mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2025-01-05 00:14:16 +00:00
More plotting (#74)
* Add a new plot * Add a binned trend * Fix bug * Improve plot further * Add new plotting * add max overlap * edit get_overlap * Add max overlap plot * Update plot * Add max overlap key * add max dist flag * Improve plotting
This commit is contained in:
parent
fbf9c2a4b7
commit
28e93e917f
3 changed files with 690 additions and 95 deletions
|
@ -38,18 +38,21 @@ class PairOverlap:
|
||||||
Halo catalogue corresponding to the cross simulation.
|
Halo catalogue corresponding to the cross simulation.
|
||||||
paths : py:class`csiborgtools.read.Paths`
|
paths : py:class`csiborgtools.read.Paths`
|
||||||
CSiBORG paths object.
|
CSiBORG paths object.
|
||||||
|
maxdist : float, optional
|
||||||
|
Maximum halo distance in :math:`\mathrm{Mpc} / h` from the centre of
|
||||||
|
the high-resolution region. Removes overlaps of haloes outside it.
|
||||||
"""
|
"""
|
||||||
_cat0 = None
|
_cat0 = None
|
||||||
_catx = None
|
_catx = None
|
||||||
_data = None
|
_data = None
|
||||||
|
|
||||||
def __init__(self, cat0, catx, paths):
|
def __init__(self, cat0, catx, paths, maxdist=None):
|
||||||
self._cat0 = cat0
|
self._cat0 = cat0
|
||||||
self._catx = catx
|
self._catx = catx
|
||||||
self.load(cat0, catx, paths)
|
self.load(cat0, catx, paths, maxdist)
|
||||||
|
|
||||||
def load(self, cat0, catx, paths):
|
def load(self, cat0, catx, paths, maxdist=None):
|
||||||
"""
|
r"""
|
||||||
Load overlap calculation results. Matches the results back to the two
|
Load overlap calculation results. Matches the results back to the two
|
||||||
catalogues in question.
|
catalogues in question.
|
||||||
|
|
||||||
|
@ -61,6 +64,9 @@ class PairOverlap:
|
||||||
Halo catalogue corresponding to the cross simulation.
|
Halo catalogue corresponding to the cross simulation.
|
||||||
paths : py:class`csiborgtools.read.Paths`
|
paths : py:class`csiborgtools.read.Paths`
|
||||||
CSiBORG paths object.
|
CSiBORG paths object.
|
||||||
|
maxdist : float, optional
|
||||||
|
Maximum halo distance in :math:`\mathrm{Mpc} / h` from the centre
|
||||||
|
of the high-resolution region.
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
|
@ -125,6 +131,14 @@ class PairOverlap:
|
||||||
match_indxs, ngp_overlap, smoothed_overlap = self._invert_match(
|
match_indxs, ngp_overlap, smoothed_overlap = self._invert_match(
|
||||||
match_indxs, ngp_overlap, smoothed_overlap, len(catx),)
|
match_indxs, ngp_overlap, smoothed_overlap, len(catx),)
|
||||||
|
|
||||||
|
if maxdist is not None:
|
||||||
|
dist = cat0.radial_distance(in_initial=False)
|
||||||
|
for i in range(len(cat0)):
|
||||||
|
if dist[i] > maxdist:
|
||||||
|
match_indxs[i] = numpy.array([], dtype=int)
|
||||||
|
ngp_overlap[i] = numpy.array([], dtype=float)
|
||||||
|
smoothed_overlap[i] = numpy.array([], dtype=float)
|
||||||
|
|
||||||
self._data = {"match_indxs": match_indxs,
|
self._data = {"match_indxs": match_indxs,
|
||||||
"ngp_overlap": ngp_overlap,
|
"ngp_overlap": ngp_overlap,
|
||||||
"smoothed_overlap": smoothed_overlap,
|
"smoothed_overlap": smoothed_overlap,
|
||||||
|
@ -228,7 +242,11 @@ class PairOverlap:
|
||||||
summed_overlap : 1-dimensional array of shape `(nhalos, )`
|
summed_overlap : 1-dimensional array of shape `(nhalos, )`
|
||||||
"""
|
"""
|
||||||
overlap = self.overlap(from_smoothed)
|
overlap = self.overlap(from_smoothed)
|
||||||
return numpy.array([numpy.sum(cross)for cross in overlap])
