mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2025-01-02 15:44:15 +00:00
More plotting (#74)
* Add a new plot * Add a binned trend * Fix bug * Improve plot further * Add new plotting * add max overlap * edit get_overlap * Add max overlap plot * Update plot * Add max overlap key * add max dist flag * Improve plotting
This commit is contained in:
parent
fbf9c2a4b7
commit
28e93e917f
3 changed files with 690 additions and 95 deletions
|
@ -38,18 +38,21 @@ class PairOverlap:
|
|||
Halo catalogue corresponding to the cross simulation.
|
||||
paths : py:class`csiborgtools.read.Paths`
|
||||
CSiBORG paths object.
|
||||
maxdist : float, optional
|
||||
Maximum halo distance in :math:`\mathrm{Mpc} / h` from the centre of
|
||||
the high-resolution region. Removes overlaps of haloes outside it.
|
||||
"""
|
||||
_cat0 = None
|
||||
_catx = None
|
||||
_data = None
|
||||
|
||||
def __init__(self, cat0, catx, paths):
|
||||
def __init__(self, cat0, catx, paths, maxdist=None):
|
||||
self._cat0 = cat0
|
||||
self._catx = catx
|
||||
self.load(cat0, catx, paths)
|
||||
self.load(cat0, catx, paths, maxdist)
|
||||
|
||||
def load(self, cat0, catx, paths):
|
||||
"""
|
||||
def load(self, cat0, catx, paths, maxdist=None):
|
||||
r"""
|
||||
Load overlap calculation results. Matches the results back to the two
|
||||
catalogues in question.
|
||||
|
||||
|
@ -61,6 +64,9 @@ class PairOverlap:
|
|||
Halo catalogue corresponding to the cross simulation.
|
||||
paths : py:class`csiborgtools.read.Paths`
|
||||
CSiBORG paths object.
|
||||
maxdist : float, optional
|
||||
Maximum halo distance in :math:`\mathrm{Mpc} / h` from the centre
|
||||
of the high-resolution region.
|
||||
|
||||
Returns
|
||||
-------
|
||||
|
@ -125,6 +131,14 @@ class PairOverlap:
|
|||
match_indxs, ngp_overlap, smoothed_overlap = self._invert_match(
|
||||
match_indxs, ngp_overlap, smoothed_overlap, len(catx),)
|
||||
|
||||
if maxdist is not None:
|
||||
dist = cat0.radial_distance(in_initial=False)
|
||||
for i in range(len(cat0)):
|
||||
if dist[i] > maxdist:
|
||||
match_indxs[i] = numpy.array([], dtype=int)
|
||||
ngp_overlap[i] = numpy.array([], dtype=float)
|
||||
smoothed_overlap[i] = numpy.array([], dtype=float)
|
||||
|
||||
self._data = {"match_indxs": match_indxs,
|
||||
"ngp_overlap": ngp_overlap,
|
||||
"smoothed_overlap": smoothed_overlap,
|
||||
|
@ -228,7 +242,11 @@ class PairOverlap:
|
|||
summed_overlap : 1-dimensional array of shape `(nhalos, )`
|
||||
"""
|
||||
overlap = self.overlap(from_smoothed)
|
||||
return numpy.array([numpy.sum(cross)for cross in overlap])
|
||||
out = numpy.full(len(overlap), numpy.nan, dtype=numpy.float32)
|
||||
for i in range(len(overlap)):
|
||||
if len(overlap[i]) > 0:
|
||||
out[i] = numpy.sum(overlap[i])
|
||||
return out
|
||||
|
||||
def prob_nomatch(self, from_smoothed):
|
||||
"""
|
||||
|
@ -246,8 +264,11 @@ class PairOverlap:
|
|||
prob_nomatch : 1-dimensional array of shape `(nhalos, )`
|
||||
"""
|
||||
overlap = self.overlap(from_smoothed)
|
||||
return numpy.array([numpy.product(numpy.subtract(1, cross))
|
||||
for cross in overlap])
|
||||
out = numpy.full(len(overlap), numpy.nan, dtype=numpy.float32)
|
||||
for i in range(len(overlap)):
|
||||
if len(overlap[i]) > 0:
|
||||
out[i] = numpy.product(numpy.subtract(1, overlap[i]))
|
||||
return out
|
||||
|
||||
def dist(self, in_initial, norm_kind=None):
|
||||
"""
|
||||
|
@ -326,6 +347,35 @@ class PairOverlap:
|
|||
ratio[i] = numpy.abs(ratio[i])
|
||||
return numpy.array(ratio, dtype=object)
|
||||
|
||||
def max_overlap_key(self, key, from_smoothed):
|
||||
"""
|
||||
Calculate the maximum overlap mass of each halo in the reference
|
||||
simulation from the cross simulation.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
key : str
|
||||
Key to the maximum overlap statistic to calculate.
|
||||
from_smoothed : bool
|
||||
Whether to use the smoothed overlap or not.
|
||||
mass_kind : str, optional
|
||||
The mass kind whose ratio is to be calculated.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : 1-dimensional array of shape `(nhalos, )`
|
||||
"""
|
||||
out = numpy.full(len(self), numpy.nan, dtype=numpy.float32)
|
||||
y = self.catx(key)
|
||||
overlap = self.overlap(from_smoothed)
|
||||
|
||||
for i, match_ind in enumerate(self["match_indxs"]):
|
||||
# Skip if no match
|
||||
if len(match_ind) == 0:
|
||||
continue
|
||||
out[i] = y[match_ind][numpy.argmax(overlap[i])]
|
||||
return out
|
||||
|
||||
def counterpart_mass(self, from_smoothed, overlap_threshold=0.,
|
||||
in_log=False, mass_kind="totpartmass"):
|
||||
"""
|
||||
|
@ -359,7 +409,7 @@ class PairOverlap:
|
|||
|
||||
for i, match_ind in enumerate(self["match_indxs"]):
|
||||
# Skip if no match
|
||||
if match_ind.size == 0:
|
||||
if len(match_ind) == 0:
|
||||
continue
|
||||
|
||||
massx_ = massx[match_ind] # Again just create references
|
||||
|
@ -527,6 +577,63 @@ class NPairsOverlap:
|
|||
|
||||
self._pairs = pairs
|
||||
|
||||
def max_overlap(self, from_smoothed, verbose=True):
|
||||
"""
|
||||
Calculate maximum overlap of each halo in the reference simulation with
|
||||
the cross simulations.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
from_smoothed : bool
|
||||
Whether to use the smoothed overlap or not.
