mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-22 07:08:01 +00:00
More flow preparation & Olympics (#143)
* Add more comments * Add flow paths * Simplify paths * Update default arguemnts * Update paths * Update param names * Update some of scipts for reading files * Add the Mike method option * Update plotting * Update fnames * Simplify things * Make more default options * Add print * Update * Downsample CF4 * Update numpyro selection * Add selection fitting nb * Add coeffs * Update script * Add nb * Add label * Increase number of steps * Update default params * Add more labels * Improve file name * Update nb * Fix little bug * Remove import * Update scales * Update labels * Add script * Update script * Add more * Add more labels * Add script * Add submit * Update spacing * Update submit scrips * Update script * Update defaults * Update defaults * Update nb * Update test * Update imports * Add script * Add support for Indranil void * Add a dipole * Update nb * Update submit * Update Om0 * Add final * Update default params * Fix bug * Add option to fix to LG frame * Add Vext label * Add Vext label * Update script * Rm fixed LG * rm LG stuff * Update script * Update bulk flow plotting * Update nb * Add no field option * Update defaults * Update nb * Update script * Update nb * Update nb * Add names to plots * Update nb * Update plot * Add more latex names * Update default * Update nb * Update np * Add plane slicing * Add nb with slices * Update nb * Update script * Upddate nb * Update nb
This commit is contained in:
parent
3d1e1c0ae3
commit
2b938c112c
20 changed files with 3106 additions and 379 deletions
|
@ -20,7 +20,7 @@ try:
|
|||
VelocityField, radial_velocity, power_spectrum, # noqa
|
||||
overdensity_field) # noqa
|
||||
from .interp import (evaluate_cartesian_cic, evaluate_los, field2rsp, # noqa
|
||||
fill_outside, make_sky, # noqa
|
||||
fill_outside, make_sky, xy_supergalactic_slice, # noqa
|
||||
observer_peculiar_velocity, smoothen_field, # noqa
|
||||
field_at_distance) # noqa
|
||||
except ImportError:
|
||||
|
|
|
@ -20,6 +20,8 @@ import numpy as np
|
|||
import smoothing_library as SL
|
||||
from numba import jit
|
||||
from scipy.interpolate import RegularGridInterpolator
|
||||
from astropy.coordinates import SkyCoord, Supergalactic, Galactic, ICRS
|
||||
from astropy.coordinates import CartesianRepresentation
|
||||
from tqdm import tqdm
|
||||
|
||||
from ..utils import periodic_wrap_grid, radec_to_cartesian
|
||||
|
@ -351,6 +353,72 @@ def make_sky(field, angpos, rmax, dr, boxsize, interpolation_method="cic",
|
|||
return finterp
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Supergalactic plane slice #
|
||||
###############################################################################
|
||||
|
||||
|
||||
def xy_supergalactic_slice(field, boxsize, xmin, xmax, ngrid, field_frame,
|
||||
z_value=0):
|
||||
"""
|
||||
Create a 2D slice of a scalar field in the x-y supergalactic plane.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
field : 3-dimensional array of shape `(grid, grid, grid)`
|
||||
Field to be interpolated.
|
||||
boxsize : float
|
||||
Box size in `Mpc / h`.
|
||||
xmin, xmax : float
|
||||
Minimum and maximum x and y values in supergalactic coordinates.
|
||||
ngrid : int
|
||||
Number of grid points along each axis.
|
||||
field_frame : str
|
||||
Frame of the field. Must be one of `galactic`, `supergalactic` or
|
||||
`icrs`.
|
||||
z_value : float, optional
|
||||
Value of the z-coordinate in supergalactic coordinates.
|
||||
|
||||
Returns
|
||||
-------
|
||||
2-dimensional array of shape `(ngrid, ngrid)`
|
||||
"""
|
||||
# Coordinates of the 2D slice in supergalactic coordinates
|
||||
xgrid = np.linspace(xmin, xmax, ngrid)
|
||||
ygrid = np.copy(xgrid)
|
||||
grid = np.stack(np.meshgrid(xgrid, ygrid))
|
||||
|
||||
grid = grid.reshape(2, -1).T
|
||||
grid = np.hstack([grid, np.ones(ngrid**2).reshape(-1, 1) * z_value])
|
||||
|
||||
supergalactic_coord = SkyCoord(CartesianRepresentation(
|
||||
grid[:, 0], grid[:, 1], grid[:, 2]), frame=Supergalactic)
|
||||
|
||||
# Create a Supergalactic SkyCoord object from Cartesian coordinates
|
||||
if field_frame == "galactic":
|
||||
original_frame = Galactic
|
||||
elif field_frame == "supergalactic":
|
||||
original_frame = Supergalactic
|
||||
elif field_frame == "icrs":
|
||||
original_frame = ICRS
|
||||
else:
|
||||
raise ValueError(f"Unknown field frame: {field_frame}")
|
||||
|
||||
# Convert to field frame
|
||||
coords = supergalactic_coord.transform_to(original_frame).cartesian
|
||||
pos = np.stack([coords.x, coords.y, coords.z]).value
|
||||
pos = pos.T
|
||||
|
||||
# Convert to appropriate box units
|
||||
pos /= boxsize
|
||||
pos += 0.5
|
||||
|
||||
if np.any(pos <= 0) or np.any(pos >= 1):
|
||||
raise ValueError("Some positions are outside the box.")
|
||||
|
||||
return evaluate_cartesian_cic(field, pos=pos).reshape(ngrid, ngrid)
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Average field at a radial distance #
|
||||
###############################################################################
|
||||
|
|
|
@ -17,14 +17,14 @@ Utility functions used in the rest of the `field` module to avoid circular
|
|||
imports.
|
||||
"""
|
||||
from numba import jit
|
||||
import numpy
|
||||
import numpy as np
|
||||
import healpy
|
||||
|
||||
|
||||
def force_single_precision(x):
|
||||
"""Attempt to convert an array `x` to float32."""
|
||||
if x.dtype != numpy.float32:
|
||||
x = x.astype(numpy.float32)
|
||||
if x.dtype != np.float32:
|
||||
x = x.astype(np.float32)
|
||||
return x
|
||||
|
||||
|
||||
|
@ -46,10 +46,10 @@ def nside2radec(nside):
|
|||
Generate RA [0, 360] deg and declination [-90, 90] deg for HEALPix pixel
|
||||
centres at a given nside.
|
||||
"""
|
||||
pixs = numpy.arange(healpy.nside2npix(nside))
|
||||
pixs = np.arange(healpy.nside2npix(nside))
|
||||
theta, phi = healpy.pix2ang(nside, pixs)
|
||||
|
||||
ra = 180 / numpy.pi * phi
|
||||
dec = 90 - 180 / numpy.pi * theta
|
||||
ra = 180 / np.pi * phi
|
||||
dec = 90 - 180 / np.pi * theta
|
||||
|
||||
return numpy.vstack([ra, dec]).T
|
||||
return np.vstack([ra, dec]).T
|
||||
|
|
|
@ -22,6 +22,7 @@ References
|
|||
[1] https://arxiv.org/abs/1912.09383.
|
||||
"""
|
||||
from abc import ABC, abstractmethod
|
||||
from os.path import join
|
||||
|
||||
import numpy as np
|
||||
from astropy import units as u
|
||||
|
@ -100,12 +101,17 @@ class DataLoader:
|
|||
d1, d2 = self._cat["RA"], self._cat["DEC"]
|
||||
|
||||
num_sims = len(self._los_density)
|
||||
radvel = np.empty((num_sims, nobject, len(self._field_rdist)), dtype)
|
||||
for k in range(num_sims):
|
||||
for i in range(nobject):
|
||||
radvel[k, i, :] = radial_velocity_los(
|
||||
self._los_velocity[k, :, i, ...], d1[i], d2[i])
|
||||
self._los_radial_velocity = radvel
|
||||
if "IndranilVoid" in simname:
|
||||
self._los_radial_velocity = self._los_velocity
|
||||
self._los_velocity = None
|
||||
else:
|
||||
radvel = np.empty(
|
||||
(num_sims, nobject, len(self._field_rdist)), dtype)
|
||||
for k in range(num_sims):
|
||||
for i in range(nobject):
|
||||
radvel[k, i, :] = radial_velocity_los(
|
||||
self._los_velocity[k, :, i, ...], d1[i], d2[i])
|
||||
self._los_radial_velocity = radvel
|
||||
|
||||
if not store_full_velocity:
|
||||
self._los_velocity = None
|
||||
|
@ -182,6 +188,13 @@ class DataLoader:
|
|||
if isinstance(ksims, int):
|
||||
ksims = [ksims]
|
||||
|
||||
# For no-field read in Carrick+2015 but then zero it.
|
||||
if simname == "no_field":
|
||||
simname = "Carrick2015"
|
||||
to_wipe = True
|
||||
else:
|
||||
to_wipe = False
|
||||
|
||||
if not all(0 <= ksim < len(nsims) for ksim in ksims):
|
||||
raise ValueError(f"Invalid simulation index: `{ksims}`")
|
||||
|
||||
|
@ -189,6 +202,14 @@ class DataLoader:
|
|||
fpath = paths.field_los(simname, "Pantheon+")
|
||||
elif "CF4_TFR" in catalogue:
|
||||
fpath = paths.field_los(simname, "CF4_TFR")
|
||||
elif "IndranilVoid" in catalogue:
|
||||
fdir = "/mnt/extraspace/rstiskalek/csiborg_postprocessing/field_los" # noqa
|
||||
if "exp" in catalogue:
|
||||
fpath = join(fdir, "v_pec_EXP_IndranilVoid.dat")
|
||||
elif "gauss" in catalogue:
|
||||
fpath = join(fdir, "v_pec_GAUSS_IndranilVoid.dat")
|
||||
else:
|
||||
raise ValueError("Unknown `IndranilVoid` catalogue.")
|
||||
else:
|
||||
fpath = paths.field_los(simname, catalogue)
|
||||
|
||||
|
@ -212,6 +233,10 @@ class DataLoader:
|
|||
los_density = np.stack(los_density)
|
||||
los_velocity = np.stack(los_velocity)
|
||||
|
||||
if to_wipe:
|
||||
los_density = np.ones_like(los_density)
|
||||
los_velocity = np.zeros_like(los_velocity)
|
||||
|
||||
return rdist, los_density, los_velocity
|
||||
|
||||
def _read_catalogue(self, catalogue, catalogue_fpath):
|
||||
|
@ -507,22 +532,18 @@ def e2_distmod_TFR(e2_mag, e2_eta, eta, b, c, e_mu_intrinsic):
|
|||
|
||||
def sample_TFR(e_mu_min, e_mu_max, a_mean, a_std, b_mean, b_std,
|
||||
c_mean, c_std, alpha_min, alpha_max, sample_alpha,
|
||||
sample_curvature, a_dipole_mean, a_dipole_std, sample_a_dipole,
|
||||
name):
|
||||
a_dipole_mean, a_dipole_std, sample_a_dipole, name):
|
||||
"""Sample Tully-Fisher calibration parameters."""
|
||||
e_mu = sample(f"e_mu_{name}", Uniform(e_mu_min, e_mu_max))
|
||||
a = sample(f"a_{name}", Normal(a_mean, a_std))
|
||||
|
||||
if sample_a_dipole:
|
||||
ax, ay, az = sample(f"a_dipole_{name}", Normal(0, 5).expand([3]))
|
||||
ax, ay, az = sample(f"a_dipole_{name}", Normal(a_dipole_mean, a_dipole_std).expand([3])) # noqa
|
||||
else:
|
||||
ax, ay, az = 0.0, 0.0, 0.0
|
||||
|
||||
b = sample(f"b_{name}", Normal(b_mean, b_std))
|
||||
if sample_curvature:
|
||||
c = sample(f"c_{name}", Normal(c_mean, c_std))
|
||||
else:
|
||||
c = 0.0
|
||||
c = sample(f"c_{name}", Normal(c_mean, c_std))
|
||||
|
||||
alpha = sample_alpha_bias(name, alpha_min, alpha_max, sample_alpha)
|
||||
|
||||
|
@ -571,8 +592,8 @@ def sample_calibration(Vext_min, Vext_max, Vmono_min, Vmono_max, beta_min,
|
|||
beta_max, sigma_v_min, sigma_v_max, sample_Vmono,
|
||||
sample_beta):
|
||||
"""Sample the flow calibration."""