|
out = numpy.full(len(overlap), numpy.nan, dtype=numpy.float32)
|
||||||
|
for i in range(len(overlap)):
|
||||||
|
if len(overlap[i]) > 0:
|
||||||
|
out[i] = numpy.sum(overlap[i])
|
||||||
|
return out
|
||||||
|
|
||||||
def prob_nomatch(self, from_smoothed):
|
def prob_nomatch(self, from_smoothed):
|
||||||
"""
|
"""
|
||||||
|
@ -246,8 +264,11 @@ class PairOverlap:
|
||||||
prob_nomatch : 1-dimensional array of shape `(nhalos, )`
|
prob_nomatch : 1-dimensional array of shape `(nhalos, )`
|
||||||
"""
|
"""
|
||||||
overlap = self.overlap(from_smoothed)
|
overlap = self.overlap(from_smoothed)
|
||||||
return numpy.array([numpy.product(numpy.subtract(1, cross))
|
out = numpy.full(len(overlap), numpy.nan, dtype=numpy.float32)
|
||||||
for cross in overlap])
|
for i in range(len(overlap)):
|
||||||
|
if len(overlap[i]) > 0:
|
||||||
|
out[i] = numpy.product(numpy.subtract(1, overlap[i]))
|
||||||
|
return out
|
||||||
|
|
||||||
def dist(self, in_initial, norm_kind=None):
|
def dist(self, in_initial, norm_kind=None):
|
||||||
"""
|
"""
|
||||||
|
@ -326,6 +347,35 @@ class PairOverlap:
|
||||||
ratio[i] = numpy.abs(ratio[i])
|
ratio[i] = numpy.abs(ratio[i])
|
||||||
return numpy.array(ratio, dtype=object)
|
return numpy.array(ratio, dtype=object)
|
||||||
|
|
||||||
|
def max_overlap_key(self, key, from_smoothed):
|
||||||
|
"""
|
||||||
|
Calculate the maximum overlap mass of each halo in the reference
|
||||||
|
simulation from the cross simulation.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
key : str
|
||||||
|
Key to the maximum overlap statistic to calculate.
|
||||||
|
from_smoothed : bool
|
||||||
|
Whether to use the smoothed overlap or not.
|
||||||
|
mass_kind : str, optional
|
||||||
|
The mass kind whose ratio is to be calculated.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
out : 1-dimensional array of shape `(nhalos, )`
|
||||||
|
"""
|
||||||
|
out = numpy.full(len(self), numpy.nan, dtype=numpy.float32)
|
||||||
|
y = self.catx(key)
|
||||||
|
overlap = self.overlap(from_smoothed)
|
||||||
|
|
||||||
|
for i, match_ind in enumerate(self["match_indxs"]):
|
||||||
|
# Skip if no match
|
||||||
|
if len(match_ind) == 0:
|
||||||
|
continue
|
||||||
|
out[i] = y[match_ind][numpy.argmax(overlap[i])]
|
||||||
|
return out
|
||||||
|
|
||||||
def counterpart_mass(self, from_smoothed, overlap_threshold=0.,
|
def counterpart_mass(self, from_smoothed, overlap_threshold=0.,
|
||||||
in_log=False, mass_kind="totpartmass"):
|
in_log=False, mass_kind="totpartmass"):
|
||||||
"""
|
"""
|
||||||
|
@ -359,7 +409,7 @@ class PairOverlap:
|
||||||
|
|
||||||
for i, match_ind in enumerate(self["match_indxs"]):
|
for i, match_ind in enumerate(self["match_indxs"]):
|
||||||
# Skip if no match
|
# Skip if no match
|
||||||
if match_ind.size == 0:
|
if len(match_ind) == 0:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
massx_ = massx[match_ind] # Again just create references
|
massx_ = massx[match_ind] # Again just create references
|
||||||
|
@ -527,6 +577,63 @@ class NPairsOverlap:
|
||||||
|
|
||||||
self._pairs = pairs
|
self._pairs = pairs
|
||||||
|
|
||||||
|
def max_overlap(self, from_smoothed, verbose=True):
|
||||||
|
"""
|
||||||
|
Calculate maximum overlap of each halo in the reference simulation with
|
||||||
|
the cross simulations.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
from_smoothed : bool
|
||||||
|
Whether to use the smoothed overlap or not.