|
||||
verbose : bool, optional
|
||||
Verbosity flag.
|
||||
|
||||
Returns
|
||||
-------
|
||||
max_overlap : 2-dimensional array of shape `(nhalos, ncatxs)`
|
||||
"""
|
||||
out = [None] * len(self)
|
||||
if verbose:
|
||||
print("Calculating maximum overlap...", flush=True)
|
||||
|
||||
def get_max(y_):
|
||||
if len(y_) == 0:
|
||||
return numpy.nan
|
||||
return numpy.max(y_)
|
||||
|
||||
for i, pair in enumerate(tqdm(self.pairs) if verbose else self.pairs):
|
||||
out[i] = numpy.asanyarray([get_max(y_)
|
||||
for y_ in pair.overlap(from_smoothed)])
|
||||
return numpy.vstack(out).T
|
||||
|
||||
def max_overlap_key(self, key, from_smoothed, verbose=True):
|
||||
"""
|
||||
Calculate maximum overlap mass of each halo in the reference
|
||||
simulation with the cross simulations.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
key : str
|
||||
Key to the maximum overlap statistic to calculate.
|
||||
from_smoothed : bool
|
||||
Whether to use the smoothed overlap or not.
|
||||
verbose : bool, optional
|
||||
Verbosity flag.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : 2-dimensional array of shape `(nhalos, ncatxs)`
|
||||
"""
|
||||
out = [None] * len(self)
|
||||
if verbose:
|
||||
print(f"Calculating maximum overlap {key}...", flush=True)
|
||||
|
||||
for i, pair in enumerate(tqdm(self.pairs) if verbose else self.pairs):
|
||||
out[i] = pair.max_overlap_key(key, from_smoothed)
|
||||
|
||||
return numpy.vstack(out).T
|
||||
|
||||
def summed_overlap(self, from_smoothed, verbose=True):
|
||||
"""
|
||||
Calculate summed overlap of each halo in the reference simulation with
|
||||
|
|
|
@ -19,11 +19,12 @@ from os.path import join
|
|||
|
||||
import matplotlib as mpl
|
||||
import matplotlib.pyplot as plt
|
||||
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
|
||||
import numpy
|
||||
import scienceplots # noqa
|
||||
from cache_to_disk import cache_to_disk, delete_disk_caches_for_function
|
||||
from scipy.stats import kendalltau
|
||||
from tqdm import tqdm
|
||||
from tqdm import trange, tqdm
|
||||
|
||||
import plt_utils
|
||||
|
||||
|
@ -57,6 +58,90 @@ def open_cat(nsim):
|
|||
return csiborgtools.read.HaloCatalogue(nsim, paths, bounds=bounds)
|
||||
|
||||
|
||||
def plot_mass_vs_pairoverlap(nsim0, nsimx):
|
||||
"""
|
||||
Plot the pair overlap of a reference simulation with a single cross
|
||||
simulation as a function of the reference halo mass.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsim0 : int
|
||||
Reference simulation index.
|
||||
nsimx : int
|
||||
Cross simulation index.
|
||||
"""
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
cat0 = open_cat(nsim0)
|
||||
catx = open_cat(nsimx)
|
||||
reader = csiborgtools.read.PairOverlap(cat0, catx, paths)
|
||||
|
||||
x = reader.copy_per_match("totpartmass")
|
||||
y = reader.overlap(True)
|
||||
|
||||
x = numpy.log10(numpy.concatenate(x))
|
||||
y = numpy.concatenate(y)
|
||||
|
||||
with plt.style.context(plt_utils.mplstyle):
|
||||
plt.figure()
|
||||
plt.hexbin(x, y, mincnt=1, bins="log",
|
||||
gridsize=50)
|
||||
plt.colorbar(label="Counts in bins")
|
||||
plt.xlabel(r"$\log M_{\rm tot} / M_\odot$")
|
||||
plt.ylabel("Pair overlap")
|
||||
plt.ylim(0., 1.)
|
||||
|
||||
plt.tight_layout()
|
||||
for ext in ["png"]:
|
||||
fout = join(plt_utils.fout, f"mass_vs_pair_overlap{nsim0}.{ext}")
|
||||
print(f"Saving to `{fout}`.")
|
||||
plt.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
|
||||
plt.close()
|
||||
|
||||
|
||||
def plot_mass_vs_maxpairoverlap(nsim0, nsimx):
|
||||
"""
|
||||
Plot the maximum pair overlap of a reference simulation haloes with a
|
||||
single cross simulation.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsim0 : int
|
||||
Reference simulation index.
|
||||
nsimx : int
|
||||
Cross simulation index.
|
||||
"""
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
cat0 = open_cat(nsim0)
|
||||
catx = open_cat(nsimx)
|
||||
reader = csiborgtools.read.PairOverlap(cat0, catx, paths)
|
||||
|
||||
x = numpy.log10(cat0["totpartmass"])
|
||||
y = reader.overlap(True)
|
||||
|
||||
def get_max(y_):
|
||||
if len(y_) == 0:
|
||||
return numpy.nan
|
||||
return numpy.max(y_)
|
||||
|
||||
y = numpy.array([get_max(y_) for y_ in y])
|
||||
|
||||
with plt.style.context(plt_utils.mplstyle):
|
||||
plt.figure()
|
||||
plt.hexbin(x, y, mincnt=1, bins="log",
|
||||
gridsize=50)
|
||||
plt.colorbar(label="Counts in bins")
|
||||
plt.xlabel(r"$\log M_{\rm tot} / M_\odot$")
|
||||
plt.ylabel("Maximum pair overlap")
|
||||
plt.ylim(0., 1.)
|
||||
|
||||
plt.tight_layout()
|
||||
for ext in ["png"]:
|
||||
fout = join(plt_utils.fout, f"mass_vs_maxpairoverlap{nsim0}.{ext}")
|
||||
print(f"Saving to `{fout}`.")
|
||||
plt.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
|
||||
plt.close()
|
||||
|
||||
|
||||
@cache_to_disk(7)
|
||||
def get_overlap(nsim0):
|
||||
"""
|
||||
|
@ -74,9 +159,11 @@ def get_overlap(nsim0):
|
|||
Mass of halos in the reference simulation.
|
||||
hindxs : 1-dimensional array
|
||||
Halo indices in the reference simulation.