|
||||
Vext = sample("Vext", Uniform(Vext_min, Vext_max).expand([3]))
|
||||
sigma_v = sample("sigma_v", Uniform(sigma_v_min, sigma_v_max))
|
||||
Vext = sample("Vext", Uniform(Vext_min, Vext_max).expand([3]))
|
||||
|
||||
if sample_beta:
|
||||
beta = sample("beta", Uniform(beta_min, beta_max))
|
||||
|
@ -620,8 +641,8 @@ class PV_LogLikelihood(BaseFlowValidationModel):
|
|||
Errors on the observed redshifts.
|
||||
calibration_params: dict
|
||||
Calibration parameters of each object.
|
||||
magmax_selection : float
|
||||
Maximum magnitude selection if strict threshold.
|
||||
mag_selection : dict
|
||||
Magnitude selection parameters.
|
||||
r_xrange : 1-dimensional array
|
||||
Radial distances where the field was interpolated for each object.
|
||||
Omega_m : float
|
||||
|
@ -630,13 +651,11 @@ class PV_LogLikelihood(BaseFlowValidationModel):
|
|||
Catalogue kind, either "TFR", "SN", or "simple".
|
||||
name : str
|
||||
Name of the catalogue.
|
||||
toy_selection : tuple of length 3, optional
|
||||
Toy magnitude selection paramers `m1`, `m2` and `a`. Optional.
|
||||
"""
|
||||
|
||||
def __init__(self, los_density, los_velocity, RA, dec, z_obs, e_zobs,
|
||||
calibration_params, maxmag_selection, r_xrange, Omega_m,
|
||||
kind, name, toy_selection=None):
|
||||
calibration_params, mag_selection, r_xrange, Omega_m,
|
||||
kind, name):
|
||||
if e_zobs is not None:
|
||||
e2_cz_obs = jnp.asarray((SPEED_OF_LIGHT * e_zobs)**2)
|
||||
else:
|
||||
|
@ -657,8 +676,24 @@ class PV_LogLikelihood(BaseFlowValidationModel):
|
|||
self.name = name
|
||||
self.Omega_m = Omega_m
|
||||
self.norm = - self.ndata * jnp.log(self.num_sims)
|
||||
self.maxmag_selection = maxmag_selection
|
||||
self.toy_selection = toy_selection
|
||||
|
||||
if mag_selection is not None:
|
||||
self.mag_selection_kind = mag_selection["kind"]
|
||||
|
||||
if self.mag_selection_kind == "hard":
|
||||
self.mag_selection_max = mag_selection["coeffs"]
|
||||
fprint(f"catalogue {name} with selection mmax = {self.mag_selection_max}.") # noqa
|
||||
elif self.mag_selection_kind == "soft":
|
||||
self.m1, self.m2, self.a = mag_selection["coeffs"]
|
||||
fprint(f"catalogue {name} with selection m1 = {self.m1}, m2 = {self.m2}, a = {self.a}.") # noqa
|
||||
self.log_Fm = toy_log_magnitude_selection(
|
||||
self.mag, self.m1, self.m2, self.a)
|
||||
else:
|
||||
self.mag_selection_kind = None
|
||||
|
||||
if mag_selection is not None and kind != "TFR":
|
||||
raise ValueError("Magnitude selection is only implemented "
|
||||
"for TFRs.")
|
||||
|
||||
if kind == "TFR":
|
||||
self.mag_min, self.mag_max = jnp.min(self.mag), jnp.max(self.mag)
|
||||
|
@ -675,23 +710,13 @@ class PV_LogLikelihood(BaseFlowValidationModel):
|
|||
else:
|
||||
raise RuntimeError("Support most be added for other kinds.")
|
||||
|
||||
if maxmag_selection is not None and self.maxmag_selection > self.mag_max: # noqa
|
||||
raise ValueError("The maximum magnitude cannot be larger than the selection threshold.") # noqa
|
||||
|
||||
if toy_selection is not None and self.maxmag_selection is not None:
|
||||
raise ValueError("`toy_selection` and `maxmag_selection` cannot be used together.") # noqa
|
||||
|
||||
if toy_selection is not None:
|
||||
self.m1, self.m2, self.a = toy_selection
|
||||
self.log_Fm = toy_log_magnitude_selection(
|
||||
self.mag, self.m1, self.m2, self.a)
|
||||
|
||||
if toy_selection is not None and self.kind != "TFR":
|
||||
raise ValueError("Toy selection is only implemented for TFRs.")
|
||||
if self.mag_selection_kind == "hard" and self.mag_selection_max > self.mag_max: # noqa
|
||||
raise ValueError("The maximum magnitude cannot be larger than "
|
||||
"the selection threshold.")
|
||||
|
||||
def __call__(self, field_calibration_params, distmod_params,
|
||||
inference_method):
|
||||
if inference_method not in ["mike", "bayes"]:
|
||||
if inference_method not in ["mike", "bayes", "delta"]:
|
||||
raise ValueError(f"Unknown method: `{inference_method}`.")
|
||||
|
||||
ll0 = 0.0
|
||||
|
@ -717,7 +742,7 @@ class PV_LogLikelihood(BaseFlowValidationModel):
|
|||
"c", self.name, self.c_min, self.c_max)
|
||||
|
||||
# NOTE: that the true variables are currently uncorrelated.
|
||||
with plate("true_SN", self.ndata):
|
||||
with plate(f"true_SN_{self.name}", self.ndata):
|
||||
mag_true = sample(
|
||||
f"mag_true_{self.name}", Normal(mag_mean, mag_std))
|
||||
x1_true = sample(
|
||||
|
@ -726,7 +751,7 @@ class PV_LogLikelihood(BaseFlowValidationModel):
|
|||
f"c_true_{self.name}", Normal(c_mean, c_std))
|
||||
|
||||
# Log-likelihood of the observed magnitudes.
|
||||
if self.maxmag_selection is None:
|
||||
if self.mag_selection_kind is None:
|
||||
ll0 += jnp.sum(normal_logpdf(
|
||||
mag_true, self.mag, self.e_mag))
|
||||
else:
|
||||
|
@ -740,9 +765,12 @@ class PV_LogLikelihood(BaseFlowValidationModel):
|
|||
mag_true = self.mag
|
||||
x1_true = self.x1
|
||||
c_true = self.c
|
||||
e2_mu = e2_distmod_SN(
|
||||
self.e2_mag, self.e2_x1, self.e2_c, alpha_cal, beta_cal,
|
||||
e_mu)
|
||||
if inference_method == "mike":
|
||||
e2_mu = e2_distmod_SN(
|
||||
self.e2_mag, self.e2_x1, self.e2_c, alpha_cal,
|
||||
beta_cal, e_mu)
|
||||
else:
|
||||
e2_mu = jnp.ones_like(mag_true) * e_mu**2
|
||||
|
||||
mu = distmod_SN(
|
||||
mag_true, x1_true, c_true, mag_cal, alpha_cal, beta_cal)
|
||||
|
@ -761,22 +789,25 @@ class PV_LogLikelihood(BaseFlowValidationModel):
|
|||
"mag", self.name, self.mag_min, self.mag_max)
|
||||
eta_mean, eta_std = sample_gaussian_hyperprior(
|
||||
"eta", self.name, self.eta_min, self.eta_max)
|
||||
corr_mag_eta = sample("corr_mag_eta", Uniform(-1, 1))
|
||||
corr_mag_eta = sample(
|
||||
f"corr_mag_eta_{self.name}", Uniform(-1, 1))
|
||||
|
||||
loc = jnp.array([mag_mean, eta_mean])
|
||||
cov = jnp.array(
|
||||
[[mag_std**2, corr_mag_eta * mag_std * eta_std],
|
||||
[corr_mag_eta * mag_std * eta_std, eta_std**2]])
|
||||
|
||||
with plate("true_TFR", self.ndata):
|
||||
x_true = sample("x_TFR", MultivariateNormal(loc, cov))
|
||||
with plate(f"true_TFR_{self.name}", self.ndata):
|
||||
x_true = sample(
|
||||
f"x_TFR_{self.name}", MultivariateNormal(loc, cov))
|
||||
|
||||
mag_true, eta_true = x_true[..., 0], x_true[..., 1]
|
||||
# Log-likelihood of the observed magnitudes.
|
||||
if self.maxmag_selection is not None:
|
||||
if self.mag_selection_kind == "hard":
|
||||
ll0 += jnp.sum(upper_truncated_normal_logpdf(
|
||||
self.mag, mag_true, self.e_mag, self.maxmag_selection))
|
||||
elif self.toy_selection is not None:
|
||||
self.mag, mag_true, self.e_mag,
|
||||
self.mag_selection_max))
|
||||
elif self.mag_selection_kind == "soft":
|
||||
ll_mag = self.log_Fm
|
||||
ll_mag += normal_logpdf(self.mag, mag_true, self.e_mag)
|
||||
|
||||
|
@ -805,8 +836,11 @@ class PV_LogLikelihood(BaseFlowValidationModel):
|
|||
else:
|
||||
eta_true = self.eta
|
||||
mag_true = self.mag
|
||||
e2_mu = e2_distmod_TFR(
|
||||
self.e2_mag, self.e2_eta, eta_true, b, c, e_mu)
|
||||
if inference_method == "mike":
|
||||
e2_mu = e2_distmod_TFR(
|
||||
self.e2_mag, self.e2_eta, eta_true, b, c, e_mu)
|
||||
else:
|
||||
e2_mu = jnp.ones_like(mag_true) * e_mu**2
|
||||
|
||||
mu = distmod_TFR(mag_true, eta_true, a, b, c)
|
||||
elif self.kind == "simple":
|
||||
|
@ -821,7 +855,10 @@ class PV_LogLikelihood(BaseFlowValidationModel):
|
|||
raise NotImplementedError("Bayes for simple not implemented.")
|
||||
else:
|
||||
mu_true = self.mu
|
||||
e2_mu = e_mu**2 + self.e2_mu
|
||||
if inference_method == "mike":
|
||||
e2_mu = e_mu**2 + self.e2_mu
|
||||
else:
|
||||
e2_mu = jnp.ones_like(mag_true) * e_mu**2
|
||||
|
||||
mu = mu_true + dmu
|
||||
else:
|
||||
|
@ -895,8 +932,7 @@ def PV_validation_model(models, distmod_hyperparams_per_model,
|
|||
###############################################################################
|
||||
|
||||
|
||||
def get_model(loader, zcmb_min=0.0, zcmb_max=None, maxmag_selection=None,
|
||||
toy_selection=None):
|
||||
def get_model(loader, zcmb_min=None, zcmb_max=None, mag_selection=None):
|
||||
"""
|
||||
Get a model and extract the relevant data from the loader.
|
||||
|
||||
|
@ -908,25 +944,20 @@ def get_model(loader, zcmb_min=0.0, zcmb_max=None, maxmag_selection=None,
|
|||
Minimum observed redshift in the CMB frame to include.
|
||||
zcmb_max : float, optional
|
||||
Maximum observed redshift in the CMB frame to include.
|
||||
maxmag_selection : float, optional
|
||||
Maximum magnitude selection threshold.
|
||||
toy_selection : tuple of length 3, optional
|
||||
Toy magnitude selection paramers `m1`, `m2` and `a` for TFRs of the
|
||||
Boubel+24 model.
|
||||
mag_selection : dict, optional
|
||||
Magnitude selection parameters.
