mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-22 22:58:02 +00:00
Environmental properties (#20)
* rm get_positions * Add comment * add halfwidth func * Update docs * Add imprt * Evaluate multiple fields simulatenously * add halfwidth selection * Change order of grav field and tensor field * Add gravitational field norm * Add eigenvalue calculation * Sorted eigenvalues * add init script * add progress * Add surveys * Add more survey flexibility * Minor changes * add survey names * rm name * Fix list bug * Fig bugs when running the script * add phi to dtype * fix dump bug * Add comment * Add smoothing options * Add further comment * Update TODO
This commit is contained in:
parent
65059f3798
commit
2e99b901ac
8 changed files with 302 additions and 109 deletions
|
@ -18,7 +18,7 @@
|
||||||
|
|
||||||
### TODO
|
### TODO
|
||||||
- [ ] Add gradient and Hessian of the overdensity field.
|
- [ ] Add gradient and Hessian of the overdensity field.
|
||||||
- [ ] Write a script to smoothen an overdensity field, calculate the derived fields and evaluate them at the galaxy positions.
|
- [x] Write a script to smoothen an overdensity field, calculate the derived fields and evaluate them at the galaxy positions.
|
||||||
|
|
||||||
|
|
||||||
### Questions
|
### Questions
|
||||||
|
|
|
@ -139,7 +139,7 @@ class DensityField:
|
||||||
x = x.astype(numpy.float32)
|
x = x.astype(numpy.float32)
|
||||||
return x
|
return x
|
||||||
|
|
||||||
def density_field(self, grid, verbose=True):
|
def density_field(self, grid, smooth_scale=None, verbose=True):
|
||||||
"""
|
"""
|
||||||
Calculate the density field using a Pylians routine [1, 2]. Enforces
|
Calculate the density field using a Pylians routine [1, 2]. Enforces
|
||||||
float32 precision.
|
float32 precision.
|
||||||
|
@ -148,6 +148,9 @@ class DensityField:
|
||||||
----------
|
----------
|
||||||
grid : int
|
grid : int
|
||||||
The grid size.
|
The grid size.
|
||||||
|
smooth_scale : float, optional
|
||||||
|
Scale to smoothen the density field, in units matching
|
||||||
|
`self.boxsize`. By default `None`, i.e. no smoothing is applied.
|
||||||
verbose : float, optional
|
verbose : float, optional
|
||||||
A verbosity flag. By default `True`.
|
A verbosity flag. By default `True`.
|
||||||
|
|
||||||
|
@ -170,9 +173,11 @@ class DensityField:
|
||||||
# Pre-allocate and do calculations
|
# Pre-allocate and do calculations
|
||||||
rho = numpy.zeros((grid, grid, grid), dtype=numpy.float32)
|
rho = numpy.zeros((grid, grid, grid), dtype=numpy.float32)
|
||||||
MASL.MA(pos, rho, self.boxsize, self.MAS, W=weights, verbose=verbose)
|
MASL.MA(pos, rho, self.boxsize, self.MAS, W=weights, verbose=verbose)
|
||||||
|
if smooth_scale is not None:
|
||||||
|
rho = self.smooth_field(rho, smooth_scale)
|
||||||
return rho
|
return rho
|
||||||
|
|
||||||
def overdensity_field(self, grid, verbose=True):
|
def overdensity_field(self, grid, smooth_scale=None, verbose=True):
|
||||||
r"""
|
r"""
|
||||||
Calculate the overdensity field using Pylians routines.
|
Calculate the overdensity field using Pylians routines.
|
||||||
Defined as :math:`\rho/ <\rho> - 1`.
|
Defined as :math:`\rho/ <\rho> - 1`.
|
||||||
|
@ -181,6 +186,9 @@ class DensityField:
|
||||||
----------
|
----------
|
||||||
grid : int
|
grid : int
|
||||||
The grid size.
|
The grid size.
|
||||||
|
smooth_scale : float, optional
|
||||||
|
Scale to smoothen the density field, in units matching
|
||||||
|
`self.boxsize`. By default `None`, i.e. no smoothing is applied.
|
||||||
verbose : float, optional
|
verbose : float, optional
|
||||||
A verbosity flag. By default `True`.
|
A verbosity flag. By default `True`.
|
||||||
|
|
||||||
|
@ -190,12 +198,12 @@ class DensityField:
|
||||||
Overdensity field.
|
Overdensity field.
|
||||||
"""
|
"""
|
||||||
# Get the overdensity
|
# Get the overdensity
|
||||||
delta = self.density_field(grid, verbose)
|
delta = self.density_field(grid, smooth_scale, verbose)
|
||||||
delta /= delta.mean()
|
delta /= delta.mean()
|
||||||
delta -= 1
|
delta -= 1
|
||||||
return delta
|
return delta
|
||||||
|
|
||||||
def potential_field(self, grid, verbose=True):
|
def potential_field(self, grid, smooth_scale=None, verbose=True):
|
||||||
"""
|
"""
|
||||||
Calculate the potential field using Pylians routines.