|
||||
summed_overlap : 1-dimensional array
|
||||
max_overlap : 2-dimensional array
|
||||
Maximum overlap for each halo in the reference simulation.
|
||||
summed_overlap : 2-dimensional array
|
||||
Summed overlap for each halo in the reference simulation.
|
||||
prob_nomatch : 1-dimensional array
|
||||
prob_nomatch : 2-dimensional array
|
||||
Probability of no match for each halo in the reference simulation.
|
||||
"""
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
|
@ -93,8 +180,64 @@ def get_overlap(nsim0):
|
|||
|
||||
hindxs = reader.cat0("index")
|
||||
summed_overlap = reader.summed_overlap(True)
|
||||
max_overlap = reader.max_overlap(True)
|
||||
prob_nomatch = reader.prob_nomatch(True)
|
||||
return mass, hindxs, summed_overlap, prob_nomatch
|
||||
return mass, hindxs, max_overlap, summed_overlap, prob_nomatch
|
||||
|
||||
|
||||
def plot_mass_vsmedmaxoverlap(nsim0):
|
||||
"""
|
||||
Plot the mean maximum overlap of a reference simulation haloes with all the
|
||||
cross simulations.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsim0 : int
|
||||
Reference simulation index.
|
||||
"""
|
||||
x, __, max_overlap, __, __ = get_overlap(nsim0)
|
||||
|
||||
for i in trange(max_overlap.shape[0]):
|
||||
if numpy.sum(numpy.isnan(max_overlap[i, :])) > 0:
|
||||
max_overlap[i, :] = numpy.nan
|
||||
|
||||
x = numpy.log10(x)
|
||||
|
||||
with plt.style.context(plt_utils.mplstyle):
|
||||
fig, axs = plt.subplots(ncols=3, figsize=(3.5 * 2, 2.625))
|
||||
im1 = axs[0].hexbin(x, numpy.nanmean(max_overlap, axis=1), gridsize=30,
|
||||
mincnt=1, bins="log")
|
||||
|
||||
im2 = axs[1].hexbin(x, numpy.nanstd(max_overlap, axis=1), gridsize=30,
|
||||
mincnt=1, bins="log")
|
||||
im3 = axs[2].hexbin(numpy.nanmean(max_overlap, axis=1),
|
||||
numpy.nanstd(max_overlap, axis=1), gridsize=30,
|
||||
C=x, reduce_C_function=numpy.nanmean)
|
||||
|
||||
axs[0].set_xlabel(r"$\log M_{\rm tot} / M_\odot$")
|
||||
axs[0].set_ylabel(r"Mean max. pair overlap")
|
||||
axs[1].set_xlabel(r"$\log M_{\rm tot} / M_\odot$")
|
||||
axs[1].set_ylabel(r"Uncertainty of max. pair overlap")
|
||||
axs[2].set_xlabel(r"Mean max. pair overlap")
|
||||
axs[2].set_ylabel(r"Uncertainty of max. pair overlap")
|
||||
|
||||
label = ["Bin counts", "Bin counts", r"$\log M_{\rm tot} / M_\odot$"]
|
||||
ims = [im1, im2, im3]
|
||||
for i in range(3):
|
||||
axins = inset_axes(axs[i], width="100%", height="5%",
|
||||
loc='upper center', borderpad=-0.75)
|
||||
fig.colorbar(ims[i], cax=axins, orientation="horizontal",
|
||||
label=label[i])
|
||||
axins.xaxis.tick_top()
|
||||
axins.xaxis.set_tick_params(labeltop=True)
|
||||
axins.xaxis.set_label_position("top")
|
||||
|
||||
fig.tight_layout()
|
||||
for ext in ["png"]:
|
||||
fout = join(plt_utils.fout, f"maxpairoverlap_{nsim0}.{ext}")
|
||||
print(f"Saving to `{fout}`.")
|
||||
fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
|
||||
plt.close()
|
||||
|
||||
|
||||
def plot_summed_overlap_vs_mass(nsim0):
|
||||
|
@ -112,14 +255,19 @@ def plot_summed_overlap_vs_mass(nsim0):
|
|||
-------
|
||||
None
|
||||
"""
|
||||
x, __, summed_overlap, prob_nomatch = get_overlap(nsim0)
|
||||
x, __, __, summed_overlap, prob_nomatch = get_overlap(nsim0)
|
||||
del __
|
||||
collect()
|
||||
|
||||
mean_overlap = numpy.mean(summed_overlap, axis=1)
|
||||
std_overlap = numpy.std(summed_overlap, axis=1)
|
||||
for i in trange(summed_overlap.shape[0]):
|
||||
if numpy.sum(numpy.isnan(summed_overlap[i, :])) > 0:
|
||||
summed_overlap[i, :] = numpy.nan
|
||||
|
||||
mean_prob_nomatch = numpy.mean(prob_nomatch, axis=1)
|
||||
x = numpy.log10(x)
|
||||
|
||||
mean_overlap = numpy.nanmean(summed_overlap, axis=1)
|
||||
std_overlap = numpy.nanstd(summed_overlap, axis=1)
|
||||
mean_prob_nomatch = numpy.nanmean(prob_nomatch, axis=1)
|
||||
|
||||
mask = mean_overlap > 0
|
||||
x = x[mask]
|
||||
|
@ -127,63 +275,45 @@ def plot_summed_overlap_vs_mass(nsim0):
|
|||
std_overlap = std_overlap[mask]
|
||||
mean_prob_nomatch = mean_prob_nomatch[mask]
|
||||
|
||||
# Mean summed overlap
|
||||
with plt.style.context(plt_utils.mplstyle):
|
||||
plt.figure()
|
||||
plt.hexbin(x, mean_overlap, mincnt=1, xscale="log", bins="log",
|
||||
gridsize=50)
|
||||
plt.colorbar(label="Counts in bins")
|
||||
plt.xlabel(r"$M_{\rm tot} / M_\odot$")
|
||||
plt.ylabel(r"$\langle \mathcal{O}_{a}^{\mathcal{A} \mathcal{B}} \rangle_{\mathcal{B}}$") # noqa
|
||||
plt.ylim(0., 1.)
|
||||
|
||||
plt.tight_layout()
|
||||
for ext in ["png", "pdf"]:
|
||||
fout = join(plt_utils.fout, f"overlap_mean_{nsim0}.{ext}")
|
||||
print(f"Saving to `{fout}`.")