|
||||||
|
verbose : bool, optional
|
||||||
|
Verbosity flag.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
max_overlap : 2-dimensional array of shape `(nhalos, ncatxs)`
|
||||||
|
"""
|
||||||
|
out = [None] * len(self)
|
||||||
|
if verbose:
|
||||||
|
print("Calculating maximum overlap...", flush=True)
|
||||||
|
|
||||||
|
def get_max(y_):
|
||||||
|
if len(y_) == 0:
|
||||||
|
return numpy.nan
|
||||||
|
return numpy.max(y_)
|
||||||
|
|
||||||
|
for i, pair in enumerate(tqdm(self.pairs) if verbose else self.pairs):
|
||||||
|
out[i] = numpy.asanyarray([get_max(y_)
|
||||||
|
for y_ in pair.overlap(from_smoothed)])
|
||||||
|
return numpy.vstack(out).T
|
||||||
|
|
||||||
|
def max_overlap_key(self, key, from_smoothed, verbose=True):
|
||||||
|
"""
|
||||||
|
Calculate maximum overlap mass of each halo in the reference
|
||||||
|
simulation with the cross simulations.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
key : str
|
||||||
|
Key to the maximum overlap statistic to calculate.
|
||||||
|
from_smoothed : bool
|
||||||
|
Whether to use the smoothed overlap or not.
|
||||||
|
verbose : bool, optional
|
||||||
|
Verbosity flag.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
out : 2-dimensional array of shape `(nhalos, ncatxs)`
|
||||||
|
"""
|
||||||
|
out = [None] * len(self)
|
||||||
|
if verbose:
|
||||||
|
print(f"Calculating maximum overlap {key}...", flush=True)
|
||||||
|
|
||||||
|
for i, pair in enumerate(tqdm(self.pairs) if verbose else self.pairs):
|
||||||
|
out[i] = pair.max_overlap_key(key, from_smoothed)
|
||||||
|
|
||||||
|
return numpy.vstack(out).T
|
||||||
|
|
||||||
def summed_overlap(self, from_smoothed, verbose=True):
|
def summed_overlap(self, from_smoothed, verbose=True):
|
||||||
"""
|
"""
|
||||||
Calculate summed overlap of each halo in the reference simulation with
|
Calculate summed overlap of each halo in the reference simulation with
|
||||||
|
|
|
@ -19,11 +19,12 @@ from os.path import join
|
||||||
|
|
||||||
import matplotlib as mpl
|
import matplotlib as mpl
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
|
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
|
||||||
import numpy
|
import numpy
|
||||||
import scienceplots # noqa
|
import scienceplots # noqa
|
||||||
from cache_to_disk import cache_to_disk, delete_disk_caches_for_function
|
from cache_to_disk import cache_to_disk, delete_disk_caches_for_function
|
||||||
from scipy.stats import kendalltau
|
from scipy.stats import kendalltau
|
||||||
from tqdm import tqdm
|
from tqdm import trange, tqdm
|
||||||
|
|
||||||
import plt_utils
|
import plt_utils
|
||||||
|
|
||||||
|
@ -57,6 +58,90 @@ def open_cat(nsim):
|
||||||
return csiborgtools.read.HaloCatalogue(nsim, paths, bounds=bounds)
|
return csiborgtools.read.HaloCatalogue(nsim, paths, bounds=bounds)
|
||||||
|
|
||||||
|
|
||||||
|
def plot_mass_vs_pairoverlap(nsim0, nsimx):
|
||||||
|
"""
|
||||||
|
Plot the pair overlap of a reference simulation with a single cross
|
||||||
|
simulation as a function of the reference halo mass.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
nsim0 : int
|
||||||
|
Reference simulation index.
|
||||||
|
nsimx : int
|
||||||
|
Cross simulation index.