|
Calculate the potential field using Pylians routines.
|
||||||
|
|
||||||
|
@ -203,6 +211,9 @@ class DensityField:
|
||||||
----------
|
----------
|
||||||
grid : int
|
grid : int
|
||||||
The grid size.
|
The grid size.
|
||||||
|
smooth_scale : float, optional
|
||||||
|
Scale to smoothen the original density field, in units matching
|
||||||
|
`self.boxsize`. By default `None`, i.e. no smoothing is applied.
|
||||||
verbose : float, optional
|
verbose : float, optional
|
||||||
A verbosity flag. By default `True`.
|
A verbosity flag. By default `True`.
|
||||||
|
|
||||||
|
@ -211,42 +222,24 @@ class DensityField:
|
||||||
potential : 3-dimensional array of shape `(grid, grid, grid)`.
|
potential : 3-dimensional array of shape `(grid, grid, grid)`.
|
||||||
Potential field.
|
Potential field.
|
||||||
"""
|
"""
|
||||||
delta = self.overdensity_field(grid, verbose)
|
delta = self.overdensity_field(grid, smooth_scale, verbose)
|
||||||
if verbose:
|
if verbose:
|
||||||
print("Calculating potential from the overdensity..")
|
print("Calculating potential from the overdensity..")
|
||||||
return MASL.potential(
|
return MASL.potential(
|
||||||
delta, self.box._omega_m, self.box._aexp, self.MAS)
|
delta, self.box._omega_m, self.box._aexp, self.MAS)
|
||||||
|
|
||||||
def tensor_field(self, grid, verbose=True):
|
def gravitational_field(self, grid, smooth_scale=None, verbose=True):
|
||||||
"""
|
"""
|
||||||
Calculate the tidal tensor field.
|
Calculate the gravitational vector field. Note that this method is
|
||||||
|
only defined in a fork of `Pylians`.
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
grid : int
|
|
||||||
The grid size.
|
|
||||||
verbose : float, optional
|
|
||||||
A verbosity flag. By default `True`.
|
|
||||||
|
|
||||||
Returns
|
|
||||||
-------
|
|
||||||
tidal_tensor : :py:class:`MAS_library.tidal_tensor`
|
|
||||||
Tidal tensor object, whose attributes `tidal_tensor.Tij` contain
|
|
||||||
the relevant tensor components.
|
|
||||||
"""
|
|
||||||
delta = self.overdensity_field(grid, verbose)
|
|
||||||
return MASL.tidal_tensor(
|
|
||||||
delta, self.box._omega_m, self.box._aexp, self.MAS)
|
|
||||||
|
|
||||||
def gravitational_field(self, grid, verbose=True):
|
|
||||||
"""
|
|
||||||
Calculate the gravitational tensor field. Note that this method is
|
|
||||||
only defined in fork of `Pylians`.
|
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
grid : int
|
grid : int
|
||||||
The grid size.
|
The grid size.
|
||||||
|
smooth_scale : float, optional
|
||||||
|
Scale to smoothen the original density field, in units matching
|
||||||
|
`self.boxsize`. By default `None`, i.e. no smoothing is applied.
|
||||||
verbose : float, optional
|
verbose : float, optional
|
||||||
A verbosity flag. By default `True`.
|
A verbosity flag. By default `True`.
|
||||||
|
|
||||||
|
@ -256,11 +249,35 @@ class DensityField:
|
||||||
Tidal tensor object, whose attributes `grav_field_tensor.gi`
|
Tidal tensor object, whose attributes `grav_field_tensor.gi`
|
||||||
contain the relevant tensor components.
|
contain the relevant tensor components.
|
||||||
"""
|
"""
|
||||||
delta = self.overdensity_field(grid, verbose)
|
delta = self.overdensity_field(grid, smooth_scale, verbose)
|
||||||
return MASL.grav_field_tensor(
|
return MASL.grav_field_tensor(
|
||||||
delta, self.box._omega_m, self.box._aexp, self.MAS)
|
delta, self.box._omega_m, self.box._aexp, self.MAS)
|
||||||
|
|
||||||
def auto_powerspectrum(self, grid, verbose=True):
|
def tensor_field(self, grid, smooth_scale=None, verbose=True):
|
||||||
|
"""
|
||||||
|
Calculate the tidal tensor field.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
grid : int
|
||||||
|
The grid size.
|
||||||
|
smooth_scale : float, optional
|
||||||
|
Scale to smoothen the original density field, in units matching
|
||||||
|
`self.boxsize`. By default `None`, i.e. no smoothing is applied.
|
||||||
|
verbose : float, optional
|
||||||
|
A verbosity flag. By default `True`.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
tidal_tensor : :py:class:`MAS_library.tidal_tensor`
|
||||||
|
Tidal tensor object, whose attributes `tidal_tensor.Tij` contain
|
||||||
|
the relevant tensor components.