|
||||
plt.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
|
||||
plt.close()
|
||||
|
||||
# Std summed overlap
|
||||
with plt.style.context(plt_utils.mplstyle):
|
||||
plt.figure()
|
||||
plt.hexbin(x, std_overlap, mincnt=1, xscale="log", bins="log",
|
||||
gridsize=50)
|
||||
plt.colorbar(label="Counts in bins")
|
||||
plt.xlabel(r"$M_{\rm tot} / M_\odot$")
|
||||
plt.ylabel(r"$\delta \left( \mathcal{O}_{a}^{\mathcal{A} \mathcal{B}} \right)_{\mathcal{B}}$") # noqa
|
||||
plt.ylim(0., 1.)
|
||||
plt.tight_layout()
|
||||
|
||||
for ext in ["png", "pdf"]:
|
||||
fout = join(plt_utils.fout, f"overlap_std_{nsim0}.{ext}")
|
||||
print(f"Saving to `{fout}`.")
|
||||
plt.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
|
||||
plt.close()
|
||||
|
||||
# 1 - mean summed overlap vs mean prob nomatch
|
||||
with plt.style.context(plt_utils.mplstyle):
|
||||
plt.figure()
|
||||
plt.scatter(1 - mean_overlap, mean_prob_nomatch, c=numpy.log10(x), s=2,
|
||||
rasterized=True)
|
||||
plt.colorbar(label=r"$\log_{10} M_{\rm halo} / M_\odot$")
|
||||
|
||||
fig, axs = plt.subplots(ncols=3, figsize=(3.5 * 2, 2.625))
|
||||
im1 = axs[0].hexbin(x, mean_overlap, mincnt=1, bins="log",
|
||||
gridsize=30)
|
||||
im2 = axs[1].hexbin(x, std_overlap, mincnt=1, bins="log",
|
||||
gridsize=30)
|
||||
im3 = axs[2].scatter(1 - mean_overlap, mean_prob_nomatch, c=x, s=2,
|
||||
rasterized=True)
|
||||
t = numpy.linspace(0.3, 1, 100)
|
||||
plt.plot(t, t, color="red", linestyle="--")
|
||||
axs[2].plot(t, t, color="red", linestyle="--")
|
||||
axs[0].set_ylim(0.)
|
||||
axs[1].set_ylim(0.)
|
||||
axs[0].set_xlabel(r"$\log M_{\rm tot} / M_\odot$")
|
||||
axs[0].set_ylabel("Mean summed overlap")
|
||||
axs[1].set_xlabel(r"$\log M_{\rm tot} / M_\odot$")
|
||||
axs[1].set_ylabel("Uncertainty of summed overlap")
|
||||
axs[2].set_xlabel(r"$1 - $ mean summed overlap")
|
||||
axs[2].set_ylabel("Mean prob. of no match")
|
||||
|
||||
plt.xlabel(r"$1 - \langle \mathcal{O}_a^{\mathcal{A} \mathcal{B}} \rangle_{\mathcal{B}}$") # noqa
|
||||
plt.ylabel(r"$\langle \eta_a^{\mathcal{A} \mathcal{B}} \rangle_{\mathcal{B}}$") # noqa
|
||||
plt.tight_layout()
|
||||
label = ["Bin counts", "Bin counts", r"$\log M_{\rm tot} / M_\odot$"]
|
||||
ims = [im1, im2, im3]
|
||||
for i in range(3):
|
||||
axins = inset_axes(axs[i], width="100%", height="5%",
|
||||
loc='upper center', borderpad=-0.75)
|
||||
fig.colorbar(ims[i], cax=axins, orientation="horizontal",
|
||||
label=label[i])
|
||||
axins.xaxis.tick_top()
|
||||
axins.xaxis.set_tick_params(labeltop=True)
|
||||
axins.xaxis.set_label_position("top")
|
||||
|
||||
for ext in ["png", "pdf"]:
|
||||
fout = join(plt_utils.fout,
|
||||
f"overlap_vs_prob_nomatch_{nsim0}.{ext}")
|
||||
fig.tight_layout()
|
||||
for ext in ["png"]:
|
||||
fout = join(plt_utils.fout, f"overlap_stat_{nsim0}.{ext}")
|
||||
print(f"Saving to `{fout}`.")
|
||||
plt.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
|
||||
fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
|
||||
plt.close()
|
||||
|
||||
|
||||
def plot_mass_vs_separation(nsim0, nsimx, min_overlap=0.0):
|
||||
def plot_mass_vs_separation(nsim0, nsimx, plot_std=False, min_overlap=0.0):
|
||||
"""
|
||||
Plot the mass of a reference halo against the weighted separation of
|
||||
its counterparts.
|
||||
|
@ -194,6 +324,8 @@ def plot_mass_vs_separation(nsim0, nsimx, min_overlap=0.0):
|
|||
Reference simulation index.
|
||||
nsimx : int
|
||||
Cross simulation index.
|
||||
plot_std : bool, optional
|
||||
Whether to plot thestd instead of mean.
|
||||
min_overlap : float, optional
|
||||
Minimum overlap to consider.