|
||||||
|
"""
|
||||||
|
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||||
|
cat0 = open_cat(nsim0)
|
||||||
|
catx = open_cat(nsimx)
|
||||||
|
reader = csiborgtools.read.PairOverlap(cat0, catx, paths)
|
||||||
|
|
||||||
|
x = reader.copy_per_match("totpartmass")
|
||||||
|
y = reader.overlap(True)
|
||||||
|
|
||||||
|
x = numpy.log10(numpy.concatenate(x))
|
||||||
|
y = numpy.concatenate(y)
|
||||||
|
|
||||||
|
with plt.style.context(plt_utils.mplstyle):
|
||||||
|
plt.figure()
|
||||||
|
plt.hexbin(x, y, mincnt=1, bins="log",
|
||||||
|
gridsize=50)
|
||||||
|
plt.colorbar(label="Counts in bins")
|
||||||
|
plt.xlabel(r"$\log M_{\rm tot} / M_\odot$")
|
||||||
|
plt.ylabel("Pair overlap")
|
||||||
|
plt.ylim(0., 1.)
|
||||||
|
|
||||||
|
plt.tight_layout()
|
||||||
|
for ext in ["png"]:
|
||||||
|
fout = join(plt_utils.fout, f"mass_vs_pair_overlap{nsim0}.{ext}")
|
||||||
|
print(f"Saving to `{fout}`.")
|
||||||
|
plt.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
|
||||||
|
plt.close()
|
||||||
|
|
||||||
|
|
||||||
|
def plot_mass_vs_maxpairoverlap(nsim0, nsimx):
|
||||||
|
"""
|
||||||
|
Plot the maximum pair overlap of a reference simulation haloes with a
|
||||||
|
single cross simulation.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
nsim0 : int
|
||||||
|
Reference simulation index.
|
||||||
|
nsimx : int
|
||||||
|
Cross simulation index.
|
||||||
|
"""
|
||||||
|
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||||
|
cat0 = open_cat(nsim0)
|
||||||
|
catx = open_cat(nsimx)
|
||||||
|
reader = csiborgtools.read.PairOverlap(cat0, catx, paths)
|
||||||
|
|
||||||
|
x = numpy.log10(cat0["totpartmass"])
|
||||||
|
y = reader.overlap(True)
|
||||||
|
|
||||||
|
def get_max(y_):
|
||||||
|
if len(y_) == 0:
|
||||||
|
return numpy.nan
|
||||||
|
return numpy.max(y_)
|
||||||
|
|
||||||
|
y = numpy.array([get_max(y_) for y_ in y])
|
||||||
|
|
||||||
|
with plt.style.context(plt_utils.mplstyle):
|
||||||
|
plt.figure()
|
||||||
|
plt.hexbin(x, y, mincnt=1, bins="log",
|
||||||
|
gridsize=50)
|
||||||
|
plt.colorbar(label="Counts in bins")
|
||||||
|
plt.xlabel(r"$\log M_{\rm tot} / M_\odot$")
|
||||||
|
plt.ylabel("Maximum pair overlap")
|
||||||
|
plt.ylim(0., 1.)
|
||||||
|
|
||||||
|
plt.tight_layout()
|
||||||
|
for ext in ["png"]:
|
||||||
|
fout = join(plt_utils.fout, f"mass_vs_maxpairoverlap{nsim0}.{ext}")
|
||||||
|
print(f"Saving to `{fout}`.")
|
||||||
|
plt.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
|
||||||
|
plt.close()
|
||||||
|
|
||||||
|
|
||||||
@cache_to_disk(7)
|
@cache_to_disk(7)
|
||||||
def get_overlap(nsim0):
|
def get_overlap(nsim0):
|
||||||
"""
|
"""
|
||||||
|
@ -74,9 +159,11 @@ def get_overlap(nsim0):
|
||||||
Mass of halos in the reference simulation.
|
Mass of halos in the reference simulation.
|
||||||
hindxs : 1-dimensional array
|
hindxs : 1-dimensional array
|
||||||
Halo indices in the reference simulation.
|
Halo indices in the reference simulation.
|
||||||
summed_overlap : 1-dimensional array
|
max_overlap : 2-dimensional array
|
||||||
|
Maximum overlap for each halo in the reference simulation.
|
||||||
|
summed_overlap : 2-dimensional array
|
||||||
Summed overlap for each halo in the reference simulation.
|
Summed overlap for each halo in the reference simulation.