|
||||||
|
"""
|
||||||
|
delta = self.overdensity_field(grid, smooth_scale, verbose)
|
||||||
|
return MASL.tidal_tensor(
|
||||||
|
delta, self.box._omega_m, self.box._aexp, self.MAS)
|
||||||
|
|
||||||
|
def auto_powerspectrum(self, grid, smooth_scale, verbose=True):
|
||||||
"""
|
"""
|
||||||
Calculate the auto 1-dimensional power spectrum.
|
Calculate the auto 1-dimensional power spectrum.
|
||||||
|
|
||||||
|
@ -268,6 +285,9 @@ class DensityField:
|
||||||
----------
|
----------
|
||||||
grid : int
|
grid : int
|
||||||
The grid size.
|
The grid size.
|
||||||
|
smooth_scale : float, optional
|
||||||
|
Scale to smoothen the original density field, in units matching
|
||||||
|
`self.boxsize`. By default `None`, i.e. no smoothing is applied.
|
||||||
verbose : float, optional
|
verbose : float, optional
|
||||||
A verbosity flag. By default `True`.
|
A verbosity flag. By default `True`.
|
||||||
|
|
||||||
|
@ -276,7 +296,7 @@ class DensityField:
|
||||||
pk : py:class`Pk_library.Pk`
|
pk : py:class`Pk_library.Pk`
|
||||||
Power spectrum object.
|
Power spectrum object.
|
||||||
"""
|
"""
|
||||||
delta = self.overdensity_field(grid, verbose)
|
delta = self.overdensity_field(grid, smooth_scale, verbose)
|
||||||
return PKL.Pk(
|
return PKL.Pk(
|
||||||
delta, self.boxsize, axis=1, MAS=self.MAS, threads=1,
|
delta, self.boxsize, axis=1, MAS=self.MAS, threads=1,
|
||||||
verbose=verbose)
|
verbose=verbose)
|
||||||
|
@ -305,48 +325,51 @@ class DensityField:
|
||||||
W_k = SL.FT_filter(self.boxsize, scale, grid, Filter, threads)
|
W_k = SL.FT_filter(self.boxsize, scale, grid, Filter, threads)
|
||||||
return SL.field_smoothing(field, W_k, threads)
|
return SL.field_smoothing(field, W_k, threads)
|
||||||
|
|
||||||
def evaluate_field(self, pos, field):
|
def evaluate_field(self, *field, pos):
|
||||||
"""
|
"""
|
||||||
Evaluate the field at Cartesian coordinates.
|
Evaluate the field at Cartesian coordinates.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
|
field : (list of) 3-dimensional array of shape `(grid, grid, grid)`
|
||||||
|
The density field that is to be interpolated.
|
||||||
pos : 2-dimensional array of shape `(n_samples, 3)`
|
pos : 2-dimensional array of shape `(n_samples, 3)`
|
||||||
Positions to evaluate the density field. The coordinates span range
|
Positions to evaluate the density field. The coordinates span range
|
||||||
of [0, boxsize].
|
of [0, boxsize].
|
||||||
field : 3-dimensional array of shape `(grid, grid, grid)`
|
|
||||||
The density field that is to be interpolated.
|
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
interp_field : 1-dimensional array of shape `(n_samples,).
|
interp_field : (list of) 1-dimensional array of shape `(n_samples,).
|
||||||
Interpolated field at `pos`.
|
Interpolated fields at `pos`.
|
||||||
"""
|
"""
|
||||||
self._force_f32(pos, "pos")
|
self._force_f32(pos, "pos")
|
||||||
density_interpolated = numpy.zeros(pos.shape[0], dtype=numpy.float32)
|
|
||||||
MASL.CIC_interp(field, self.boxsize, pos, density_interpolated)
|
|
||||||
return density_interpolated
|
|
||||||
|
|
||||||
def evaluate_sky(self, pos, field, isdeg=True):
|
interp_field = [numpy.zeros(pos.shape[0], dtype=numpy.float32)
|
||||||
|
for __ in range(len(field))]
|
||||||
|
for i, f in enumerate(field):
|
||||||
|
MASL.CIC_interp(f, self.boxsize, pos, interp_field[i])
|
||||||
|
return interp_field
|
||||||
|
|
||||||
|
def evaluate_sky(self, *field, pos, isdeg=True):
|
||||||
"""
|
"""
|
||||||
Evaluate the field at given distance, right ascension and declination.
|
Evaluate the field at given distance, right ascension and declination.
|
||||||
Assumes that the observed is in the centre of the box.
|
Assumes that the observed is in the centre of the box.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
|
field : (list of) 3-dimensional array of shape `(grid, grid, grid)`
|
||||||
|
The density field that is to be interpolated. Assumed to be defined
|
||||||
|
on a Cartesian grid.