|
||||
|
||||
|
@ -205,7 +337,8 @@ def plot_mass_vs_separation(nsim0, nsimx, min_overlap=0.0):
|
|||
cat0 = open_cat(nsim0)
|
||||
catx = open_cat(nsimx)
|
||||
|
||||
reader = csiborgtools.read.PairOverlap(cat0, catx, paths)
|
||||
reader = csiborgtools.read.PairOverlap(cat0, catx, paths,
|
||||
maxdist=155 / 0.705)
|
||||
mass = numpy.log10(reader.cat0("totpartmass"))
|
||||
dist = reader.dist(in_initial=False, norm_kind="r200c")
|
||||
overlap = reader.overlap(True)
|
||||
|
@ -217,7 +350,11 @@ def plot_mass_vs_separation(nsim0, nsimx, min_overlap=0.0):
|
|||
dist = dist[mask, :]
|
||||
dist = numpy.log10(dist)
|
||||
|
||||
p = numpy.polyfit(mass, dist[:, 0], 1)
|
||||
if not plot_std:
|
||||
p = numpy.polyfit(mass, dist[:, 0], 1)
|
||||
else:
|
||||
p = numpy.polyfit(mass, dist[:, 1], 1)
|
||||
|
||||
xrange = numpy.linspace(numpy.min(mass), numpy.max(mass), 1000)
|
||||
txt = r"$m = {}$, $c = {}$".format(*plt_utils.latex_float(*p, n=3))
|
||||
|
||||
|
@ -225,7 +362,14 @@ def plot_mass_vs_separation(nsim0, nsimx, min_overlap=0.0):
|
|||
fig, ax = plt.subplots()
|
||||
ax.set_title(txt, fontsize="small")
|
||||
|
||||
cx = ax.hexbin(mass, dist[:, 0], mincnt=1, bins="log", gridsize=50)
|
||||
if not plot_std:
|
||||
cx = ax.hexbin(mass, dist[:, 0], mincnt=1, bins="log", gridsize=50)
|
||||
ax.set_ylabel(r"$\log \langle \Delta R / R_{\rm 200c}\rangle$")
|
||||
else:
|
||||
cx = ax.hexbin(mass, dist[:, 1], mincnt=1, bins="log", gridsize=50)
|
||||
ax.set_ylabel(
|
||||
r"$\delta \log \langle \Delta R / R_{\rm 200c}\rangle$")
|
||||
|
||||
ax.plot(xrange, numpy.polyval(p, xrange), color="red",
|
||||
linestyle="--")
|
||||
fig.colorbar(cx, label="Bin counts")
|
||||
|
@ -234,7 +378,281 @@ def plot_mass_vs_separation(nsim0, nsimx, min_overlap=0.0):
|
|||
|
||||
fig.tight_layout()
|
||||
for ext in ["png"]:
|
||||
fout = join(plt_utils.fout, f"mass_vs_sep_{nsim0}_{nsimx}.{ext}")
|
||||
fout = join(plt_utils.fout,
|
||||
f"mass_vs_sep_{nsim0}_{nsimx}_{min_overlap}.{ext}")
|
||||
if plot_std:
|
||||
fout = fout.replace(f".{ext}", f"_std.{ext}")
|
||||
print(f"Saving to `{fout}`.")
|
||||
fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
|
||||
plt.close()
|
||||
|
||||
|
||||
@cache_to_disk(7)
|
||||
def get_max_key(nsim0, key):
|
||||
"""
|
||||
Get the value of a maximum overlap halo's property.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsim0 : int
|
||||
Reference simulation index.
|
||||
key : str
|
||||
Property to get.
|
||||
|
||||
Returns
|
||||
-------
|
||||
mass0 : 1-dimensional array
|
||||
Mass of the reference haloes.
|
||||
key_val : 1-dimensional array
|
||||
Value of the property of the reference haloes.
|
||||
max_overlap : 2-dimensional array
|
||||
Maximum overlap of the reference haloes.
|
||||
stat : 2-dimensional array
|
||||
Value of the property of the maximum overlap halo.
|
||||
"""
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
nsimxs = csiborgtools.read.get_cross_sims(nsim0, paths, smoothed=True)
|
||||
nsimxs = nsimxs
|
||||
cat0 = open_cat(nsim0)
|
||||
|
||||
catxs = []
|
||||
print("Opening catalogues...", flush=True)
|
||||
for nsimx in tqdm(nsimxs):
|
||||
catxs.append(open_cat(nsimx))
|
||||
|
||||
reader = csiborgtools.read.NPairsOverlap(cat0, catxs, paths)
|
||||
|
||||
mass0 = reader.cat0("totpartmass")
|
||||
key_val = reader.cat0(key)
|
||||
max_overlap = reader.max_overlap(True)
|
||||
stat = reader.max_overlap_key(key, True)
|
||||
return mass0, key_val, max_overlap, stat
|
||||
|
||||
|
||||
def plot_maxoverlap_mass(nsim0):
|
||||
"""
|
||||
Plot the mass of the reference haloes against the mass of the maximum
|
||||
overlap haloes.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsim0 : int
|
||||
Reference simulation index.
|
||||
"""
|
||||
mass0, __, __, stat = get_max_key(nsim0, "totpartmass")
|
||||
|
||||
mu = numpy.mean(stat, axis=1)
|
||||
std = numpy.std(numpy.log10(stat), axis=1)
|
||||
mu = numpy.log10(mu)
|
||||
|
||||
mass0 = numpy.log10(mass0)
|
||||
with plt.style.context(plt_utils.mplstyle):
|
||||
fig, axs = plt.subplots(ncols=2, figsize=(3.5 * 1.75, 2.625))
|
||||
|
||||
im0 = axs[0].hexbin(mass0, mu, mincnt=1, bins="log", gridsize=50)
|
||||
im1 = axs[1].hexbin(mass0, std, mincnt=1, bins="log", gridsize=50)
|
||||
|
||||
m = numpy.isfinite(mass0) & numpy.isfinite(mu)
|
||||
print("True to expectation corr: ", kendalltau(mass0[m], mu[m]))
|
||||
|
||||
t = numpy.linspace(*numpy.percentile(mass0, [0, 100]), 1000)
|
||||
axs[0].plot(t, t, color="red", linestyle="--")
|
||||
axs[0].plot(t, t + 0.2, color="red", linestyle="--", alpha=0.5)
|
||||
axs[0].plot(t, t - 0.2, color="red", linestyle="--", alpha=0.5)
|
||||
|
||||
axs[0].set_xlabel(r"$\log M_{\rm tot} / M_\odot$")
|
||||
axs[1].set_xlabel(r"$\log M_{\rm tot} / M_\odot$")
|
||||
axs[0].set_ylabel(r"Max. overlap mean of $\log M_{\rm tot} / M_\odot$")
|
||||
axs[1].set_ylabel(r"Max. overlap std. of $\log M_{\rm tot} / M_\odot$")
|
||||
|
||||
ims = [im0, im1]
|
||||
for i in range(2):
|
||||
axins = inset_axes(axs[i], width="100%", height="5%",
|
||||
loc='upper center', borderpad=-0.75)
|
||||
fig.colorbar(ims[i], cax=axins, orientation="horizontal",
|
||||
label="Bin counts")
|
||||
axins.xaxis.tick_top()
|
||||
axins.xaxis.set_tick_params(labeltop=True)
|
||||
axins.xaxis.set_label_position("top")
|
||||
|
||||
fig.tight_layout()
|
||||
for ext in ["png"]:
|
||||
fout = join(plt_utils.fout,
|
||||
f"max_totpartmass_{nsim0}.{ext}")
|
||||
print(f"Saving to `{fout}`.")