|
||||
|
||||
Returns
|
||||
-------
|
||||
model : NumPyro model
|
||||
"""
|
||||
zcmb_min = 0.0 if zcmb_min is None else zcmb_min
|
||||
zcmb_max = np.infty if zcmb_max is None else zcmb_max
|
||||
|
||||
los_overdensity = loader.los_density
|
||||
los_velocity = loader.los_radial_velocity
|
||||
kind = loader._catname
|
||||
|
||||
if maxmag_selection is not None and kind != "2MTF":
|
||||
raise ValueError("Threshold magnitude selection implemented only for 2MTF.") # noqa
|
||||
|
||||
if kind in ["LOSS", "Foundation"]:
|
||||
keys = ["RA", "DEC", "z_CMB", "mB", "x1", "c", "e_mB", "e_x1", "e_c"]
|
||||
RA, dec, zCMB, mag, x1, c, e_mag, e_x1, e_c = (
|
||||
|
@ -941,7 +972,7 @@ def get_model(loader, zcmb_min=0.0, zcmb_max=None, maxmag_selection=None,
|
|||
model = PV_LogLikelihood(
|
||||
los_overdensity[:, mask], los_velocity[:, mask],
|
||||
RA[mask], dec[mask], zCMB[mask], e_zCMB, calibration_params,
|
||||
maxmag_selection, loader.rdist, loader._Omega_m, "SN", name=kind)
|
||||
mag_selection, loader.rdist, loader._Omega_m, "SN", name=kind)
|
||||
elif "Pantheon+" in kind:
|
||||
keys = ["RA", "DEC", "zCMB", "mB", "x1", "c", "biasCor_m_b", "mBERR",
|
||||
"x1ERR", "cERR", "biasCorErr_m_b", "zCMB_SN", "zCMB_Group",
|
||||
|
@ -969,25 +1000,18 @@ def get_model(loader, zcmb_min=0.0, zcmb_max=None, maxmag_selection=None,
|
|||
model = PV_LogLikelihood(
|
||||
los_overdensity[:, mask], los_velocity[:, mask],
|
||||
RA[mask], dec[mask], zCMB[mask], e_zCMB[mask], calibration_params,
|
||||
maxmag_selection, loader.rdist, loader._Omega_m, "SN", name=kind)
|
||||
mag_selection, loader.rdist, loader._Omega_m, "SN", name=kind)
|
||||
elif kind in ["SFI_gals", "2MTF", "SFI_gals_masked"]:
|
||||
keys = ["RA", "DEC", "z_CMB", "mag", "eta", "e_mag", "e_eta"]
|
||||
RA, dec, zCMB, mag, eta, e_mag, e_eta = (loader.cat[k] for k in keys)
|
||||
|
||||
if kind == "SFI_gals" and toy_selection is not None:
|
||||
if len(toy_selection) != 3:
|
||||
raise ValueError("Toy selection must be a tuple with 3 elements.") # noqa
|
||||
m1, m2, a = toy_selection
|
||||
fprint(f"using toy selection with m1 = {m1}, m2 = {m2}, a = {a}.")
|
||||
|
||||
mask = (zCMB < zcmb_max) & (zCMB > zcmb_min)
|
||||
calibration_params = {"mag": mag[mask], "eta": eta[mask],
|
||||
"e_mag": e_mag[mask], "e_eta": e_eta[mask]}
|
||||
model = PV_LogLikelihood(
|
||||
los_overdensity[:, mask], los_velocity[:, mask],
|
||||
RA[mask], dec[mask], zCMB[mask], None, calibration_params,
|
||||
maxmag_selection, loader.rdist, loader._Omega_m, "TFR", name=kind,
|
||||
toy_selection=toy_selection)
|
||||
mag_selection, loader.rdist, loader._Omega_m, "TFR", name=kind)
|
||||
elif "CF4_TFR_" in kind:
|
||||
# The full name can be e.g. "CF4_TFR_not2MTForSFI_i" or "CF4_TFR_i".
|
||||
band = kind.split("_")[-1]
|
||||
|
@ -1001,7 +1025,7 @@ def get_model(loader, zcmb_min=0.0, zcmb_max=None, maxmag_selection=None,
|
|||
|
||||
not_matched_to_2MTF_or_SFI = not_matched_to_2MTF_or_SFI.astype(bool)
|
||||
# NOTE: fiducial uncertainty until we can get the actual values.
|
||||
e_mag = 0.001 * np.ones_like(mag)
|
||||
e_mag = 0.05 * np.ones_like(mag)
|
||||
|
||||
z_obs /= SPEED_OF_LIGHT
|
||||
eta -= 2.5
|
||||
|
@ -1026,7 +1050,7 @@ def get_model(loader, zcmb_min=0.0, zcmb_max=None, maxmag_selection=None,
|
|||
model = PV_LogLikelihood(
|
||||
los_overdensity[:, mask], los_velocity[:, mask],
|
||||
RA[mask], dec[mask], z_obs[mask], None, calibration_params,
|
||||
maxmag_selection, loader.rdist, loader._Omega_m, "TFR", name=kind)
|
||||
mag_selection, loader.rdist, loader._Omega_m, "TFR", name=kind)
|
||||
elif kind in ["CF4_GroupAll"]:
|
||||
# Note, this for some reason works terribly.
|
||||
keys = ["RA", "DE", "Vcmb", "DMzp", "eDM"]
|
||||
|
@ -1042,7 +1066,7 @@ def get_model(loader, zcmb_min=0.0, zcmb_max=None, maxmag_selection=None,
|
|||
model = PV_LogLikelihood(
|
||||
los_overdensity[:, mask], los_velocity[:, mask],
|
||||
RA[mask], dec[mask], zCMB[mask], None, calibration_params,
|
||||
maxmag_selection, loader.rdist, loader._Omega_m, "simple",
|
||||
mag_selection, loader.rdist, loader._Omega_m, "simple",
|
||||
name=kind)
|
||||
else:
|
||||
raise ValueError(f"Catalogue `{kind}` not recognized.")
|
||||
|
|
|
@ -13,56 +13,64 @@
|
|||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
"""Selection functions for peculiar velocities."""
|
||||
import numpy as np
|
||||
from jax import numpy as jnp
|
||||
from scipy.integrate import quad
|
||||
from scipy.optimize import minimize
|
||||
from numpyro import factor, sample
|
||||
from numpyro.distributions import Normal, Uniform
|
||||
from quadax import simpson
|
||||
|
||||
|
||||
class ToyMagnitudeSelection:
|
||||
"""
|
||||
Toy magnitude selection according to Boubel et al 2024.
|
||||
Toy magnitude selection according to Boubel+2024 [1].
|
||||
|
||||
References
|
||||
----------
|
||||
[1] https://www.arxiv.org/abs/2408.03660
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
pass
|
||||
self.mrange = jnp.linspace(0, 25, 1000)
|
||||
|
||||
def log_true_pdf(self, m, m1):
|
||||
def log_true_pdf(self, m, alpha, m1):
|
||||
"""Unnormalized `true' PDF."""
|
||||
return 0.6 * (m - m1)
|
||||
return alpha * (m - m1)
|
||||
|
||||
def log_selection_function(self, m, m1, m2, a):
|
||||
return np.where(m <= m1,
|
||||
0,
|
||||
a * (m - m2)**2 - a * (m1 - m2)**2 - 0.6 * (m - m1))
|
||||
"""Logarithm of the Boubel+2024 selection function."""
|
||||
return jnp.where(m <= m1,
|
||||
0,
|
||||
a * (m - m2)**2 - a * (m1 - m2)**2 - 0.6 * (m - m1))
|
||||
|
||||
def log_observed_pdf(self, m, m1, m2, a):
|
||||
# Calculate the normalization constant
|
||||
f = lambda m: 10**(self.log_true_pdf(m, m1) # noqa
|
||||
+ self.log_selection_function(m, m1, m2, a))
|
||||
mmin, mmax = 0, 25
|
||||
norm = quad(f, mmin, mmax)[0]
|
||||
def log_observed_pdf(self, m, alpha, m1, m2, a):
|
||||
"""
|
||||
Logarithm of the unnormalized observed PDF, which is the product
|
||||
of the true PDF and the selection function.
|
||||
"""
|
||||
y = 10**(self.log_true_pdf(self.mrange, alpha, m1)
|
||||
+ self.log_selection_function(self.mrange, m1, m2, a)
|
||||
)
|
||||
norm = simpson(y, x=self.mrange)
|
||||
|
||||
return (self.log_true_pdf(m, m1)
|
||||
return (self.log_true_pdf(m, alpha, m1)
|
||||
+ self.log_selection_function(m, m1, m2, a)
|
||||
- np.log10(norm))
|
||||
- jnp.log10(norm))
|
||||
|
||||
def fit(self, mag):
|
||||
def __call__(self, mag):
|
||||
"""NumPyro model, uses an informative prior on `alpha`."""
|
||||
alpha = sample("alpha", Normal(0.6, 0.1))
|
||||
m1 = sample("m1", Uniform(0, 25))
|
||||
m2 = sample("m2", Uniform(0, 25))
|
||||
a = sample("a", Uniform(-10, 0))
|
||||
|
||||
def loss(x):
|
||||
m1, m2, a = x
|
||||
|
||||
if a >= 0:
|
||||
return np.inf
|
||||
|
||||
return -np.sum(self.log_observed_pdf(mag, m1, m2, a))
|
||||
|
||||
x0 = [12.0, 12.5, -0.1]
|
||||
return minimize(loss, x0, method="Nelder-Mead")
|
||||
ll = jnp.sum(self.log_observed_pdf(mag, alpha, m1, m2, a))
|
||||
factor("ll", ll)
|
||||
|
||||
|
||||
def toy_log_magnitude_selection(mag, m1, m2, a):
|
||||
"""JAX implementation of `ToyMagnitudeSelection` but natural logarithm."""
|
||||
"""
|
||||
JAX implementation of `ToyMagnitudeSelection` but natural logarithm,
|
||||
whereas the one in `ToyMagnitudeSelection` is base 10.
|
||||
"""
|
||||
return jnp.log(10) * jnp.where(
|
||||
mag <= m1,
|
||||
0,
|
||||
|
|
|
@ -103,6 +103,9 @@ def simname2Omega_m(simname):
|
|||
"CF4": 0.3,
|
||||
"CF4gp": 0.3,
|
||||
"Lilow2024": 0.3175,
|
||||
"IndranilVoid_exp": 0.3,
|
||||
"IndranilVoid_gauss": 0.3,
|
||||
"no_field": 0.3,
|
||||
}
|
||||
|
||||
omega_m = d.get(simname, None)
|
||||
|
|
|
@ -15,11 +15,12 @@
|
|||
"""
|
||||
CSiBORG paths manager.
|
||||
"""
|
||||
import datetime
|
||||
from glob import glob
|
||||
from os import makedirs, listdir
|
||||
from os.path import isdir, join
|
||||
from warnings import warn
|
||||
from os import listdir, makedirs
|
||||
from os.path import exists, getmtime, isdir, join
|
||||
from re import search
|
||||
from warnings import warn
|
||||
|
||||
import numpy
|
||||
|
||||
|
@ -117,15 +118,15 @@ class Paths:
|
|||
files = glob(join(self.quijote_dir, "fiducial_processed",
|
||||
"chain_*"))
|
||||
files = [int(search(r'chain_(\d+)', f).group(1)) for f in files]
|
||||
elif simname == "Carrick2015":
|
||||
return [0]
|
||||
elif simname == "CF4":
|
||||
files = glob(join(self.CF4_dir, "CF4_new_128-z008_realization*_delta.fits")) # noqa
|
||||
files = [search(r'realization(\d+)_delta\.fits', file).group(1)
|
||||
for file in files if search(r'realization(\d+)_delta\.fits', file)] # noqa
|
||||
files = [int(file) for file in files]
|
||||
elif simname == "Lilow2024":
|
||||
return [0]
|
||||
# Downsample to only 20 realisations
|
||||
files = files[::5]
|
||||
elif simname in ["Carrick2015", "Lilow2024", "no_field"] or "IndranilVoid" in simname: # noqa
|
||||
files = [0]
|
||||
else:
|
||||
raise ValueError(f"Unknown simulation name `{simname}`.")
|
||||
|
||||
|
@ -635,6 +636,50 @@ class Paths:
|
|||
try_create_directory(fdir)
|
||||
return join(fdir, f"los_{catalogue}_{simnname}.hdf5")
|
||||
|
||||
def flow_validation(self, fdir, simname, catalogue, inference_method,
|
||||
smooth=None, nsim=None, zcmb_min=None, zcmb_max=None,
|
||||
mag_selection=None, sample_alpha=False,
|
||||
sample_beta=False, sample_Vmono=False,
|
||||
sample_mag_dipole=False, sample_curvature=False):
|
||||
"""Flow validation file path."""