|
||||||
prob_nomatch : 1-dimensional array
|
prob_nomatch : 2-dimensional array
|
||||||
Probability of no match for each halo in the reference simulation.
|
Probability of no match for each halo in the reference simulation.
|
||||||
"""
|
"""
|
||||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||||
|
@ -93,8 +180,64 @@ def get_overlap(nsim0):
|
||||||
|
|
||||||
hindxs = reader.cat0("index")
|
hindxs = reader.cat0("index")
|
||||||
summed_overlap = reader.summed_overlap(True)
|
summed_overlap = reader.summed_overlap(True)
|
||||||
|
max_overlap = reader.max_overlap(True)
|
||||||
prob_nomatch = reader.prob_nomatch(True)
|
prob_nomatch = reader.prob_nomatch(True)
|
||||||
return mass, hindxs, summed_overlap, prob_nomatch
|
return mass, hindxs, max_overlap, summed_overlap, prob_nomatch
|
||||||
|
|
||||||
|
|
||||||
|
def plot_mass_vsmedmaxoverlap(nsim0):
|
||||||
|
"""
|
||||||
|
Plot the mean maximum overlap of a reference simulation haloes with all the
|
||||||
|
cross simulations.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
nsim0 : int
|
||||||
|
Reference simulation index.
|
||||||
|
"""
|
||||||
|
x, __, max_overlap, __, __ = get_overlap(nsim0)
|
||||||
|
|
||||||
|
for i in trange(max_overlap.shape[0]):
|
||||||
|
if numpy.sum(numpy.isnan(max_overlap[i, :])) > 0:
|
||||||
|
max_overlap[i, :] = numpy.nan
|
||||||
|
|
||||||
|
x = numpy.log10(x)
|
||||||
|
|
||||||
|
with plt.style.context(plt_utils.mplstyle):
|
||||||
|
fig, axs = plt.subplots(ncols=3, figsize=(3.5 * 2, 2.625))
|
||||||
|
im1 = axs[0].hexbin(x, numpy.nanmean(max_overlap, axis=1), gridsize=30,
|
||||||
|
mincnt=1, bins="log")
|
||||||
|
|
||||||
|
im2 = axs[1].hexbin(x, numpy.nanstd(max_overlap, axis=1), gridsize=30,
|
||||||
|
mincnt=1, bins="log")
|
||||||
|
im3 = axs[2].hexbin(numpy.nanmean(max_overlap, axis=1),
|
||||||
|
numpy.nanstd(max_overlap, axis=1), gridsize=30,
|
||||||
|
C=x, reduce_C_function=numpy.nanmean)
|
||||||
|
|
||||||
|
axs[0].set_xlabel(r"$\log M_{\rm tot} / M_\odot$")
|
||||||
|
axs[0].set_ylabel(r"Mean max. pair overlap")
|
||||||
|
axs[1].set_xlabel(r"$\log M_{\rm tot} / M_\odot$")
|
||||||
|
axs[1].set_ylabel(r"Uncertainty of max. pair overlap")
|
||||||
|
axs[2].set_xlabel(r"Mean max. pair overlap")
|
||||||
|
axs[2].set_ylabel(r"Uncertainty of max. pair overlap")
|
||||||
|
|
||||||
|
label = ["Bin counts", "Bin counts", r"$\log M_{\rm tot} / M_\odot$"]
|
||||||
|
ims = [im1, im2, im3]
|
||||||
|
for i in range(3):
|
||||||
|
axins = inset_axes(axs[i], width="100%", height="5%",
|
||||||
|
loc='upper center', borderpad=-0.75)
|
||||||
|
fig.colorbar(ims[i], cax=axins, orientation="horizontal",
|
||||||
|
label=label[i])
|
||||||
|
axins.xaxis.tick_top()
|
||||||
|
axins.xaxis.set_tick_params(labeltop=True)
|
||||||
|
axins.xaxis.set_label_position("top")
|
||||||
|
|
||||||
|
fig.tight_layout()
|
||||||
|
for ext in ["png"]:
|
||||||
|
fout = join(plt_utils.fout, f"maxpairoverlap_{nsim0}.{ext}")
|
||||||
|
print(f"Saving to `{fout}`.")