|
||||
fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
|
||||
plt.close()
|
||||
|
||||
|
||||
def plot_maxoverlapstat(nsim0, key):
|
||||
"""
|
||||
Plot the mass of the reference haloes against the value of the maximum
|
||||
overlap statistic.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsim0 : int
|
||||
Reference simulation index.
|
||||
key : str
|
||||
Property to get.
|
||||
"""
|
||||
assert key != "totpartmass"
|
||||
mass0, key_val, __, stat = get_max_key(nsim0, key)
|
||||
|
||||
xlabels = {"lambda200c": r"\log \lambda_{\rm 200c}"}
|
||||
key_label = xlabels.get(key, key)
|
||||
|
||||
mass0 = numpy.log10(mass0)
|
||||
key_val = numpy.log10(key_val)
|
||||
|
||||
mu = numpy.mean(stat, axis=1)
|
||||
std = numpy.std(numpy.log10(stat), axis=1)
|
||||
mu = numpy.log10(mu)
|
||||
|
||||
with plt.style.context(plt_utils.mplstyle):
|
||||
fig, axs = plt.subplots(ncols=3, figsize=(3.5 * 2, 2.625))
|
||||
|
||||
im0 = axs[0].hexbin(mass0, mu, mincnt=1, bins="log", gridsize=30)
|
||||
im1 = axs[1].hexbin(mass0, std, mincnt=1, bins="log", gridsize=30)
|
||||
im2 = axs[2].hexbin(key_val, mu, mincnt=1, bins="log", gridsize=30)
|
||||
m = numpy.isfinite(key_val) & numpy.isfinite(mu)
|
||||
print("True to expectation corr: ", kendalltau(key_val[m], mu[m]))
|
||||
|
||||
axs[0].set_xlabel(r"$\log M_{\rm tot} / M_\odot$")
|
||||
axs[0].set_ylabel(r"Max. overlap mean of ${}$".format(key_label))
|
||||
axs[1].set_xlabel(r"$\log M_{\rm tot} / M_\odot$")
|
||||
axs[1].set_ylabel(r"Max. overlap std. of ${}$".format(key_label))
|
||||
axs[2].set_xlabel(r"${}$".format(key_label))
|
||||
axs[2].set_ylabel(r"Max. overlap mean of ${}$".format(key_label))
|
||||
|
||||
ims = [im0, im1, im2]
|
||||
for i in range(3):
|
||||
axins = inset_axes(axs[i], width="100%", height="5%",
|
||||
loc='upper center', borderpad=-0.75)
|
||||
fig.colorbar(ims[i], cax=axins, orientation="horizontal",
|
||||
label="Bin counts")
|
||||
axins.xaxis.tick_top()
|
||||
axins.xaxis.set_tick_params(labeltop=True)
|
||||
axins.xaxis.set_label_position("top")
|
||||
|
||||
fig.tight_layout()
|
||||
for ext in ["png"]:
|
||||
fout = join(plt_utils.fout,
|
||||
f"max_{key}_{nsim0}.{ext}")
|
||||
print(f"Saving to `{fout}`.")
|
||||
fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
|
||||
plt.close()
|
||||
|
||||
|
||||
@cache_to_disk(7)
|
||||
def get_expected_mass(nsim0, min_overlap):
|
||||
"""
|
||||
Get the expected mass of a reference halo given its overlap with halos
|
||||
from other simulations.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsim0 : int
|
||||
Reference simulation index.
|
||||
min_overlap : float
|
||||
Minimum overlap to consider between a pair of haloes.
|
||||
|
||||
Returns
|
||||
-------
|
||||
mass : 1-dimensional array
|
||||
Mass of the reference haloes.
|
||||
mu : 1-dimensional array
|
||||
Expected mass of the matched haloes.
|
||||
std : 1-dimensional array
|
||||
Standard deviation of the expected mass of the matched haloes.
|
||||
prob_nomatch : 2-dimensional array
|
||||
Probability of not matching the reference halo.
|
||||
"""
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
nsimxs = csiborgtools.read.get_cross_sims(nsim0, paths, smoothed=True)
|
||||
nsimxs = nsimxs
|
||||
cat0 = open_cat(nsim0)
|
||||
|
||||
catxs = []
|
||||
print("Opening catalogues...", flush=True)
|
||||
for nsimx in tqdm(nsimxs):
|
||||
catxs.append(open_cat(nsimx))
|
||||
|
||||
reader = csiborgtools.read.NPairsOverlap(cat0, catxs, paths)
|
||||
mass = reader.cat0("totpartmass")
|
||||
|
||||
mu, std = reader.counterpart_mass(True, overlap_threshold=min_overlap,
|
||||
in_log=False, return_full=False)
|
||||
prob_nomatch = reader.prob_nomatch(True)
|
||||
return mass, mu, std, prob_nomatch
|
||||
|
||||
|
||||
def plot_mass_vs_expected_mass(nsim0, min_overlap=0, max_prob_nomatch=1):
|
||||
"""
|
||||
Plot the mass of a reference halo against the expected mass of its
|
||||
counterparts.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsim0 : int
|
||||
Reference simulation index.
|
||||
min_overlap : float, optional
|
||||
Minimum overlap between a pair of haloes to consider.
|
||||
max_prob_nomatch : float, optional
|
||||
Maximum probability of no match to consider.