|
||||
if isinstance(catalogue, list) and len(catalogue) == 1:
|
||||
catalogue = catalogue[0]
|
||||
|
||||
if isinstance(catalogue, list):
|
||||
catalogue = "_".join(catalogue)
|
||||
|
||||
if smooth == 0:
|
||||
smooth = None
|
||||
|
||||
fname = f"samples_{simname}_{catalogue}_{inference_method}_"
|
||||
|
||||
keys = ["smooth", "nsim", "zcmb_min", "zcmb_max", "mag_selection",
|
||||
"sample_alpha", "sample_beta", "sample_Vmono",
|
||||
"sample_mag_dipole", "sample_curvature"]
|
||||
values = [smooth, nsim, zcmb_min, zcmb_max, mag_selection,
|
||||
sample_alpha, sample_beta, sample_Vmono, sample_mag_dipole,
|
||||
sample_curvature]
|
||||
|
||||
for key, value in zip(keys, values):
|
||||
|
||||
if isinstance(value, bool):
|
||||
if value:
|
||||
fname += f"{key}_"
|
||||
elif value is not None:
|
||||
fname += f"{key}_{value}_"
|
||||
|
||||
fname = fname.strip("_")
|
||||
fname = join(fdir, f"{fname}.hdf5")
|
||||
# Print the last modified time of the file if it exists.
|
||||
if exists(fname):
|
||||
mtime = getmtime(fname)
|
||||
mtime = datetime.datetime.fromtimestamp(mtime)
|
||||
mtime = mtime.strftime("%d/%m/%Y %H:%M:%S")
|
||||
print(f"File: {fname}")
|
||||
print(f"Last modified: {mtime}")
|
||||
|
||||
return fname
|
||||
|
||||
def field_projected(self, simname, kind):
|
||||
"""
|
||||
Path to the files containing the projected fields on the sky.
|
||||
|
@ -653,5 +698,3 @@ class Paths:
|
|||
fdir = join(self.postdir, "field_projected")
|
||||
try_create_directory(fdir)
|
||||
return join(fdir, f"{simname}_{kind}_volume_weighted.hdf5")
|
||||
|
||||
|
||||
|
|
588
notebooks/flow/PV_data.ipynb
Normal file
588
notebooks/flow/PV_data.ipynb
Normal file
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
|
@ -13,8 +13,7 @@
|
|||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
"""Script to help with plots in `flow_calibration.ipynb`."""
|
||||
from copy import copy
|
||||
from os.path import join
|
||||
from copy import copy, deepcopy
|
||||
|
||||
import numpy as np
|
||||
from jax import numpy as jnp
|
||||
|
@ -41,25 +40,6 @@ def cartesian_to_radec(x, y, z):
|
|||
return d, ra, dec
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Get the filename of the samples #
|
||||
###############################################################################
|
||||
|
||||
|
||||
def get_fname(simname, catalogue, ksmooth=0, nsim=None, sample_beta=True):
|
||||
"""Get the filename of the HDF5 file containing the posterior samples."""
|
||||
FDIR = "/mnt/extraspace/rstiskalek/csiborg_postprocessing/peculiar_velocity/" # noqa
|
||||
fname = join(FDIR, f"samples_{simname}_{catalogue}_ksmooth{ksmooth}.hdf5")
|
||||
|
||||
if nsim is not None:
|
||||
fname = fname.replace(".hdf5", f"_nsim{nsim}.hdf5")
|
||||
|
||||
if sample_beta:
|
||||
fname = fname.replace(".hdf5", "_sample_beta.hdf5")
|
||||
|
||||
return fname
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Convert names to LaTeX #
|
||||
###############################################################################
|
||||
|
@ -69,30 +49,96 @@ def names_to_latex(names, for_corner=False):
|
|||
"""Convert the names of the parameters to LaTeX."""
|
||||
ltx = {"alpha": "\\alpha",
|
||||
"beta": "\\beta",
|
||||
"Vmag": "V_{\\rm ext}",
|
||||
"sigma_v": "\\sigma_v",
|
||||
"Vmag": "V_{\\rm ext} ~ [\\mathrm{km} / \\mathrm{s}]",
|
||||
"Vx": "V_x ~ [\\mathrm{km} / \\mathrm{s}]",
|
||||
"Vy": "V_y ~ [\\mathrm{km} / \\mathrm{s}]",
|
||||
"Vz": "V_z ~ [\\mathrm{km} / \\mathrm{s}]",
|
||||
"sigma_v": "\\sigma_v ~ [\\mathrm{km} / \\mathrm{s}]",
|
||||
"alpha_cal": "\\mathcal{A}",
|
||||
"beta_cal": "\\mathcal{B}",
|
||||
"mag_cal": "\\mathcal{M}",
|
||||
"e_mu": "\\sigma_\\mu",
|
||||
"aTF": "a_{\\rm TF}",
|
||||
"bTF": "b_{\\rm TF}",
|
||||
"l": "\\ell ~ [\\mathrm{deg}]",
|
||||
"b": "b ~ [\\mathrm{deg}]",
|
||||
}
|
||||
|
||||
ltx_corner = {"alpha": r"$\alpha$",
|
||||
"beta": r"$\beta$",
|
||||
"Vmag": r"$V_{\rm ext}$",
|
||||
"l": r"$\ell_{V_{\rm ext}}$",
|
||||
"b": r"$b_{V_{\rm ext}}$",
|
||||
"l": r"$\ell$",
|
||||
"b": r"$b$",
|
||||
"sigma_v": r"$\sigma_v$",
|
||||
"alpha_cal": r"$\mathcal{A}$",
|
||||
"beta_cal": r"$\mathcal{B}$",
|
||||
"mag_cal": r"$\mathcal{M}$",
|
||||
"e_mu": r"$\sigma_\mu$",
|
||||
"aTF": r"$a_{\rm TF}$",
|
||||
"bTF": r"$b_{\rm TF}$",
|
||||
}
|
||||
|
||||
names = copy(names)
|
||||
for i, name in enumerate(names):
|
||||
if "SFI_gals" in name:
|
||||
names[i] = names[i].replace("SFI_gals", "SFI")
|
||||
|
||||
if "CF4_GroupAll" in name:
|
||||
names[i] = names[i].replace("CF4_GroupAll", "CF4Group")
|
||||
|
||||
if "CF4_TFR_i" in name:
|
||||
names[i] = names[i].replace("CF4_TFR_i", "CF4,TFR")
|
||||
|
||||
for cat in ["2MTF", "SFI", "CF4,TFR"]:
|
||||
ltx[f"a_{cat}"] = f"a_{{\\rm TF}}^{{\\rm {cat}}}"
|
||||
ltx[f"b_{cat}"] = f"b_{{\\rm TF}}^{{\\rm {cat}}}"
|
||||
ltx[f"c_{cat}"] = f"c_{{\\rm TF}}^{{\\rm {cat}}}"
|
||||
ltx[f"corr_mag_eta_{cat}"] = f"\\rho_{{m,\\eta}}^{{\\rm {cat}}}"
|
||||
ltx[f"eta_mean_{cat}"] = f"\\widehat{{\\eta}}^{{\\rm {cat}}}"
|
||||
ltx[f"eta_std_{cat}"] = f"\\widehat{{\\sigma}}_\\eta^{{\\rm {cat}}}"
|
||||
ltx[f"mag_mean_{cat}"] = f"\\widehat{{m}}^{{\\rm {cat}}}"
|
||||
ltx[f"mag_std_{cat}"] = f"\\widehat{{\\sigma}}_m^{{\\rm {cat}}}"
|
||||
|
||||
ltx_corner[f"a_{cat}"] = rf"$a_{{\rm TF}}^{{\rm {cat}}}$"
|
||||
ltx_corner[f"b_{cat}"] = rf"$b_{{\rm TF}}^{{\rm {cat}}}$"
|
||||
ltx_corner[f"c_{cat}"] = rf"$c_{{\rm TF}}^{{\rm {cat}}}$"
|
||||
ltx_corner[f"corr_mag_eta_{cat}"] = rf"$\rho_{{m,\eta}}^{{\rm {cat}}}$"
|
||||
ltx_corner[f"eta_mean_{cat}"] = rf"$\widehat{{\eta}}^{{\rm {cat}}}$"
|
||||
ltx_corner[f"eta_std_{cat}"] = rf"$\widehat{{\sigma}}_\eta^{{\rm {cat}}}$" # noqa
|
||||
ltx_corner[f"mag_mean_{cat}"] = rf"$\widehat{{m}}^{{\rm {cat}}}$"
|
||||
ltx_corner[f"mag_std_{cat}"] = rf"$\widehat{{\sigma}}_m^{{\rm {cat}}}$"
|
||||
|
||||
for cat in ["2MTF", "SFI", "Foundation", "LOSS", "CF4Group", "CF4,TFR"]:
|
||||
ltx[f"alpha_{cat}"] = f"\\alpha^{{\\rm {cat}}}"
|
||||
ltx[f"e_mu_{cat}"] = f"\\sigma_{{\\mu}}^{{\\rm {cat}}}"
|
||||
ltx[f"a_dipole_mag_{cat}"] = f"\\epsilon_{{\\rm mag}}^{{\\rm {cat}}}"
|
||||
ltx[f"a_dipole_l_{cat}"] = f"\\epsilon_{{\\ell}}^{{\\rm {cat}}} ~ [\\mathrm{{deg}}]" # noqa
|
||||
ltx[f"a_dipole_b_{cat}"] = f"\\epsilon_{{b}}^{{\\rm {cat}}} ~ [\\mathrm{{deg}}]" # noqa
|
||||
|
||||
ltx["a_dipole_mag"] = "\\epsilon_{{\\rm mag}}"
|
||||
ltx["a_dipole_l"] = "\\epsilon_{{\\ell}} ~ [\\mathrm{{deg}}]"
|
||||
ltx["a_dipole_b"] = "\\epsilon_{{b}} ~ [\\mathrm{{deg}}]"
|
||||
|
||||
ltx_corner[f"alpha_{cat}"] = rf"$\alpha^{{\rm {cat}}}$"
|
||||
ltx_corner[f"e_mu_{cat}"] = rf"$\sigma_{{\mu}}^{{\rm {cat}}}$"
|
||||
ltx_corner[f"a_dipole_mag_{cat}"] = rf"$\epsilon_{{\rm mag}}^{{\rm {cat}}}$" # noqa
|
||||
ltx_corner[f"a_dipole_l_{cat}"] = rf"$\epsilon_{{\ell}}^{{\rm {cat}}}$"
|
||||
ltx_corner[f"a_dipole_b_{cat}"] = rf"$\epsilon_{{b}}^{{\rm {cat}}}$"
|
||||
|
||||
for cat in ["Foundation", "LOSS"]:
|
||||
ltx[f"alpha_cal_{cat}"] = f"\\mathcal{{A}}^{{\\rm {cat}}}"
|
||||
ltx[f"beta_cal_{cat}"] = f"\\mathcal{{B}}^{{\\rm {cat}}}"
|
||||
ltx[f"mag_cal_{cat}"] = f"\\mathcal{{M}}^{{\\rm {cat}}}"
|
||||
|
||||
ltx_corner[f"alpha_cal_{cat}"] = rf"$\mathcal{{A}}^{{\rm {cat}}}$"
|
||||
ltx_corner[f"beta_cal_{cat}"] = rf"$\mathcal{{B}}^{{\rm {cat}}}$"
|
||||
ltx_corner[f"mag_cal_{cat}"] = rf"$\mathcal{{M}}^{{\rm {cat}}}$"
|
||||
|
||||
for cat in ["CF4Group"]:
|
||||
ltx[f"dmu_{cat}"] = f"\\Delta\\mu^{{\\rm {cat}}}"
|
||||
ltx[f"dmu_dipole_mag_{cat}"] = f"\\epsilon_\\mu_{{\\rm mag}}^{{\\rm {cat}}}" # noqa
|
||||
ltx[f"dmu_dipole_l_{cat}"] = f"\\epsilon_\\mu_{{\\ell}}^{{\\rm {cat}}} ~ [\\mathrm{{deg}}]" # noqa
|
||||
ltx[f"dmu_dipole_b_{cat}"] = f"\\epsilon_\\mu_{{b}}^{{\\rm {cat}}} ~ [\\mathrm{{deg}}]" # noqa
|
||||
|
||||
ltx_corner[f"dmu_{cat}"] = rf"$\Delta\mu_{{0}}^{{\rm {cat}}}$"
|
||||
ltx_corner[f"dmu_dipole_mag_{cat}"] = rf"$\epsilon_{{\rm mag}}^{{\rm {cat}}}$" # noqa
|
||||
ltx_corner[f"dmu_dipole_l_{cat}"] = rf"$\epsilon_{{\ell}}^{{\rm {cat}}}$" # noqa
|
||||
ltx_corner[f"dmu_dipole_b_{cat}"] = rf"$\epsilon_{{b}}^{{\rm {cat}}}$" # noqa
|
||||
|
||||
labels = copy(names)
|
||||
for i, label in enumerate(names):
|
||||
if for_corner:
|
||||
|
@ -113,21 +159,35 @@ def simname_to_pretty(simname):
|
|||
}
|
||||
|
||||
if isinstance(simname, list):
|
||||
return [ltx[s] if s in ltx else s for s in simname]
|
||||
names = [ltx[s] if s in ltx else s for s in simname]
|
||||
return "".join([f"{n}, " for n in names]).rstrip(", ")
|
||||
|
||||
return ltx[simname] if simname in ltx else simname
|
||||
|
||||
|
||||
def catalogue_to_pretty(catalogue):
|
||||
ltx = {"SFI_gals": "SFI",
|
||||
"CF4_TFR_not2MTForSFI_i": r"CF4 $i$-band",
|
||||
"CF4_TFR_i": r"CF4 TFR $i$",
|
||||
"CF4_TFR_w1": r"CF4 TFR W1",
|
||||
}
|
||||
|
||||
if isinstance(catalogue, list):
|
||||
names = [ltx[s] if s in ltx else s for s in catalogue]
|
||||
return "".join([f"{n}, " for n in names]).rstrip(", ")
|
||||
|
||||
return ltx[catalogue] if catalogue in ltx else catalogue
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Read in goodness-of-fit #
|
||||
###############################################################################
|
||||
|
||||
def get_gof(kind, simname, catalogue, ksmooth=0, nsim=None, sample_beta=True):
|
||||
def get_gof(kind, fname):
|
||||
"""Read in the goodness-of-fit statistics `kind`."""