|
||||||
|
fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
|
||||||
|
plt.close()
|
||||||
|
|
||||||
|
|
||||||
def plot_summed_overlap_vs_mass(nsim0):
|
def plot_summed_overlap_vs_mass(nsim0):
|
||||||
|
@ -112,14 +255,19 @@ def plot_summed_overlap_vs_mass(nsim0):
|
||||||
-------
|
-------
|
||||||
None
|
None
|
||||||
"""
|
"""
|
||||||
x, __, summed_overlap, prob_nomatch = get_overlap(nsim0)
|
x, __, __, summed_overlap, prob_nomatch = get_overlap(nsim0)
|
||||||
del __
|
del __
|
||||||
collect()
|
collect()
|
||||||
|
|
||||||
mean_overlap = numpy.mean(summed_overlap, axis=1)
|
for i in trange(summed_overlap.shape[0]):
|
||||||
std_overlap = numpy.std(summed_overlap, axis=1)
|
if numpy.sum(numpy.isnan(summed_overlap[i, :])) > 0:
|
||||||
|
summed_overlap[i, :] = numpy.nan
|
||||||
|
|
||||||
mean_prob_nomatch = numpy.mean(prob_nomatch, axis=1)
|
x = numpy.log10(x)
|
||||||
|
|
||||||
|
mean_overlap = numpy.nanmean(summed_overlap, axis=1)
|
||||||
|
std_overlap = numpy.nanstd(summed_overlap, axis=1)
|
||||||
|
mean_prob_nomatch = numpy.nanmean(prob_nomatch, axis=1)
|
||||||
|
|
||||||
mask = mean_overlap > 0
|
mask = mean_overlap > 0
|
||||||
x = x[mask]
|
x = x[mask]
|
||||||
|
@ -127,63 +275,45 @@ def plot_summed_overlap_vs_mass(nsim0):
|
||||||
std_overlap = std_overlap[mask]
|
std_overlap = std_overlap[mask]
|
||||||
mean_prob_nomatch = mean_prob_nomatch[mask]
|
mean_prob_nomatch = mean_prob_nomatch[mask]
|
||||||
|
|
||||||
# Mean summed overlap
|
|
||||||
with plt.style.context(plt_utils.mplstyle):
|
with plt.style.context(plt_utils.mplstyle):
|
||||||
plt.figure()
|
fig, axs = plt.subplots(ncols=3, figsize=(3.5 * 2, 2.625))
|
||||||
plt.hexbin(x, mean_overlap, mincnt=1, xscale="log", bins="log",
|
im1 = axs[0].hexbin(x, mean_overlap, mincnt=1, bins="log",
|
||||||
gridsize=50)
|
gridsize=30)
|
||||||
plt.colorbar(label="Counts in bins")
|
im2 = axs[1].hexbin(x, std_overlap, mincnt=1, bins="log",
|
||||||
plt.xlabel(r"$M_{\rm tot} / M_\odot$")
|
gridsize=30)
|
||||||
plt.ylabel(r"$\langle \mathcal{O}_{a}^{\mathcal{A} \mathcal{B}} \rangle_{\mathcal{B}}$") # noqa
|
im3 = axs[2].scatter(1 - mean_overlap, mean_prob_nomatch, c=x, s=2,
|
||||||
plt.ylim(0., 1.)
|
rasterized=True)
|
||||||
|
|
||||||
plt.tight_layout()
|
|
||||||
for ext in ["png", "pdf"]:
|
|
||||||
fout = join(plt_utils.fout, f"overlap_mean_{nsim0}.{ext}")
|
|
||||||
print(f"Saving to `{fout}`.")
|
|
||||||
plt.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
|
|
||||||
plt.close()
|
|
||||||
|
|
||||||
# Std summed overlap
|
|
||||||
with plt.style.context(plt_utils.mplstyle):
|
|
||||||
plt.figure()
|
|
||||||
plt.hexbin(x, std_overlap, mincnt=1, xscale="log", bins="log",
|
|
||||||
gridsize=50)
|
|
||||||
plt.colorbar(label="Counts in bins")
|
|
||||||
plt.xlabel(r"$M_{\rm tot} / M_\odot$")
|
|
||||||
plt.ylabel(r"$\delta \left( \mathcal{O}_{a}^{\mathcal{A} \mathcal{B}} \right)_{\mathcal{B}}$") # noqa
|
|
||||||
plt.ylim(0., 1.)