|
||||
"""
|
||||
mass, mu, std, prob_nomatch = get_expected_mass(nsim0, min_overlap)
|
||||
|
||||
std = std / mu / numpy.log(10)
|
||||
mass = numpy.log10(mass)
|
||||
mu = numpy.log10(mu)
|
||||
prob_nomatch = numpy.nanmedian(prob_nomatch, axis=1)
|
||||
|
||||
# bins = numpy.arange(numpy.min(mass), numpy.max(mass), 0.2)
|
||||
mask = numpy.isfinite(mass) & numpy.isfinite(mu)
|
||||
mask &= (prob_nomatch < max_prob_nomatch)
|
||||
# stat_x, stat_mu, stat_std = plt_utils.binned_trend(
|
||||
# mass[mask], mu[mask], 1 - prob_nomatch[mask], bins)
|
||||
|
||||
with plt.style.context(plt_utils.mplstyle):
|
||||
fig, axs = plt.subplots(ncols=3, figsize=(3.5 * 2, 2.625))
|
||||
|
||||
im0 = axs[0].hexbin(mass[mask], mu[mask], mincnt=1, bins="log",
|
||||
gridsize=50,)
|
||||
im1 = axs[1].hexbin(mass[mask], std[mask], mincnt=1, bins="log",
|
||||
gridsize=50)
|
||||
im2 = axs[2].hexbin(1 - prob_nomatch[mask], mass[mask] - mu[mask],
|
||||
gridsize=50, C=mass[mask],
|
||||
reduce_C_function=numpy.nanmedian)
|
||||
axs[2].axhline(0, color="red", linestyle="--", alpha=0.5)
|
||||
|
||||
axs[0].set_xlabel(r"True $\log M_{\rm tot} / M_\odot$")
|
||||
axs[0].set_ylabel(r"Expected $\log M_{\rm tot} / M_\odot$")
|
||||
axs[1].set_xlabel(r"True $\log M_{\rm tot} / M_\odot$")
|
||||
axs[1].set_ylabel(r"Std. of $\sigma_{\log M_{\rm tot}}$")
|
||||
axs[2].set_xlabel(r"1 - median prob. of no match")
|
||||
axs[2].set_ylabel(r"$\log M_{\rm tot} - \log M_{\rm tot, exp}$")
|
||||
|
||||
t = numpy.linspace(*numpy.percentile(mass[mask], [0, 100]), 1000)
|
||||
axs[0].plot(t, t, color="red", linestyle="--")
|
||||
axs[0].plot(t, t + 0.2, color="red", linestyle="--", alpha=0.5)
|
||||
axs[0].plot(t, t - 0.2, color="red", linestyle="--", alpha=0.5)
|
||||
|
||||
ims = [im0, im1, im2]
|
||||
labels = ["Bin counts", "Bin counts", r"$\log M_{\rm tot}$"]
|
||||
for i in range(3):
|
||||
axins = inset_axes(axs[i], width="100%", height="5%",
|
||||
loc='upper center', borderpad=-0.75)
|
||||
fig.colorbar(ims[i], cax=axins, orientation="horizontal",
|
||||
label=labels[i])
|
||||
axins.xaxis.tick_top()
|
||||
axins.xaxis.set_tick_params(labeltop=True)
|
||||
axins.xaxis.set_label_position("top")
|
||||
|
||||
fig.tight_layout()
|
||||
for ext in ["png"]:
|
||||
fout = join(plt_utils.fout,
|
||||
f"mass_vs_expmass_{nsim0}_{max_prob_nomatch}.{ext}")
|
||||
print(f"Saving to `{fout}`.")
|
||||
fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
|
||||
plt.close()
|
||||
|
@ -714,7 +1132,7 @@ def plot_significance(simname, runs, nsim, nobs, kind, kwargs, runs_to_mass):
|
|||
plt.close()
|
||||
|
||||
|
||||
def make_binlims(run, runs_to_mass):
|
||||
def make_binlims(run, runs_to_mass, upper_threshold=None):
|
||||
"""
|
||||
Make bin limits for the 1NN distance runs, corresponding to the first half
|
||||
of the log-mass bin.
|
||||
|
@ -725,13 +1143,18 @@ def make_binlims(run, runs_to_mass):
|
|||
Run name.
|
||||
runs_to_mass : dict
|
||||
Dictionary mapping run names to total halo mass range.
|
||||
upper_threshold : float, optional
|
||||
Bin width in dex. If set to `None`, the bin width is taken from the
|
||||
`runs_to_mass` dictionary.
|
||||
|
||||
Returns
|
||||
-------
|
||||
xmin, xmax : floats
|
||||
"""
|
||||
xmin, xmax = runs_to_mass[run]
|
||||
xmax = xmin + (xmax - xmin) / 2
|
||||
if upper_threshold is not None:
|
||||
xmax = xmin + upper_threshold
|
||||
|
||||
xmin, xmax = 10**xmin, 10**xmax
|
||||
if run == "mass009":
|
||||
xmax = numpy.infty
|
||||
|
@ -782,9 +1205,9 @@ def plot_significance_vs_mass(simname, runs, nsim, nobs, kind, kwargs,
|
|||
else:
|
||||
y = numpy.log10(make_ks(simname, run, nsim, nobs, kwargs))
|
||||
|
||||
xmin, xmax = make_binlims(run, runs_to_mass)
|
||||
xmin, xmax = make_binlims(run, runs_to_mass, upper_threshold)
|
||||
|
||||
mask = (x >= xmin) & (x < xmax if upper_threshold else True)
|
||||
mask = (x >= xmin) & (x < xmax)
|
||||
xs.append(numpy.log10(x[mask]))
|
||||
ys.append(y[mask])
|
||||
|
||||
|
@ -922,7 +1345,7 @@ def plot_kl_vs_overlap(runs, nsim, kwargs, runs_to_mass, plot_std=True,
|
|||
for run in runs:
|
||||
nn_data = nn_reader.read_single("csiborg", run, nsim, nobs=None)
|
||||
nn_hindxs = nn_data["ref_hindxs"]
|
||||
mass, overlap_hindxs, summed_overlap, prob_nomatch = get_overlap(nsim)
|
||||
mass, overlap_hindxs, __, summed_overlap, prob_nomatch = get_overlap(nsim) # noqa
|
||||
|
||||
# We need to match the hindxs between the two.
|
||||
hind2overlap_array = {hind: i for i, hind in enumerate(overlap_hindxs)}
|
||||
|
@ -935,7 +1358,7 @@ def plot_kl_vs_overlap(runs, nsim, kwargs, runs_to_mass, plot_std=True,
|
|||
x = make_kl("csiborg", run, nsim, nobs=None, kwargs=kwargs)
|
||||
y1 = 1 - numpy.mean(prob_nomatch, axis=1)
|
||||
y2 = numpy.std(prob_nomatch, axis=1)
|
||||
cmin, cmax = make_binlims(run, runs_to_mass)
|
||||
cmin, cmax = make_binlims(run, runs_to_mass, upper_threshold)
|
||||
mask = (mass >= cmin) & (mass < cmax if upper_threshold else True)
|
||||
xs.append(x[mask])
|
||||
ys1.append(y1[mask])
|
||||
|
@ -957,7 +1380,7 @@ def plot_kl_vs_overlap(runs, nsim, kwargs, runs_to_mass, plot_std=True,
|
|||
|
||||
plt.colorbar(label=r"$\log M_{\rm tot} / M_\odot$")
|
||||
plt.xlabel(r"$D_{\mathrm{KL}}$ of $r_{1\mathrm{NN}}$ distribution")
|
||||
plt.ylabel(r"$1 - \langle \eta^{\mathcal{B}}_a \rangle_{\mathcal{B}}$")
|
||||
plt.ylabel("1 - mean prob. of no match")
|
||||
|
||||
plt.tight_layout()
|
||||
for ext in ["png"]:
|
||||
|
@ -1020,15 +1443,38 @@ if __name__ == "__main__":
|
|||
}
|
||||
|
||||
# cached_funcs = ["get_overlap", "read_dist", "make_kl", "make_ks"]
|
||||
cached_funcs = ["get_overlap"]
|
||||
cached_funcs = ["get_max_key"]
|
||||
if args.clean:
|
||||
for func in cached_funcs:
|
||||
print(f"Cleaning cache for function {func}.")