|
||||
if kind not in ["BIC", "AIC", "lnZ"]:
|
||||
raise ValueError("`kind` must be one of 'BIC', 'AIC', 'lnZ'")
|
||||
if kind not in ["BIC", "AIC", "neg_lnZ_harmonic"]:
|
||||
raise ValueError("`kind` must be one of 'BIC', 'AIC', 'neg_lnZ_harmonic'.") # noqa
|
||||
|
||||
fname = get_fname(simname, catalogue, ksmooth, nsim, sample_beta)
|
||||
with File(fname, 'r') as f:
|
||||
return f[f"gof/{kind}"][()]
|
||||
|
||||
|
@ -136,29 +196,48 @@ def get_gof(kind, simname, catalogue, ksmooth=0, nsim=None, sample_beta=True):
|
|||
# Read in samples #
|
||||
###############################################################################
|
||||
|
||||
def get_samples(simname, catalogue, ksmooth=0, nsim=None, sample_beta=True,
|
||||
convert_Vext_to_galactic=True):
|
||||
def get_samples(fname, convert_Vext_to_galactic=True):
|
||||
"""Read in the samples from the HDF5 file."""
|
||||
fname = get_fname(simname, catalogue, ksmooth, nsim, sample_beta)
|
||||
samples = {}
|
||||
with File(fname, 'r') as f:
|
||||
grp = f["samples"]
|
||||
for key in grp.keys():
|
||||
samples[key] = grp[key][...]
|
||||
|
||||
# Rename TF parameters
|
||||
if "a" in samples:
|
||||
samples["aTF"] = samples.pop("a")
|
||||
|
||||
if "b" in samples:
|
||||
samples["bTF"] = samples.pop("b")
|
||||
|
||||
if convert_Vext_to_galactic:
|
||||
Vext = samples.pop("Vext")
|
||||
samples["Vmag"] = np.linalg.norm(Vext, axis=1)
|
||||
Vext = csiborgtools.cartesian_to_radec(Vext)
|
||||
samples["l"], samples["b"] = csiborgtools.radec_to_galactic(
|
||||
Vext[:, 1], Vext[:, 2])
|
||||
else:
|
||||
Vext = samples.pop("Vext")
|
||||
samples["Vx"] = Vext[:, 0]
|
||||
samples["Vy"] = Vext[:, 1]
|
||||
samples["Vz"] = Vext[:, 2]
|
||||
|
||||
keys = list(samples.keys())
|
||||
for key in keys:
|
||||
|
||||
if "dmu_dipole_" in key:
|
||||
dmu = samples.pop(key)
|
||||
|
||||
dmu = csiborgtools.cartesian_to_radec(dmu)
|
||||
dmu_mag = dmu[:, 0]
|
||||
l, b = csiborgtools.radec_to_galactic(dmu[:, 1], dmu[:, 2])
|
||||
|
||||
samples[key.replace("dmu_dipole_", "dmu_dipole_mag_")] = dmu_mag
|
||||
samples[key.replace("dmu_dipole_", "dmu_dipole_l_")] = l
|
||||
samples[key.replace("dmu_dipole_", "dmu_dipole_b_")] = b
|
||||
|
||||
if "a_dipole" in key:
|
||||
adipole = samples.pop(key)
|
||||
adipole = csiborgtools.cartesian_to_radec(adipole)
|
||||
adipole_mag = adipole[:, 0]
|
||||
l, b = csiborgtools.radec_to_galactic(adipole[:, 1], adipole[:, 2])
|
||||
samples[key.replace("a_dipole", "a_dipole_mag")] = adipole_mag
|
||||
samples[key.replace("a_dipole", "a_dipole_l")] = l
|
||||
samples[key.replace("a_dipole", "a_dipole_b")] = b
|
||||
|
||||
return samples
|
||||
|
||||
|
@ -180,12 +259,20 @@ def get_bulkflow_simulation(simname, convert_to_galactic=True):
|
|||
return r, B
|
||||
|
||||
|
||||
def get_bulkflow(simname, catalogue, ksmooth=0, nsim=None, sample_beta=True,
|
||||
convert_to_galactic=True, weight_simulations=True,
|
||||
downsample=1, Rmax=125):
|
||||
def get_bulkflow(fname, simname, convert_to_galactic=True, downsample=1,
|
||||
Rmax=125):
|
||||
# Read in the samples
|
||||
with File(fname, "r") as f:
|
||||
Vext = f["samples/Vext"][...]
|
||||
try:
|
||||
beta = f["samples/beta"][...]
|
||||
except KeyError:
|
||||
beta = jnp.ones(len(Vext))
|
||||
|
||||
# Read in the bulk flow
|
||||
f = np.load(f"/mnt/extraspace/rstiskalek/csiborg_postprocessing/field_shells/enclosed_mass_{simname}.npz") # noqa
|
||||
r = f["distances"]
|
||||
|
||||
# Shape of B_i is (nsims, nradial)
|
||||
Bx, By, Bz = (f["cumulative_velocity"][..., i] for i in range(3))
|
||||
|
||||
|
@ -197,38 +284,18 @@ def get_bulkflow(simname, catalogue, ksmooth=0, nsim=None, sample_beta=True,
|
|||
By = By[:, mask]
|
||||
Bz = Bz[:, mask]
|
||||
|
||||
# Read in the samples
|
||||
fname_samples = get_fname(simname, catalogue, ksmooth, nsim, sample_beta)
|
||||
with File(fname_samples, 'r') as f:
|
||||
# Shape of Vext_i is (nsamples,)
|
||||
Vext_x, Vext_y, Vext_z = (f["samples/Vext"][...][::downsample, i] for i in range(3)) # noqa
|
||||
nsamples = len(Vext_x)
|
||||
Vext = Vext[::downsample]
|
||||
beta = beta[::downsample]
|
||||
|
||||
if weight_simulations:
|
||||
simulation_weights = jnp.exp(f["simulation_weights"][...])[::downsample] # noqa
|
||||
else:
|
||||
nsims = len(Bx)
|
||||
simulation_weights = jnp.ones((nsamples, nsims)) / nsims
|
||||
|
||||
if sample_beta:
|
||||
beta = f["samples/beta"][...][::downsample]
|
||||
else:
|
||||
beta = jnp.ones(nsamples)
|
||||
|
||||
# Multiply the simulation velocities by beta
|
||||
# Multiply the simulation velocities by beta.
|
||||
Bx = Bx[..., None] * beta
|
||||
By = By[..., None] * beta
|
||||
Bz = Bz[..., None] * beta
|
||||
|
||||
# Shape of B_i is (nsims, nradial, nsamples)
|
||||
Bx = Bx + Vext_x
|
||||
By = By + Vext_y
|
||||
Bz = Bz + Vext_z
|
||||
|
||||
simulation_weights = simulation_weights.T[:, None, :]
|
||||
Bx = jnp.sum(Bx * simulation_weights, axis=0)
|
||||
By = jnp.sum(By * simulation_weights, axis=0)
|
||||
Bz = jnp.sum(Bz * simulation_weights, axis=0)
|
||||
# Add V_ext, shape of B_i is `(nsims, nradial, nsamples)``
|
||||
Bx = Bx + Vext[:, 0]
|
||||
By = By + Vext[:, 1]
|
||||
Bz = Bz + Vext[:, 2]
|
||||
|
||||
if convert_to_galactic:
|
||||
Bmag, Bl, Bb = cartesian_to_radec(Bx, By, Bz)
|
||||
|
@ -237,6 +304,8 @@ def get_bulkflow(simname, catalogue, ksmooth=0, nsim=None, sample_beta=True,
|
|||
else:
|
||||
B = np.stack([Bx, By, Bz], axis=-1)
|
||||
|
||||
# Stack over the simulations
|
||||
B = np.hstack([B[i] for i in range(len(B))])
|
||||
return r, B
|
||||
|
||||
###############################################################################
|
||||
|
@ -245,25 +314,30 @@ def get_bulkflow(simname, catalogue, ksmooth=0, nsim=None, sample_beta=True,
|
|||
|
||||
|
||||
def samples_for_corner(samples):
|
||||
samples = deepcopy(samples)
|
||||
|
||||
# Remove the true parameters of each galaxy.
|
||||
keys = list(samples.keys())
|
||||
for key in keys:
|
||||
# Generally don't want to plot the true latent parameters..
|
||||
if "x_TFR" in key or "_true_" in key:
|
||||
samples.pop(key)
|
||||
|
||||
keys = list(samples.keys())
|
||||
|
||||
if any(x.ndim > 1 for x in samples.values()):
|
||||
raise ValueError("All samples must be 1D arrays.")