|
||||||
pos : 2-dimensional array of shape `(n_samples, 3)`
|
pos : 2-dimensional array of shape `(n_samples, 3)`
|
||||||
Spherical coordinates to evaluate the field. Should be distance,
|
Spherical coordinates to evaluate the field. Should be distance,
|
||||||
right ascension, declination, respectively.
|
right ascension, declination, respectively.
|
||||||
field : 3-dimensional array of shape `(grid, grid, grid)`
|
|
||||||
The density field that is to be interpolated. Assumed to be defined
|
|
||||||
on a Cartesian grid.
|
|
||||||
isdeg : bool, optional
|
isdeg : bool, optional
|
||||||
Whether `ra` and `dec` are in degres. By default `True`.
|
Whether `ra` and `dec` are in degres. By default `True`.
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
interp_field : 1-dimensional array of shape `(n_samples,).
|
interp_field : (list of) 1-dimensional array of shape `(n_samples,).
|
||||||
Interpolated field at `pos`.
|
Interpolated fields at `pos`.
|
||||||
"""
|
"""
|
||||||
self._force_f32(pos, "pos")
|
self._force_f32(pos, "pos")
|
||||||
X = numpy.vstack(
|
X = numpy.vstack(
|
||||||
|
@ -354,7 +377,58 @@ class DensityField:
|
||||||
X = X.astype(numpy.float32)
|
X = X.astype(numpy.float32)
|
||||||
# Place the observer at the center of the box
|
# Place the observer at the center of the box
|
||||||
X += 0.5 * self.boxsize
|
X += 0.5 * self.boxsize
|
||||||
return self.evaluate_field(X, field)
|
return self.evaluate_field(*field, pos=X)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def gravitational_field_norm(gx, gy, gz):
|
||||||
|
"""
|
||||||
|
Calculate the norm (magnitude) of a gravitational field.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
gx, gy, gz : 1-dimensional arrays of shape `(n_samples,)`
|
||||||
|
Gravitational field components.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
g : 1-dimensional array of shape `(n_samples,)`
|
||||||
|
Gravitational field norm.
|
||||||
|
"""
|
||||||
|
return numpy.sqrt(gx * gx + gy * gy + gz * gz)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def tensor_field_eigvals(T00, T01, T02, T11, T12, T22):
|
||||||
|
"""
|
||||||
|
Calculate the eigenvalues of a symmetric tensor field. Eigenvalues are
|
||||||
|
sorted in increasing order.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
T00, T01, T02, T11, T12, T22 : 1-dim arrays of shape `(n_samples,)`
|
||||||
|
Tensor field upper components evaluated for each sample.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
eigvals : 2-dimensional array of shape `(n_samples, 3)`
|
||||||
|
Eigenvalues of each sample.
|
||||||
|
"""
|
||||||
|
n_samples = T00.size
|
||||||
|
# Fill array of shape `(n_samples, 3, 3)` to calculate eigvals
|
||||||
|
Teval = numpy.full((n_samples, 3, 3), numpy.nan, dtype=numpy.float32)
|
||||||
|
Teval[:, 0, 0] = T00
|
||||||
|
Teval[:, 0, 1] = T01
|
||||||
|
Teval[:, 0, 2] = T02
|
||||||
|
Teval[:, 1, 1] = T11
|
||||||
|
Teval[:, 1, 2] = T12
|
||||||
|
Teval[:, 2, 2] = T22
|
||||||
|
|
||||||
|
# Calculate the eigenvalues
|
||||||
|
eigvals = numpy.full((n_samples, 3), numpy.nan, dtype=numpy.float32)
|
||||||
|
for i in range(n_samples):
|
||||||
|
eigvals[i, :] = numpy.linalg.eigvalsh(Teval[i, ...], 'U')
|
||||||
|
eigvals[i, :] = numpy.sort(eigvals[i, :])
|
||||||
|
|
||||||
|
return eigvals
|
||||||
|
|
||||||
def make_sky_map(self, ra, dec, field, dist_marg, isdeg=True,
|
def make_sky_map(self, ra, dec, field, dist_marg, isdeg=True,
|
||||||
verbose=True):
|
verbose=True):
|
||||||
|
@ -364,6 +438,8 @@ class DensityField:
|
||||||
position evaluates the field at distances `dist_marg` and sums these
|
position evaluates the field at distances `dist_marg` and sums these
|
||||||
interpolated values of the field.
|
interpolated values of the field.