|
||||
delete_disk_caches_for_function(func)
|
||||
|
||||
if True:
|
||||
plot_mass_vs_separation(7444 + 24, 8956 + 24 * 3)
|
||||
if False:
|
||||
plot_mass_vs_pairoverlap(7444 + 24, 8956 + 24 * 3)
|
||||
|
||||
if False:
|
||||
plot_mass_vs_maxpairoverlap(7444 + 24, 8956 + 24 * 3)
|
||||
|
||||
if False:
|
||||
plot_mass_vsmedmaxoverlap(7444)
|
||||
|
||||
if False:
|
||||
plot_summed_overlap_vs_mass(7444)
|
||||
|
||||
if True:
|
||||
plot_mass_vs_separation(7444 + 24, 8956 + 24 * 3, min_overlap=0.0)
|
||||
|
||||
if False:
|
||||
plot_maxoverlap_mass(7444)
|
||||
|
||||
if False:
|
||||
plot_maxoverlapstat(7444, "lambda200c")
|
||||
|
||||
if False:
|
||||
plot_maxoverlapstat(7444, "totpartmass")
|
||||
|
||||
if False:
|
||||
plot_mass_vs_expected_mass(7444, max_prob_nomatch=1.0)
|
||||
|
||||
# Plot 1NN distance distributions.
|
||||
if False:
|
||||
|
@ -1052,23 +1498,25 @@ if __name__ == "__main__":
|
|||
kwargs=neighbour_kwargs,
|
||||
runs_to_mass=runs_to_mass)
|
||||
|
||||
if False:
|
||||
# runs = [[f"mass00{i}"] for i in range(1, 10)]
|
||||
runs = [[f"mass00{i}"] for i in [4]]
|
||||
for runs_ in runs:
|
||||
# runs = ["mass007"]
|
||||
for kind in ["kl"]:
|
||||
plot_significance_vs_mass("csiborg", runs_, 7444, nobs=None,
|
||||
kind=kind, kwargs=neighbour_kwargs,
|
||||
runs_to_mass=runs_to_mass,
|
||||
upper_threshold=100)
|
||||
|
||||
if False:
|
||||
# runs = [f"mass00{i}" for i in range(1, 10)]
|
||||
runs = ["mass004"]
|
||||
plot_kl_vs_ks("csiborg", runs, 7444, None, kwargs=neighbour_kwargs,
|
||||
runs_to_mass=runs_to_mass, upper_threshold=100)
|
||||
|
||||
if False:
|
||||
# runs = [f"mass00{i}" for i in range(1, 10)]
|
||||
runs = ["mass007"]
|
||||
for kind in ["kl", "ks"]:
|
||||
plot_significance_vs_mass("csiborg", runs, 7444, nobs=None,
|
||||
kind=kind, kwargs=neighbour_kwargs,
|
||||
runs_to_mass=runs_to_mass,
|
||||
upper_threshold=True)
|
||||
|
||||
if False:
|
||||
# runs = [f"mass00{i}" for i in range(1, 10)]
|
||||
runs = ["mass006"]
|
||||
plot_kl_vs_ks("csiborg", runs, 7444, None, kwargs=neighbour_kwargs,
|
||||
runs_to_mass=runs_to_mass, upper_threshold=True)
|
||||
|
||||
if False:
|
||||
# runs = [f"mass00{i}" for i in range(1, 10)]
|
||||
runs = ["mass006"]
|
||||
plot_kl_vs_overlap(runs, 7444, neighbour_kwargs, runs_to_mass,
|
||||
upper_threshold=True, plot_std=False)
|
||||
upper_threshold=100, plot_std=False)
|
||||
|
|
|
@ -13,6 +13,9 @@
|
|||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
|
||||
import numpy
|
||||
from scipy.stats import binned_statistic
|
||||
|
||||
dpi = 600
|
||||
fout = "../plots/"
|
||||
mplstyle = ["science"]
|
||||
|
@ -51,3 +54,40 @@ def latex_float(*floats, n=2):
|
|||
if len(floats) == 1:
|
||||
return latex_floats[0]
|
||||
return latex_floats
|
||||
|
||||
|
||||
def binned_trend(x, y, weights, bins):
|
||||
"""
|
||||
Calculate the weighted mean and standard deviation of `y` in bins of `x`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : 1-dimensional array
|
||||
The x-coordinates of the data points.
|
||||
y : 1-dimensional array
|
||||
The y-coordinates of the data points.
|
||||
weights : 1-dimensional array
|
||||
The weights of the data points.
|
||||
bins : 1-dimensional array
|
||||
The bin edges.
|
||||
|
||||
Returns
|
||||
-------
|
||||
stat_x : 1-dimensional array
|
||||
The x-coordinates of the binned data points.
|
||||
stat_mu : 1-dimensional array
|
||||
The weighted mean of `y` in bins of `x`.
|
||||
stat_std : 1-dimensional array
|
||||
The weighted standard deviation of `y` in bins of `x`.
|
||||
"""
|
||||
stat_mu, __, __ = binned_statistic(x, y * weights, bins=bins,
|
||||
statistic="sum")
|
||||
stat_std, __, __ = binned_statistic(x, y * weights, bins=bins,
|
||||
statistic=numpy.var)
|
||||
stat_w, __, __ = binned_statistic(x, weights, bins=bins, statistic="sum")
|
||||
|
||||
stat_x = (bins[1:] + bins[:-1]) / 2
|
||||
stat_mu /= stat_w
|
||||
stat_std /= stat_w
|
||||
stat_std = numpy.sqrt(stat_std)
|
||||
return stat_x, stat_mu, stat_std
|
||||
|
|
Loading…
Reference in a new issue