|
||||
|
||||
data = np.vstack([x for x in samples.values()]).T
|
||||
labels = names_to_latex(list(samples.keys()), for_corner=True)
|
||||
|
||||
return data, labels
|
||||
return data, labels, keys
|
||||
|
||||
|
||||
def samples_to_getdist(samples, simname, catalogue=None):
|
||||
data, __ = samples_for_corner(samples)
|
||||
names = list(samples.keys())
|
||||
|
||||
if catalogue is None:
|
||||
label = simname_to_pretty(simname)
|
||||
else:
|
||||
label = catalogue
|
||||
def samples_to_getdist(samples, label):
|
||||
data, __, keys = samples_for_corner(samples)
|
||||
|
||||
return MCSamples(
|
||||
samples=data, names=names,
|
||||
labels=names_to_latex(names, for_corner=False),
|
||||
samples=data, names=keys,
|
||||
labels=names_to_latex(keys, for_corner=False),
|
||||
label=label)
|
||||
|
|
506
notebooks/flow/reconstruction_slice.ipynb
Normal file
506
notebooks/flow/reconstruction_slice.ipynb
Normal file
File diff suppressed because one or more lines are too long
586
notebooks/flow/selection.ipynb
Normal file
586
notebooks/flow/selection.ipynb
Normal file
|
@ -0,0 +1,586 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Selection fitting "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import numpy as np\n",
|
||||
"import matplotlib.pyplot as plt\n",
|
||||
"from tqdm import trange\n",
|
||||
"from h5py import File\n",
|
||||
"from jax.random import PRNGKey\n",
|
||||
"from numpyro.infer import MCMC, NUTS, init_to_median\n",
|
||||
"from astropy.cosmology import FlatLambdaCDM \n",
|
||||
"from corner import corner\n",
|
||||
"\n",
|
||||
"import csiborgtools\n",
|
||||
"\n",
|
||||
"%matplotlib inline\n",
|
||||
"%load_ext autoreload\n",
|
||||
"%autoreload 2\n",
|
||||
"\n",
|
||||
"Om0 = 0.3\n",
|
||||
"H0 = 100\n",
|
||||
"cosmo = FlatLambdaCDM(H0=H0, Om0=Om0)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Fit parameters of the toy selection model\n",
|
||||
"\n",
|
||||
"Choose either CF4 TFR or SFI."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# with File(\"/mnt/extraspace/rstiskalek/catalogs/PV_compilation.hdf5\", 'r') as f:\n",
|
||||
"# grp = f[\"SFI_gals\"]\n",
|
||||
"# # # print(grp.keys())\n",
|
||||
"# mag = grp[\"mag\"][...]\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# with File(\"/mnt/extraspace/rstiskalek/catalogs/PV/CF4/CF4_TF-distances.hdf5\", 'r') as f:\n",
|
||||
" # mag = f[\"w1\"][...]\n",
|
||||
"# mag = mag[mag > 3]\n",
|
||||
"\n",
|
||||
"model = csiborgtools.flow.ToyMagnitudeSelection()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"nuts_kernel = NUTS(model, init_strategy=init_to_median(num_samples=5000))\n",
|
||||
"mcmc = MCMC(nuts_kernel, num_warmup=15_000, num_samples=15_000)\n",
|
||||
"mcmc.run(PRNGKey(42), extra_fields=(\"potential_energy\",), mag=mag)\n",
|
||||
"samples = mcmc.get_samples()\n",
|
||||
"\n",
|
||||
"mcmc.print_summary()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"keys = [\"alpha\", \"a\", \"m1\", \"m2\"]\n",
|
||||
"data = np.vstack([samples[key] for key in keys]).T\n",
|
||||
"labels = [r\"$\\alpha$\", r\"$a$\", r\"$m_1$\", r\"$m_2$\"]\n",
|
||||
"\n",
|
||||
"fig = corner(data, labels=labels, show_titles=True, smooth=True)\n",
|
||||
"# fig.savefig(\"../../plots/selection_corner_CF4.png\", dpi=450)\n",
|
||||
"\n",
|
||||
"fig.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"for key in keys:\n",
|
||||
" print(f\"{key}: {np.mean(samples[key]):.3f} +/- {np.std(samples[key]):.3f}\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"mrange = np.linspace(mag.min(), mag.max(), 1000)\n",
|
||||
"nsamples = len(samples[\"m1\"])\n",
|
||||
"\n",
|
||||
"indx = np.random.choice(nsamples, 500)\n",
|
||||
"\n",
|
||||
"y = [model.log_observed_pdf(mrange, samples[\"alpha\"][i], samples[\"m1\"][i], samples[\"m2\"][i], samples[\"a\"][i]) for i in indx]\n",
|
||||
"y = np.asarray(y)\n",
|
||||
"y = 10**y"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"plt.figure()\n",
|
||||
"plt.hist(mag, bins=\"auto\", density=True, histtype=\"step\", color=\"blue\",\n",
|
||||
" label=\"Data\", zorder=1)\n",
|
||||
"\n",
|
||||
"for i in range(100):\n",
|
||||
" plt.plot(mrange, y[i], color=\"black\", alpha=0.25, lw=0.25)\n",
|
||||
"\n",
|
||||
"plt.xlabel(r\"$m$\")\n",
|
||||
"plt.ylabel(r\"$p(m)$\")\n",
|
||||
"plt.tight_layout()\n",
|
||||
"\n",
|
||||
"plt.savefig(\"../../plots/CF4_selection.png\", dpi=450)\n",
|
||||
"\n",
|
||||
"plt.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Hubble \n",
|
||||
"\n",
|
||||
"$p(m) \\propto 10^{0.6 m}$ ?"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from scipy.integrate import quad\n",
|
||||
"from scipy.interpolate import interp1d\n",
|
||||
"\n",
|
||||
"zmin=0.00001\n",
|
||||
"zmax=5\n",
|
||||
"z_range = np.linspace(zmin, zmax, 100000)\n",
|
||||
"r_range = cosmo.comoving_distance(z_range).value\n",
|
||||
"distmod_range = cosmo.distmod(z_range).value\n",
|
||||
"r2mu = interp1d(r_range, distmod_range, kind=\"cubic\")\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def schechter_LF(M, M0=-20.83, alpha=-1):\n",
|
||||
" return 10**(0.4 * (M0 - M) * (alpha + 1)) * np.exp(-10**(0.4 * (M0 - M)))\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def sample_schechter_LF(M0=-20.83, alpha=-1, Mfaint=-16, Mbright=-30, npoints=1):\n",
|
||||
" norm = quad(schechter_LF, Mbright, Mfaint, args=(M0, alpha))[0]\n",
|
||||
"\n",
|
||||
" samples = np.full(npoints, np.nan)\n",
|
||||
" for i in trange(npoints):\n",
|
||||
" while np.isnan(samples[i]):\n",
|
||||
" M = np.random.uniform(Mbright, Mfaint)\n",
|
||||
" if np.random.uniform(0, 1) < schechter_LF(M, M0, alpha) / norm:\n",
|
||||
" samples[i] = M\n",
|
||||
"\n",
|
||||
" return samples\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def sample_radial_distance(rmax, npoints):\n",
|
||||
" return rmax * np.random.rand(npoints)**(1/3)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# z = np.linspace(0.001, 0.15, 100000)\n",
|
||||
"# r = cosmo.comoving_distance(z).value\n",
|
||||
"# mu = cosmo.distmod(z).value\n",
|
||||
"# \n",
|
||||
"# \n",
|
||||
"# drdmu = np.gradient(r, mu)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"rmax = 300\n",
|
||||
"npoints = 5000\n",
|
||||
"\n",
|
||||
"r_150 = sample_radial_distance(100, npoints)\n",
|
||||
"r_300 = sample_radial_distance(300, npoints)\n",
|
||||
"r_1000 = sample_radial_distance(5000, npoints)\n",
|
||||
"\n",
|
||||
"mu_150 = r2mu(r_150)\n",
|
||||
"mu_300 = r2mu(r_300)\n",
|
||||
"mu_1000 = r2mu(r_1000)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def p_hubble(m, a, b):\n",
|
||||
" norm = np.log10(- 5 / np.log(1000) * (10**(3 / 5 * a) - 10**(3 / 5 * b)))\n",
|
||||
" return 10**(0.6 * m - norm)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"M_LF = sample_schechter_LF(npoints=npoints)\n",
|
||||
"\n",
|
||||
"M_LF2 = sample_schechter_LF(npoints=npoints, M0=-20.83, alpha=-1.5)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"plt.figure()\n",
|
||||
"M = -20.3\n",
|
||||
"\n",
|
||||
"# m = mu + M\n",
|
||||
"# x = np.linspace(11, m.max(), 1000)\n",
|
||||
"# plt.plot(x, p_hubble(x, m.min(), m.max()) * 5.5, color=\"black\")\n",
|
||||
"\n",
|
||||
"# plt.hist(m, bins=\"auto\", density=True, histtype=\"step\", color=\"blue\",)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"cols = [\"red\", \"green\", \"blue\"]\n",
|
||||
"rmax = [150, 300, 1000]\n",
|
||||
"# for i, mu in enumerate([mu_150, mu_300, mu_1000]):\n",
|
||||
"for i, mu in enumerate([mu_150, mu_300, mu_1000]):\n",
|
||||
" plt.hist(mu + M_LF, bins=\"auto\", density=True,\n",
|
||||
" histtype=\"step\", color=cols[i], label=rmax[i])\n",
|
||||
"\n",
|
||||
" plt.hist(mu + M_LF2, bins=\"auto\", density=True,\n",
|
||||
" histtype=\"step\", color=cols[i], label=rmax[i], ls=\"--\")\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"plt.hist(mag, bins=\"auto\", density=True, histtype=\"step\", color=\"black\", label=\"Data\")\n",
|
||||
"\n",
|
||||
"plt.yscale(\"log\")\n",
|
||||
"# plt.axvline(r2mu(rmax) + M, c=\"red\")\n",
|
||||
"plt.legend()\n",
|
||||
"\n",
|
||||
"plt.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"M = sample_schechter_LF(npoints=10000)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"plt.figure()\n",
|
||||
"plt.hist(x, bins=\"auto\", density=True, histtype=\"step\", color=\"blue\",)\n",
|
||||
"# plt.yscale(\"log\")\n",
|
||||
"plt.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"\n",
|
||||
"\n",
|
||||
"yeuclidean = 10**(0.6 * mu)\n",
|
||||
"ycomoving = r**2 * drdmu\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"k = np.argmin(np.abs(mu - 35)) \n",
|
||||
"\n",
|
||||
"yeuclidean /= yeuclidean[k]\n",
|
||||
"ycomoving /= ycomoving[k]\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"plt.figure()\n",
|
||||
"plt.plot(z, yeuclidean, label=\"Euclidean\")\n",
|
||||
"plt.plot(z, ycomoving, label=\"Comoving\")\n",
|
||||
"\n",
|
||||
"# plt.yscale('log')\n",
|
||||
"plt.xlabel(r\"$z$\")\n",
|
||||
"plt.ylabel(r\"$p(\\mu)$\")\n",
|
||||
"\n",
|
||||
"plt.legend()\n",
|
||||
"plt.tight_layout()\n",
|
||||
"plt.savefig(\"../../plots/pmu_comoving_vs_euclidean.png\")\n",
|
||||
"plt.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from scipy.interpolate import interp1d\n",
|
||||
"from scipy.integrate import quad\n",
|
||||
"from scipy.stats import norm\n",
|
||||
"\n",
|
||||
"z = np.linspace(0.001, 0.1, 100000)\n",
|
||||
"r = cosmo.comoving_distance(z).value\n",
|
||||
"mu = cosmo.distmod(z).value\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"drdmu = np.gradient(r, mu)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"mu2drdmu = interp1d(mu, drdmu, kind='cubic')\n",
|
||||
"mu2r = interp1d(mu, r, kind='cubic')\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def schechter_LF(M):\n",
|
||||
" M0 = -20.83\n",
|
||||
" alpha = -1\n",
|
||||
" return 10**(0.4 * (M0 - M) * (alpha + 1)) * np.exp(-10**(0.4 * (M0 - M)))\n",
|
||||
" \n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def phi(M):\n",
|
||||
" # return 1\n",
|
||||
" # return schechter_LF(M)# * norm.pdf(M, loc=-22, scale=1)\n",
|
||||
" loc = -22\n",
|
||||
" std = 0.1\n",
|
||||
"\n",
|
||||
" return norm.pdf(M, loc=loc, scale=std)\n",
|
||||
"\n",
|
||||
" # if -22 < M < -21:\n",
|
||||
" # return 1\n",
|
||||
" # else:\n",
|
||||
" # return 0\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"xrange = np.linspace(-24, -18, 1000)\n",
|
||||
"\n",
|
||||
"plt.figure()\n",
|
||||
"plt.plot(xrange, schechter_LF(xrange))\n",
|
||||
"# plt.yscale(\"log\")\n",
|
||||
"plt.show()\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"mu_min = mu.min()\n",
|
||||
"mu_max = mu.max()\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"m = 12\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"m_range = np.linspace(10, 16, 100)\n",
|
||||
"y = np.full_like(m_range, np.nan)\n",
|
||||
"for i in trange(len(m_range)):\n",
|
||||
" m = m_range[i]\n",
|
||||
" # y[i] = quad(lambda x: mu2drdmu(x) * mu2r(x)**2 * phi(m - x), mu_min, mu_max)[0]\n",
|
||||
" y[i] = quad(lambda x: 10**(0.6 * x) * phi(m - x), mu_min, mu_max)[0]\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"y_hubble = 10**(0.6 * m_range)\n",
|
||||
"ycomoving = r**2 * drdmu\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"k = np.argmin(np.abs(m_range - 12))\n",
|
||||
"\n",
|
||||
"y_hubble /= y_hubble[k]\n",
|
||||
"y /= y[k]\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"mu_max - 18"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"plt.figure()\n",
|
||||
"plt.plot(m_range, y, label=\"Numerical\")\n",
|
||||
"plt.plot(m_range, y_hubble, label=\"Hubble\")\n",
|
||||
"# plt.plot(mu, ycomoving, label=\"Comoving\")\n",
|
||||
"\n",
|
||||
"plt.xlabel(r\"$m$\")\n",
|
||||
"plt.ylabel(r\"$p(m)$\")\n",
|
||||
"plt.legend()\n",
|
||||
"\n",
|
||||
"# plt.yscale(\"log\")\n",
|
||||
"plt.tight_layout()\n",
|
||||
"# plt.xlim(10, 14)\n",
|
||||
"\n",
|
||||
"plt.savefig(\"../../plots/pm.png\", dpi=450)\n",
|
||||
"plt.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Simple simulation"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"npoints = 10000\n",
|
||||
"rmax = 30000\n",
|
||||
"\n",
|
||||
"# pos = np.random.uniform(-boxsize, boxsize, (npoints, 3))\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"r = rmax * np.random.rand(npoints)**(1/3)\n",
|
||||
"\n",
|
||||
"mu = 5 * np.log10(r) + 25\n",
|
||||
"\n",
|
||||
"# M = np.ones(npoints) * -22\n",
|
||||
"# M = np.random.normal(-22, 100, npoints)\n",
|
||||
"M = np.random.uniform(-24, -18, npoints)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"m = mu + M"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def f(m, a, b):\n",
|
||||
" norm = np.log10(- 5 / np.log(1000) * (10**(3 / 5 * a) - 10**(3 / 5 * b)))\n",
|
||||
" return 10**(0.6 * m - norm)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"plt.figure()\n",
|
||||
"plt.hist(m, bins=\"auto\", density=True, histtype=\"step\")\n",
|
||||
"m_range = np.linspace(m.min(), m.max(), 100)\n",
|
||||
"# plt.plot(m_range, f(m_range, m.min(), m.max()))\n",
|
||||
"# plt.yscale(\"log\")\n",
|
||||
"plt.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "venv_csiborg",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.4"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
2
scripts/field_prop/clear.sh
Executable file
2
scripts/field_prop/clear.sh
Executable file
|
@ -0,0 +1,2 @@
|
|||
cm="rm *.out"
|
||||
$cm
|
|
@ -396,10 +396,17 @@ if __name__ == "__main__":
|
|||
parser.add_argument("--grid", type=int, help="Grid resolution.")