|
||||||
|
|
||||||
|
NOTE: Supports only scalar fields.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
ra, dec : 1-dimensional arrays of shape `(n_pos, )`
|
ra, dec : 1-dimensional arrays of shape `(n_pos, )`
|
||||||
|
@ -400,6 +476,6 @@ class DensityField:
|
||||||
dec_loop[:] = pos[i, 1]
|
dec_loop[:] = pos[i, 1]
|
||||||
pos_loop[:] = numpy.vstack([dist_marg, ra_loop, dec_loop]).T
|
pos_loop[:] = numpy.vstack([dist_marg, ra_loop, dec_loop]).T
|
||||||
# Evaluate and sum it up
|
# Evaluate and sum it up
|
||||||
out[i] = numpy.sum(self.evaluate_sky(pos_loop, field, isdeg))
|
out[i] = numpy.sum(self.evaluate_sky(field, pos_loop, isdeg)[0, :])
|
||||||
|
|
||||||
return out
|
return out
|
||||||
|
|
|
@ -13,7 +13,7 @@
|
||||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||||
|
|
||||||
from .readsim import (CSiBORGPaths, ParticleReader, read_mmain, read_initcm, get_positions) # noqa
|
from .readsim import (CSiBORGPaths, ParticleReader, read_mmain, read_initcm, halfwidth_select) # noqa
|
||||||
from .make_cat import (HaloCatalogue, CombinedHaloCatalogue) # noqa
|
from .make_cat import (HaloCatalogue, CombinedHaloCatalogue) # noqa
|
||||||
from .readobs import (PlanckClusters, MCXCClusters, TwoMPPGalaxies, # noqa
|
from .readobs import (PlanckClusters, MCXCClusters, TwoMPPGalaxies, # noqa
|
||||||
TwoMPPGroups, SDSS) # noqa
|
TwoMPPGroups, SDSS) # noqa
|
||||||
|
|
|
@ -95,6 +95,7 @@ class TwoMPPGalaxies(TextSurvey):
|
||||||
[3] Improving NASA/IPAC Extragalactic Database Redshift Calculations
|
[3] Improving NASA/IPAC Extragalactic Database Redshift Calculations
|
||||||
(2021); Anthony Carr and Tamara Davis
|
(2021); Anthony Carr and Tamara Davis
|
||||||
"""
|
"""
|
||||||
|
name = "2M++_galaxies"
|
||||||
|
|
||||||
def __init__(self, fpath=None):
|
def __init__(self, fpath=None):
|
||||||
if fpath is None:
|
if fpath is None:
|
||||||
|
@ -143,6 +144,7 @@ class TwoMPPGroups(TextSurvey):
|
||||||
[3] Improving NASA/IPAC Extragalactic Database Redshift Calculations
|
[3] Improving NASA/IPAC Extragalactic Database Redshift Calculations
|
||||||
(2021); Anthony Carr and Tamara Davis
|
(2021); Anthony Carr and Tamara Davis
|
||||||
"""
|
"""
|
||||||
|
name = "2M++_groups"
|
||||||
|
|
||||||
def __init__(self, fpath):
|
def __init__(self, fpath):
|
||||||
if fpath is None:
|
if fpath is None:
|
||||||
|
@ -411,6 +413,7 @@ class PlanckClusters(FitsSurvey):
|
||||||
----------
|
----------
|
||||||
[1] https://heasarc.gsfc.nasa.gov/W3Browse/all/plancksz2.html
|
[1] https://heasarc.gsfc.nasa.gov/W3Browse/all/plancksz2.html
|
||||||
"""
|
"""
|
||||||
|
name = "Planck_clusters"
|
||||||
_hdata = 0.7 # little h value of the data
|
_hdata = 0.7 # little h value of the data
|
||||||
|
|
||||||
def __init__(self, fpath=None, h=0.7, sel_steps=None):
|
def __init__(self, fpath=None, h=0.7, sel_steps=None):
|
||||||
|
@ -514,6 +517,7 @@ class MCXCClusters(FitsSurvey):
|
||||||
[2] https://heasarc.gsfc.nasa.gov/W3Browse/rosat/mcxc.html
|
[2] https://heasarc.gsfc.nasa.gov/W3Browse/rosat/mcxc.html
|
||||||
[3] https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/534/A109#/article
|
[3] https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/534/A109#/article
|
||||||
"""
|
"""
|
||||||
|
name = "MCXC"
|
||||||
_hdata = 0.7 # Little h of the catalogue
|
_hdata = 0.7 # Little h of the catalogue
|
||||||
|
|
||||||
def __init__(self, fpath=None, h=0.7, sel_steps=None):
|
def __init__(self, fpath=None, h=0.7, sel_steps=None):
|
||||||
|
@ -571,6 +575,7 @@ class SDSS(FitsSurvey):
|
||||||
----------
|
----------
|
||||||
[1] https://www.sdss.org/dr13/manga/manga-target-selection/nsa/
|
[1] https://www.sdss.org/dr13/manga/manga-target-selection/nsa/
|
||||||
"""
|
"""
|
||||||
|
name = "SDSS"
|
||||||
|
|
||||||
def __init__(self, fpath=None, h=1, sel_steps=None):
|
def __init__(self, fpath=None, h=1, sel_steps=None):
|
||||||
if fpath is None:
|
if fpath is None:
|
||||||
|
|
|
@ -18,12 +18,11 @@ Functions to read in the particle and clump files.
