap between the NGP fields.
if verbose:
print(f"{datetime.now()}: crossing the simulations.", flush=True)
print(f"{datetime.now()}: NGP crossing the simulations.", flush=True)
matcher = csiborgtools.match.RealisationsMatcher(
mass_kind=mass_kind, **overlapper_kwargs)
match_indxs, ngp_overlap = matcher.cross(cat0, catx, parts0, partsx,
clumpmap0, clumpmapx, delta_bckg,
halomap0, halomapx, delta_bckg,
verbose=verbose)
# We wish to store the halo IDs of the matches, not their array positions
# in the catalogues
# We want to store the halo IDs of the matches, not their array positions
# in the catalogues.
match_hids = deepcopy(match_indxs)
for i, matches in enumerate(match_indxs):
for j, match in enumerate(matches):
match_hids[i][j] = catx["index"][match]
fout = paths.overlap(nsim0, nsimx, smoothed=False)
if verbose:
print(f"{datetime.now()}: saving to ... `{fout}`.", flush=True)
numpy.savez(fout, ref_hids=cat0["index"], match_hids=match_hids,
ngp_overlap=ngp_overlap)
if verbose:
print(f"{datetime.now()}: calculated NGP overlap, saved to {fout}.",
flush=True)
if not smoothen:
quit()
if not sigma > 0:
return
# We now smoothen up the background density field for the smoothed overlap
# calculation.
if verbose:
print(f"{datetime.now()}: smoothing the background field.", flush=True)
gaussian_filter(delta_bckg, output=delta_bckg, **smooth_kwargs)
# We calculate the smoothed overlap for the pairs whose NGP overlap is > 0.
smoothed_overlap = matcher.smoothed_cross(cat0, catx, parts0, partsx,
clumpmap0, clumpmapx, delta_bckg,
halomap0, halomapx, delta_bckg,
match_indxs, smooth_kwargs,
verbose=verbose)
fout = paths.overlap(nsim0, nsimx, smoothed=True)
numpy.savez(fout, smoothed_overlap=smoothed_overlap, sigma=sigma)
if verbose:
print(f"{datetime.now()}: calculated smoothing, saved to {fout}.",
flush=True)
print(f"{datetime.now()}: saving to ... `{fout}`.", flush=True)
numpy.savez(fout, smoothed_overlap=smoothed_overlap, sigma=sigma)
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--nsim0", type=int)
parser.add_argument("--nsimx", type=int)
parser.add_argument("--sigma", type=float, default=None)
parser.add_argument("--smoothen", type=lambda x: bool(strtobool(x)),
default=None)
parser.add_argument("--nsim0", type=int,
help="Reference simulation IC index.")
parser.add_argument("--nsimx", type=int,
help="Cross simulation IC index.")
parser.add_argument("--simname", type=str, help="Simulation name.")
parser.add_argument("--sigma", type=float, default=0,
help="Smoothing scale in number of grid cells.")
parser.add_argument("--verbose", type=lambda x: bool(strtobool(x)),
default=False)
default=False, help="Verbosity flag.")
args = parser.parse_args()
pair_match(args.nsim0, args.nsimx, args.sigma, args.smoothen, args.verbose)
pair_match(args.nsim0, args.nsimx, args.simname, args.sigma, args.verbose)