|
||||
args = parser.parse_args()
|
||||
|
||||
rmax = 300
|
||||
dr = 0.5
|
||||
rmax = 200
|
||||
if args.catalogue == "CF4_GroupAll":
|
||||
dr = 1
|
||||
else:
|
||||
dr = 0.75
|
||||
|
||||
# smooth_scales = [0, 2, 4, 6, 8]
|
||||
smooth_scales = [0]
|
||||
|
||||
print(f"Running catalogue {args.catalogue} for simulation {args.simname}.")
|
||||
|
||||
comm = MPI.COMM_WORLD
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
nsims = get_nsims(args, paths)
|
||||
|
|
|
@ -1,17 +1,26 @@
|
|||
nthreads=1
|
||||
memory=64
|
||||
on_login=1
|
||||
on_login=${1}
|
||||
queue="berg"
|
||||
env="/mnt/users/rstiskalek/csiborgtools/venv_csiborg/bin/python"
|
||||
file="field_los.py"
|
||||
|
||||
nsims="-1"
|
||||
# These are only for CB
|
||||
MAS="SPH"
|
||||
grid=1024
|
||||
|
||||
|
||||
for simname in "Lilow2024"; do
|
||||
for catalogue in "CF4_TFR"; do
|
||||
if [ "$on_login" != "1" ] && [ "$on_login" != "0" ]
|
||||
then
|
||||
echo "'on_login' (1) must be either 0 or 1."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
|
||||
# for simname in "csiborg1" "csiborg2_main" "csiborg2X" "Lilow2024" "Carrick2015" "CF4"; do
|
||||
for simname in "csiborg2_main"; do
|
||||
for catalogue in "2MTF" "SFI_gals" "CF4_TFR"; do
|
||||
pythoncm="$env $file --catalogue $catalogue --nsims $nsims --simname $simname --MAS $MAS --grid $grid"
|
||||
if [ $on_login -eq 1 ]; then
|
||||
echo $pythoncm
|
||||
|
|
95
scripts/field_prop/field_los_indranil_void.py
Normal file
95
scripts/field_prop/field_los_indranil_void.py
Normal file
|
@ -0,0 +1,95 @@
|
|||
# Copyright (C) 2024 Richard Stiskalek
|
||||
# This program is free software; you can redistribute it and/or modify it
|
||||
# under the terms of the GNU General Public License as published by the
|
||||
# Free Software Foundation; either version 3 of the License, or (at your
|
||||
# option) any later version.
|
||||
# This program is distributed in the hope that it will be useful, but
|
||||
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
||||
# Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along
|
||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
"""
|
||||
MPI script to interpolate the density and velocity fields along the line of
|
||||
sight.
|
||||
"""
|
||||
from os.path import join
|
||||
|
||||
import csiborgtools
|
||||
import numpy as np
|
||||
from astropy.coordinates import SkyCoord, angular_separation
|
||||
from h5py import File
|
||||
from mpi4py import MPI
|
||||
from scipy.interpolate import RegularGridInterpolator
|
||||
|
||||
from field_los import get_los
|
||||
|
||||
|
||||
def interpolate_indranil_void(kind, RA, dec, rmax, dr, dump_folder, catalogue):
|
||||
fdir = "/mnt/extraspace/rstiskalek/catalogs"
|
||||
if kind == "exp":
|
||||
fname = join(fdir, "v_pec_EXP_IndranilVoid.dat")
|
||||
elif kind == "gauss":
|
||||
fname = join(fdir, "v_pec_GAUSS_IndranilVoid.dat")
|
||||
else:
|
||||
raise ValueError("Invalid void kind.")
|
||||
|
||||
# These are only velocities.
|
||||
data = np.loadtxt(fname)
|
||||
fname_out = join(dump_folder, f"los_{catalogue}_IndranilVoid_{kind}.hdf5")
|
||||
|
||||
r_grid = np.arange(0, 251)
|
||||
phi_grid = np.arange(0, 181)
|
||||
r_eval = np.arange(0, rmax, dr).astype(float) / 0.674
|
||||
|
||||
model_axis = SkyCoord(l=117, b=4, frame='galactic', unit='deg').icrs
|
||||
coords = SkyCoord(ra=RA, dec=dec, unit='deg').icrs
|
||||
|
||||
# Get angular separation in degrees
|
||||
phi = angular_separation(coords.ra.rad, coords.dec.rad,
|
||||
model_axis.ra.rad, model_axis.dec.rad)
|
||||
phi *= 180 / np.pi
|
||||
|
||||
# Get the interpolator
|
||||
f = RegularGridInterpolator((r_grid, phi_grid), data.T)
|
||||
# Get the dummy x-values to evaluate for each LOS
|
||||
x_dummy = np.ones((len(r_eval), 2))
|
||||
x_dummy[:, 0] = r_eval
|
||||
|
||||
result = np.full((len(RA), len(r_eval)), np.nan)
|
||||
for i in range(len(RA)):
|
||||
x_dummy[:, 1] = phi[i]
|
||||
result[i] = f(x_dummy)
|
||||
|
||||
# Write the output, homogenous density.
|
||||
density = np.ones_like(result)
|
||||
print(f"Writing to `{fname_out}`.")
|
||||
with File(fname_out, 'w') as f_out:
|
||||
f_out.create_dataset("rdist_0", data=r_eval * 0.674)
|
||||
f_out.create_dataset("density_0", data=density)
|
||||
f_out.create_dataset("velocity_0", data=result)
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Command line interface #
|
||||
###############################################################################
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
kind = "exp"
|
||||
rmax = 165
|
||||
dr = 1
|
||||
|
||||
comm = MPI.COMM_WORLD
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
|
||||
out_folder = "/mnt/extraspace/rstiskalek/csiborg_postprocessing/field_los"
|
||||
|
||||
for catalogue in ["LOSS", "Foundation", "2MTF", "SFI_gals", "CF4_TFR", "CF4_GroupAll"]: # noqa
|
||||
print(f"Running kind `{kind}` for catalogue `{catalogue}`.")
|
||||
|
||||
RA, dec = get_los(catalogue, "", comm).T
|
||||
interpolate_indranil_void(
|
||||
kind, RA, dec, rmax, dr, out_folder, catalogue)
|
2
scripts/flow/clear.sh
Executable file
2
scripts/flow/clear.sh
Executable file
|
@ -0,0 +1,2 @@
|
|||
cm="rm *.out"
|
||||
$cm
|
|
@ -34,7 +34,7 @@ def parse_args():
|
|||
help="Simulation name.")
|
||||
parser.add_argument("--catalogue", type=str, required=True,
|
||||
help="PV catalogues.")
|
||||
parser.add_argument("--ksmooth", type=int, default=1,
|
||||
parser.add_argument("--ksmooth", type=int, default=0,
|
||||
help="Smoothing index.")
|
||||
parser.add_argument("--ksim", type=none_or_int, default=None,
|
||||
help="IC iteration number. If 'None', all IC realizations are used.") # noqa
|
||||
|
@ -61,6 +61,7 @@ import sys
|
|||
from os.path import join # noqa
|
||||
|
||||
import csiborgtools # noqa
|
||||
from csiborgtools import fprint # noqa
|
||||
import jax # noqa
|
||||
from h5py import File # noqa
|
||||
from numpyro.infer import MCMC, NUTS, init_to_median # noqa
|
||||
|
@ -72,7 +73,7 @@ def print_variables(names, variables):
|
|||
print(flush=True)
|
||||
|
||||
|
||||
def get_models(get_model_kwargs, toy_selection, verbose=True):
|
||||
def get_models(get_model_kwargs, mag_selection, verbose=True):
|
||||
"""Load the data and create the NumPyro models."""
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
folder = "/mnt/extraspace/rstiskalek/catalogs/"
|
||||
|
@ -111,7 +112,7 @@ def get_models(get_model_kwargs, toy_selection, verbose=True):
|
|||
cat, fpath, paths,
|
||||
ksmooth=ARGS.ksmooth)
|
||||
models[i] = csiborgtools.flow.get_model(
|
||||
loader, toy_selection=toy_selection[i], **get_model_kwargs)
|
||||
loader, mag_selection=mag_selection[i], **get_model_kwargs)
|
||||
|
||||
print(f"\n{'Num. radial steps':<20} {len(loader.rdist)}\n", flush=True)
|
||||
return models
|
||||
|
@ -127,9 +128,15 @@ def get_harmonic_evidence(samples, log_posterior, nchains_harmonic, epoch_num):
|
|||
data, log_posterior, return_flow_samples=False, epochs_num=epoch_num)
|
||||
|
||||
|
||||
def run_model(model, nsteps, nburn, model_kwargs, out_folder, sample_beta,
|
||||
calculate_harmonic, nchains_harmonic, epoch_num, kwargs_print):
|
||||
def run_model(model, nsteps, nburn, model_kwargs, out_folder,
|
||||
calculate_harmonic, nchains_harmonic, epoch_num, kwargs_print,
|
||||
fname_kwargs):
|
||||
"""Run the NumPyro model and save output to a file."""