|
||||||
|
|
||||||
import numpy
|
import numpy
|
||||||
from scipy.io import FortranFile
|
from scipy.io import FortranFile
|
||||||
import gc
|
|
||||||
from os.path import (join, isfile, isdir)
|
from os.path import (join, isfile, isdir)
|
||||||
from glob import glob
|
from glob import glob
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
from warnings import warn
|
from warnings import warn
|
||||||
from ..utils import (cols_to_structured, extract_from_structured)
|
from ..utils import (cols_to_structured)
|
||||||
|
|
||||||
|
|
||||||
F16 = numpy.float16
|
F16 = numpy.float16
|
||||||
|
@ -883,49 +882,31 @@ def read_initcm(n, srcdir, fname="clump_{}_cm.npy"):
|
||||||
return None
|
return None
|
||||||
|
|
||||||
|
|
||||||
def get_positions(paths, get_clumpid, verbose=True):
|
def halfwidth_select(hw, particles):
|
||||||
"""
|
"""
|
||||||
Shortcut to get particle IDs, positions, masses and optionally clump
|
Select particles that in a cube of size `2 hw`, centered at the origin.
|
||||||
indices.
|
Note that this directly modifies the original array and throws away
|
||||||
|
particles outside the central region.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
paths : py:class`csiborgtools.read.CSiBORGPaths`
|
hw : float
|
||||||
CSiBORG paths-handling object with set `n_sim` and `n_snap`.
|
Central region halfwidth.
|
||||||
get_clumpid : bool
|
particles : structured array
|
||||||
Whether to also return the clump indices.
|
Particle array with keys `x`, `y`, `z`.
|
||||||
verbose : bool, optional
|
|
||||||
Verbosity flag. By default `True`.
|
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
particle_ids : 1-dimensional array
|
particles : structured array
|
||||||
Particle IDs of shape `(n_particles, )`.
|
The modified particle array.
|
||||||
particle_pos : 2-dimensional array
|
|
||||||
Particle box coordinates of shape `(n_particles, 3)`.
|
|
||||||
particle_mass : 1-dimensional array
|
|
||||||
Particle mass of shape `(n_particles, )`.
|
|
||||||
clump_ids : 1-dimensional array, optional
|
|
||||||
Particles' clump IDs of shape `(n_particles, )`. Returned only if
|
|
||||||
`get_clumpid` is `True`.
|
|
||||||
"""
|
"""
|
||||||
# Extract particles
|
assert 0 < hw < 0.5
|
||||||
reader = ParticleReader(paths)
|
mask = ((0.5 - hw < particles['x']) & (particles['x'] < 0.5 + hw)
|
||||||
pars_extract = ["ID", "x", "y", "z", "M"]
|
& (0.5 - hw < particles['y']) & (particles['y'] < 0.5 + hw)
|
||||||
|
& (0.5 - hw < particles['z']) & (particles['z'] < 0.5 + hw))
|
||||||
# Read particles and unpack
|
# Subselect the particles
|
||||||
particles = reader.read_particle(pars_extract, verbose)
|
particles = particles[mask]
|
||||||
pids = extract_from_structured(particles, "ID")
|
# Rescale to range [0, 1]
|
||||||
ppos = extract_from_structured(particles, ["x", "y", "z"])
|
for p in ('x', 'y', 'z'):
|
||||||
pmass = extract_from_structured(particles, "M")
|
particles[p] = (particles[p] - 0.5 + hw) / (2 * hw)
|
||||||
|
return particles
|
||||||
# Force early memory release
|
|
||||||
del particles
|
|
||||||
gc.collect()
|
|
||||||
|
|
||||||
out = (pids, ppos, pmass)
|
|
||||||
|
|
||||||
if get_clumpid:
|
|
||||||
out += (reader.read_clumpid(verbose),)
|
|
||||||
|
|
||||||
return out
|
|
||||||
|
|
|
@ -70,27 +70,18 @@ for n in jobs:
|
||||||
particles = reader.read_particle(["x", "y", "z", "M"], verbose=False)
|
particles = reader.read_particle(["x", "y", "z", "M"], verbose=False)
|
||||||
# Halfwidth -- particle selection
|
# Halfwidth -- particle selection
|
||||||
if args.halfwidth < 0.5:
|
if args.halfwidth < 0.5:
|
||||||
hw = args.halfwidth
|
particles = csiborgtools.read.halfwidth_select(
|
||||||
mask = ((0.5 - hw < particles['x']) & (particles['x'] < 0.5 + hw)
|
args.halfwidth, particles)
|
||||||
& (0.5 - hw < particles['y']) & (particles['y'] < 0.5 + hw)
|
length = box.box2mpc(2 * args.halfwidth) * box.h # Mpc/h
|
||||||
& (0.5 - hw < particles['z']) & (particles['z'] < 0.5 + hw))
|
|
||||||
# Subselect the particles
|
|
||||||
particles = particles[mask]
|
|
||||||
# Rescale to range [0, 1]
|
|
||||||
for p in ('x', 'y', 'z'):
|
|
||||||
particles[p] = (particles[p] - 0.5 + hw) / (2 * hw)
|
|
||||||
|
|
||||||
length = box.box2mpc(2 * hw) * box.h
|
|
||||||
else:
|
else:
|
||||||
mask = None
|
length = box.box2mpc(1) * box.h # Mpc/h
|
||||||
length = box.box2mpc(1) * box.h
|
|
||||||
# Calculate the overdensity field
|
# Calculate the overdensity field
|
||||||
field = csiborgtools.field.DensityField(particles, length, box, MAS)
|
field = csiborgtools.field.DensityField(particles, length, box, MAS)
|
||||||
delta = field.overdensity_field(args.grid, verbose=False)
|
delta = field.overdensity_field(args.grid, verbose=False)
|
||||||
aexp = box._aexp
|
aexp = box._aexp
|
||||||
|
|
||||||
# Try to clean up memory
|
# Try to clean up memory
|
||||||
del field, particles, box, reader, mask
|
del field, particles, box, reader
|
||||||
collect()
|
collect()
|
||||||
|
|
||||||
# Dump the results
|
# Dump the results
|
||||||
|
|
120
scripts/run_fieldprop.py
Normal file
120
scripts/run_fieldprop.py
Normal file
|
@ -0,0 +1,120 @@
|
||||||
|
# Copyright (C) 2022 Richard Stiskalek
|
||||||
|
# This program is free software; you can redistribute it and/or modify it
|
||||||
|
# under the terms of the GNU General Public License as published by the
|
||||||
|
# Free Software Foundation; either version 3 of the License, or (at your
|
||||||
|
# option) any later version.
|
||||||
|
#
|
||||||
|
# This program is distributed in the hope that it will be useful, but
|
||||||
|
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
||||||
|
# Public License for more details.
|
||||||
|
#
|
||||||
|
# You should have received a copy of the GNU General Public License along
|
||||||
|
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||||
|
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||||
|
"""
|
||||||
|
MPI script to evaluate field properties at the galaxy positions.
|
||||||
|
|
||||||
|
NOTE:
|
||||||
|
- Calculate for the entire box or just for a smaller region?
|
||||||
|
- Add argparser for different options.
|
||||||
|
- In the argparser add options to smoothen the field.
|
||||||
|
"""
|
||||||
|
import numpy
|
||||||
|
from datetime import datetime
|
||||||
|
from mpi4py import MPI
|
||||||
|
from os.path import join
|
||||||
|
from os import remove
|
||||||
|
try:
|
||||||
|
import csiborgtools
|
||||||
|
except ModuleNotFoundError:
|
||||||
|
import sys
|
||||||
|
sys.path.append("../")
|
||||||
|
import csiborgtools
|
||||||
|
import utils
|
||||||
|
|
||||||
|
halfwidth = 0.5
|
||||||
|
MAS = "CIC"
|
||||||
|
grid = 256
|
||||||
|
|
||||||
|
# Get MPI things
|
||||||
|
comm = MPI.COMM_WORLD
|
||||||
|
rank = comm.Get_rank()
|
||||||
|
nproc = comm.Get_size()
|
||||||
|
|
||||||
|
# Galaxy positions
|
||||||
|
survey = "SDSS"
|
||||||
|
survey = utils.surveys[survey]()()
|
||||||
|
pos = numpy.vstack([survey[p] for p in ("DIST", "RA", "DEC")]).T
|
||||||
|
pos = pos.astype(numpy.float32)
|
||||||
|
|
||||||
|
# File paths
|
||||||
|
ftemp = join(utils.dumpdir, "temp_fields", "out_" + survey.name + "_{}.npy")
|
||||||
|
fperm = join(utils.dumpdir, "fields", "out_{}.npy".format(survey.name))
|
||||||
|
|
||||||
|
# Edit depending on what is calculated
|
||||||
|
dtype = {"names": ["delta", "phi"], "formats": [numpy.float32] * 2}
|
||||||
|
|
||||||
|
# CSiBORG simulation paths
|
||||||
|
paths = csiborgtools.read.CSiBORGPaths()
|
||||||
|
ics = paths.ic_ids[:10]
|
||||||
|
n_sims = len(ics)
|
||||||
|
|