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
|
||||
fname = paths.flow_validation(out_folder, ARGS.simname, ARGS.catalogue,
|
||||
**fname_kwargs)
|
||||
|
||||
try:
|
||||
ndata = sum(model.ndata for model in model_kwargs["models"])
|
||||
except AttributeError as e:
|
||||
|
@ -159,13 +166,6 @@ def run_model(model, nsteps, nburn, model_kwargs, out_folder, sample_beta,
|
|||
neg_ln_evidence = jax.numpy.nan
|
||||
neg_ln_evidence_err = (jax.numpy.nan, jax.numpy.nan)
|
||||
|
||||
fname = f"samples_{ARGS.simname}_{'+'.join(ARGS.catalogue)}_ksmooth{ARGS.ksmooth}.hdf5" # noqa
|
||||
if ARGS.ksim is not None:
|
||||
fname = fname.replace(".hdf5", f"_nsim{ARGS.ksim}.hdf5")
|
||||
|
||||
if sample_beta:
|
||||
fname = fname.replace(".hdf5", "_sample_beta.hdf5")
|
||||
|
||||
fname = join(out_folder, fname)
|
||||
print(f"Saving results to `{fname}`.")
|
||||
with File(fname, "w") as f:
|
||||
|
@ -209,7 +209,7 @@ def run_model(model, nsteps, nburn, model_kwargs, out_folder, sample_beta,
|
|||
|
||||
def get_distmod_hyperparams(catalogue, sample_alpha, sample_mag_dipole):
|
||||
alpha_min = -1.0
|
||||
alpha_max = 3.0
|
||||
alpha_max = 10.0
|
||||
|
||||
if catalogue in ["LOSS", "Foundation", "Pantheon+", "Pantheon+_groups", "Pantheon+_zSN"]: # noqa
|
||||
return {"e_mu_min": 0.001, "e_mu_max": 1.0,
|
||||
|
@ -224,7 +224,6 @@ def get_distmod_hyperparams(catalogue, sample_alpha, sample_mag_dipole):
|
|||
"a_mean": -21., "a_std": 5.0,
|
||||
"b_mean": -5.95, "b_std": 4.0,
|
||||
"c_mean": 0., "c_std": 20.0,
|
||||
"sample_curvature": False,
|
||||
"a_dipole_mean": 0., "a_dipole_std": 1.0,
|
||||
"sample_a_dipole": sample_mag_dipole,
|
||||
"alpha_min": alpha_min, "alpha_max": alpha_max,
|
||||
|
@ -242,14 +241,27 @@ def get_distmod_hyperparams(catalogue, sample_alpha, sample_mag_dipole):
|
|||
raise ValueError(f"Unsupported catalogue: `{ARGS.catalogue}`.")
|
||||
|
||||
|
||||
def get_toy_selection(toy_selection, catalogue):
|
||||
if not toy_selection:
|
||||
def get_toy_selection(catalogue):
|
||||
"""Toy magnitude selection coefficients."""
|
||||
if catalogue == "SFI_gals":
|
||||
kind = "soft"
|
||||
# m1, m2, a
|
||||
coeffs = [11.467, 12.906, -0.231]
|
||||
elif "CF4_TFR" in catalogue and "_i" in catalogue:
|
||||
kind = "soft"
|
||||
coeffs = [13.043, 14.423, -0.129]
|
||||
elif "CF4_TFR" in catalogue and "w1" in catalogue:
|
||||
kind = "soft"
|
||||
coeffs = [11.731, 14.189, -0.118]
|
||||
elif catalogue == "2MTF":
|
||||
kind = "hard"
|
||||
coeffs = 11.25
|
||||
else:
|
||||
fprint(f"found no selection coefficients for {catalogue}.")
|
||||
return None
|
||||
|
||||
if catalogue == "SFI_gals":
|
||||
return [1.221e+01, 1.297e+01, -2.708e-01]
|
||||
else:
|
||||
raise ValueError(f"Unsupported catalogue: `{ARGS.catalogue}`.")
|
||||
return {"kind": kind,
|
||||
"coeffs": coeffs}
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -262,43 +274,63 @@ if __name__ == "__main__":
|
|||
# Fixed user parameters #
|
||||
###########################################################################
|
||||
|
||||
nsteps = 1000
|
||||
nburn = 500
|
||||
zcmb_min = 0
|
||||
# `None` means default behaviour
|
||||
nsteps = 10_000
|
||||
nburn = 2_000
|
||||
zcmb_min = None
|
||||
zcmb_max = 0.05
|
||||
nchains_harmonic = 10
|
||||
num_epochs = 50
|
||||
inference_method = "bayes"
|
||||
calculate_harmonic = True if inference_method == "mike" else False
|
||||
maxmag_selection = None
|
||||
sample_alpha = False
|
||||
sample_beta = True
|
||||
inference_method = "mike"
|
||||
mag_selection = None
|
||||
sample_alpha = True
|
||||
sample_beta = None
|
||||
sample_Vmono = False
|
||||
sample_mag_dipole = False
|
||||
toy_selection = True
|
||||
calculate_harmonic = False if inference_method == "bayes" else True
|
||||
|
||||
if toy_selection and inference_method == "mike":
|
||||
raise ValueError("Toy selection is not supported with `mike` inference.") # noqa
|
||||
|
||||
if nsteps % nchains_harmonic != 0:
|
||||
raise ValueError(
|
||||
"The number of steps must be divisible by the number of chains.")
|
||||
fname_kwargs = {"inference_method": inference_method,
|
||||
"smooth": ARGS.ksmooth,
|
||||
"nsim": ARGS.ksim,
|
||||
"zcmb_min": zcmb_min,
|
||||
"zcmb_max": zcmb_max,
|
||||
"mag_selection": mag_selection,
|
||||
"sample_alpha": sample_alpha,
|
||||
"sample_beta": sample_beta,
|
||||
"sample_Vmono": sample_Vmono,
|
||||
"sample_mag_dipole": sample_mag_dipole,
|
||||
}
|
||||
|
||||
main_params = {"nsteps": nsteps, "nburn": nburn,
|
||||
"zcmb_min": zcmb_min,
|
||||
"zcmb_max": zcmb_max,
|
||||
"maxmag_selection": maxmag_selection,
|
||||
"mag_selection": mag_selection,
|
||||
"calculate_harmonic": calculate_harmonic,
|
||||
"nchains_harmonic": nchains_harmonic,
|
||||
"num_epochs": num_epochs,
|
||||
"inference_method": inference_method,
|
||||
"sample_mag_dipole": sample_mag_dipole,
|
||||
"toy_selection": toy_selection}
|
||||
}
|
||||
print_variables(main_params.keys(), main_params.values())
|
||||
|
||||
calibration_hyperparams = {"Vext_min": -1000, "Vext_max": 1000,
|
||||
if sample_beta is None:
|
||||
sample_beta = ARGS.simname == "Carrick2015"
|
||||
|
||||
if mag_selection and inference_method != "bayes":
|
||||
raise ValueError("Magnitude selection is only supported with `bayes` inference.") # noqa
|
||||
|
||||
if inference_method != "bayes":
|
||||
mag_selection = [None] * len(ARGS.catalogue)
|
||||
elif mag_selection is None or mag_selection:
|
||||
mag_selection = [get_toy_selection(cat) for cat in ARGS.catalogue]
|
||||
|
||||
if nsteps % nchains_harmonic != 0:
|
||||
raise ValueError(
|
||||
"The number of steps must be divisible by the number of chains.")
|
||||
|
||||
calibration_hyperparams = {"Vext_min": -3000, "Vext_max": 3000,
|
||||
"Vmono_min": -1000, "Vmono_max": 1000,
|
||||
"beta_min": -1.0, "beta_max": 3.0,
|
||||
"beta_min": -10.0, "beta_max": 10.0,
|
||||
"sigma_v_min": 1.0, "sigma_v_max": 750.,
|
||||
"sample_Vmono": sample_Vmono,
|
||||
"sample_beta": sample_beta,
|
||||
|
@ -315,15 +347,11 @@ if __name__ == "__main__":
|
|||
|
||||
kwargs_print = (main_params, calibration_hyperparams,
|
||||
*distmod_hyperparams_per_catalogue)
|
||||
|
||||
###########################################################################
|
||||
|
||||
get_model_kwargs = {"zcmb_min": zcmb_min, "zcmb_max": zcmb_max,
|
||||
"maxmag_selection": maxmag_selection}
|
||||
|
||||
toy_selection = [get_toy_selection(toy_selection, cat)
|
||||
for cat in ARGS.catalogue]
|
||||
|
||||
models = get_models(get_model_kwargs, toy_selection)
|
||||
get_model_kwargs = {"zcmb_min": zcmb_min, "zcmb_max": zcmb_max}
|
||||
models = get_models(get_model_kwargs, mag_selection)
|
||||
model_kwargs = {
|
||||
"models": models,
|
||||
"field_calibration_hyperparams": calibration_hyperparams,
|
||||
|
@ -334,5 +362,5 @@ if __name__ == "__main__":
|
|||
model = csiborgtools.flow.PV_validation_model
|
||||
|
||||
run_model(model, nsteps, nburn, model_kwargs, out_folder,
|
||||
calibration_hyperparams["sample_beta"], calculate_harmonic,
|
||||
nchains_harmonic, num_epochs, kwargs_print)
|
||||
calculate_harmonic, nchains_harmonic, num_epochs, kwargs_print,
|
||||
fname_kwargs)
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
#!/bin/bash
|
||||
memory=7
|
||||
memory=14
|
||||
on_login=${1}
|
||||
queue=${2}
|
||||
ndevice=1
|
||||
|
@ -37,12 +37,19 @@ else
|
|||
fi
|
||||
|
||||
|
||||
# for simname in "Lilow2024" "CF4" "CF4gp" "csiborg1" "csiborg2_main" "csiborg2X"; do
|
||||
for simname in "Carrick2015"; do
|
||||
for catalogue in "SFI_gals"; do
|
||||
# for catalogue in "CF4_TFR_i"; do
|
||||
# for ksim in 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20; do
|
||||
for simname in "Carrick2015" "csiborg2_main"; do
|
||||
# for simname in "csiborg2_main" "csiborg2X" ; do
|
||||
# for simname in "Carrick2015" "Lilow2024" "csiborg2_main" "csiborg2X" "CF4"; do
|
||||
# for simname in "Carrick2015" "csiborg2X" "csiborg2_main"; do
|
||||
# for simname in "Carrick2015"; do
|
||||
# for catalogue in "LOSS" "Foundation" "2MTF" "SFI_gals" "CF4_TFR_i" "CF4_TFR_w1"; do
|
||||
for catalogue in "2MTF" "SFI_gals" "CF4_TFR_i"; do
|
||||
# for catalogue in "2MTF" "SFI" "CF4_TFR_not2MTForSFI_i"; do
|
||||
# for catalogue in "2MTF" "SFI_gals" "CF4_TFR_i"; do
|
||||
# for catalogue in "CF4_TFR_w1"; do
|
||||
# for catalogue in "CF4_GroupAll"; do
|
||||
for ksim in "none"; do
|
||||
for ksmooth in 1 2 3 4; do
|
||||
pythoncm="$env $file --catalogue $catalogue --simname $simname --ksim $ksim --ksmooth $ksmooth --ndevice $ndevice --device $device"
|
||||
|
||||
if [ "$on_login" == "1" ]; then
|
||||
|
@ -65,3 +72,5 @@ for simname in "Carrick2015"; do
|
|||
done
|
||||
done
|
||||
done
|
||||
|
||||
done
|
|
@ -1,4 +1,4 @@
|
|||
from argparse import ArgumentParser, ArgumentTypeError
|
||||
from argparse import ArgumentParser
|
||||
|
||||
|
||||
def parse_args():
|
||||
|
@ -10,7 +10,7 @@ def parse_args():
|
|||
|
||||
ARGS = parse_args()
|
||||
# This must be done before we import JAX etc.
|
||||
from numpyro import set_host_device_count, set_platform # noqa
|
||||
from numpyro import set_platform # noqa
|
||||
|
||||
set_platform(ARGS.device) # noqa
|
||||
|
||||
|
@ -30,8 +30,8 @@ def get_harmonic_evidence(samples, log_posterior, nchains_harmonic, epoch_num):
|
|||
data, log_posterior, return_flow_samples=False, epochs_num=epoch_num)
|
||||
|
||||
|
||||
ndim = 250
|
||||
nsamples = 100_000
|
||||
ndim = 150
|
||||
nsamples = 50_000
|
||||
nchains_split = 10
|
||||
loc = jnp.zeros(ndim)
|
||||
cov = jnp.eye(ndim)
|
||||
|
@ -42,10 +42,6 @@ X = gen.multivariate_normal(loc, cov, size=nsamples)
|
|||
samples = {f"x_{i}": X[:, i] for i in range(ndim)}
|
||||
logprob = multivariate_normal(loc, cov).logpdf(X)
|
||||
|
||||
neg_lnZ_laplace, neg_lnZ_laplace_error = csiborgtools.laplace_evidence(
|
||||
samples, logprob, nchains_split)
|
||||
print(f"neg_lnZ_laplace: {neg_lnZ_laplace} +/- {neg_lnZ_laplace_error}")
|
||||
|
||||
|
||||
neg_lnZ_harmonic, neg_lnZ_harmonic_error = get_harmonic_evidence(
|
||||
samples, logprob, nchains_split, epoch_num=30)
|
||||
|
|
Loading…
Reference in a new issue