||||||
|
for n in csiborgtools.fits.split_jobs(n_sims, nproc)[rank]:
|
||||||
|
print("Rank {}@{}: working on {}th IC.".format(rank, datetime.now(), n),
|
||||||
|
flush=True)
|
||||||
|
# Set the paths
|
||||||
|
n_sim = ics[n]
|
||||||
|
paths.set_info(n_sim, paths.get_maximum_snapshot(n_sim))
|
||||||
|
|
||||||
|
# Set reader and the box
|
||||||
|
reader = csiborgtools.read.ParticleReader(paths)
|
||||||
|
box = csiborgtools.units.BoxUnits(paths)
|
||||||
|
|
||||||
|
# Read particles and select a subset of them
|
||||||
|
particles = reader.read_particle(["x", "y", "z", "M"], verbose=False)
|
||||||
|
if halfwidth < 0.5:
|
||||||
|
particles = csiborgtools.read.halfwidth_select(halfwidth, particles)
|
||||||
|
length = box.box2mpc(2 * halfwidth) * box.h # Mpc/h
|
||||||
|
else:
|
||||||
|
length = box.box2mpc(1) * box.h # Mpc/h
|
||||||
|
|
||||||
|
# Initialise the field object and output array
|
||||||
|
field = csiborgtools.field.DensityField(particles, length, box, MAS)
|
||||||
|
out = numpy.full(pos.shape[0], numpy.nan, dtype=dtype)
|
||||||
|
|
||||||
|
# Calculate the overdensity field and interpolate at galaxy positions
|
||||||
|
feval = field.overdensity_field(grid, verbose=False)
|
||||||
|
out["delta"] = field.evaluate_sky(feval, pos=pos, isdeg=True)[0]
|
||||||
|
|
||||||
|
# Potential
|
||||||
|
feval = field.potential_field(grid, verbose=False)
|
||||||
|
out["phi"] = field.evaluate_sky(feval, pos=pos, isdeg=True)[0]
|
||||||
|
|
||||||
|
# Calculate the remaining fields
|
||||||
|
# ...
|
||||||
|
# ...
|
||||||
|
|
||||||
|
# Dump the results
|
||||||
|
with open(ftemp.format(n_sim), "wb") as f:
|
||||||
|
numpy.save(f, out)
|
||||||
|
|
||||||
|
# Wait for all ranks to finish
|
||||||
|
comm.Barrier()
|
||||||
|
if rank == 0:
|
||||||
|
print("Collecting files...", flush=True)
|
||||||
|
|
||||||
|
out = numpy.full((n_sims, pos.shape[0]), numpy.nan, dtype=dtype)
|
||||||
|
|
||||||
|
for n in range(n_sims):
|
||||||
|
n_sim = ics[n]
|
||||||
|
with open(ftemp.format(n_sim), "rb") as f:
|
||||||
|
fin = numpy.load(f, allow_pickle=True)
|
||||||
|
for name in dtype["names"]:
|
||||||
|
out[name][n, ...] = fin[name]
|
||||||
|
# Remove the temporary file
|
||||||
|
remove(ftemp.format(n_sim))
|
||||||
|
|
||||||
|
print("Saving results to `{}`.".format(fperm), flush=True)
|
||||||
|
with open(fperm, "wb") as f:
|
||||||
|
numpy.save(f, out)
|
|
@ -18,11 +18,11 @@ Notebook utility functions.
|
||||||
|
|
||||||
# from os.path import join
|
# from os.path import join
|
||||||
|
|
||||||
# try:
|
try:
|
||||||
# import csiborgtools
|
import csiborgtools
|
||||||
# except ModuleNotFoundError:
|
except ModuleNotFoundError:
|
||||||
# import sys
|
import sys
|
||||||
# sys.path.append("../")
|
sys.path.append("../")
|
||||||
|
|
||||||
|
|
||||||
Nsplits = 200
|
Nsplits = 200
|
||||||
|
@ -39,3 +39,23 @@ _virgo = {"RA": (12 + 27 / 60) * 15,
|
||||||
"COMDIST": 16.5}
|
"COMDIST": 16.5}
|
||||||
|
|
||||||
specific_clusters = {"Coma": _coma, "Virgo": _virgo}
|
specific_clusters = {"Coma": _coma, "Virgo": _virgo}
|
||||||
|
|
||||||
|
|
||||||
|
###############################################################################
|
||||||
|
# Surveys #
|
||||||
|
###############################################################################
|
||||||
|
|
||||||
|
|
||||||
|
class SDSS:
|
||||||
|
@staticmethod
|
||||||
|
def steps(cls):
|
||||||
|
return [(lambda x: cls[x], ("IN_DR7_LSS",)),
|
||||||
|
(lambda x: cls[x] < 17.6, ("ELPETRO_APPMAG_r", )),
|
||||||
|
(lambda x: cls[x] < 155, ("DIST", ))
|
||||||
|
]
|
||||||
|
|
||||||
|
def __call__(self):
|
||||||
|
return csiborgtools.read.SDSS(h=1, sel_steps=self.steps)
|
||||||
|
|
||||||
|
|
||||||
|
surveys = {"SDSS": SDSS}
|
||||||
|
|
Loading…
Reference in a new issue