|
|
||||||
plt.tight_layout()
|
|
||||||
|
|
||||||
for ext in ["png", "pdf"]:
|
|
||||||
fout = join(plt_utils.fout, f"overlap_std_{nsim0}.{ext}")
|
|
||||||
print(f"Saving to `{fout}`.")
|
|
||||||
plt.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
|
|
||||||
plt.close()
|
|
||||||
|
|
||||||
# 1 - mean summed overlap vs mean prob nomatch
|
|
||||||
with plt.style.context(plt_utils.mplstyle):
|
|
||||||
plt.figure()
|
|
||||||
plt.scatter(1 - mean_overlap, mean_prob_nomatch, c=numpy.log10(x), s=2,
|
|
||||||
rasterized=True)
|
|
||||||
plt.colorbar(label=r"$\log_{10} M_{\rm halo} / M_\odot$")
|
|
||||||
|
|
||||||
t = numpy.linspace(0.3, 1, 100)
|
t = numpy.linspace(0.3, 1, 100)
|
||||||
plt.plot(t, t, color="red", linestyle="--")
|
axs[2].plot(t, t, color="red", linestyle="--")
|
||||||
|
axs[0].set_ylim(0.)
|
||||||
|
axs[1].set_ylim(0.)
|
||||||
|
axs[0].set_xlabel(r"$\log M_{\rm tot} / M_\odot$")
|
||||||
|
axs[0].set_ylabel("Mean summed overlap")
|
||||||
|
axs[1].set_xlabel(r"$\log M_{\rm tot} / M_\odot$")
|
||||||
|
axs[1].set_ylabel("Uncertainty of summed overlap")
|
||||||
|
axs[2].set_xlabel(r"$1 - $ mean summed overlap")
|
||||||
|
axs[2].set_ylabel("Mean prob. of no match")
|
||||||
|
|
||||||
plt.xlabel(r"$1 - \langle \mathcal{O}_a^{\mathcal{A} \mathcal{B}} \rangle_{\mathcal{B}}$") # noqa
|
label = ["Bin counts", "Bin counts", r"$\log M_{\rm tot} / M_\odot$"]
|
||||||
plt.ylabel(r"$\langle \eta_a^{\mathcal{A} \mathcal{B}} \rangle_{\mathcal{B}}$") # noqa
|
ims = [im1, im2, im3]
|
||||||
plt.tight_layout()
|
for i in range(3):
|
||||||
|
axins = inset_axes(axs[i], width="100%", height="5%",
|
||||||
|
loc='upper center', borderpad=-0.75)
|
||||||
|
fig.colorbar(ims[i], cax=axins, orientation="horizontal",
|
||||||
|
label=label[i])
|
||||||
|
axins.xaxis.tick_top()
|
||||||
|
axins.xaxis.set_tick_params(labeltop=True)
|
||||||
|
axins.xaxis.set_label_position("top")
|
||||||
|
|
||||||
for ext in ["png", "pdf"]:
|
fig.tight_layout()
|
||||||
fout = join(plt_utils.fout,
|
for ext in ["png"]:
|
||||||
f"overlap_vs_prob_nomatch_{nsim0}.{ext}")
|
fout = join(plt_utils.fout, f"overlap_stat_{nsim0}.{ext}")
|
||||||
print(f"Saving to `{fout}`.")
|
print(f"Saving to `{fout}`.")
|
||||||
plt.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
|
fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
|
||||||
plt.close()
|
plt.close()
|
||||||
|
|
||||||
|
|
||||||
def plot_mass_vs_separation(nsim0, nsimx, min_overlap=0.0):
|
def plot_mass_vs_separation(nsim0, nsimx, plot_std=False, min_overlap=0.0):
|
||||||
"""
|
"""
|
||||||
Plot the mass of a reference halo against the weighted separation of
|
Plot the mass of a reference halo against the weighted separation of
|
||||||
its counterparts.
|
its counterparts.
|
||||||
|
@ -194,6 +324,8 @@ def plot_mass_vs_separation(nsim0, nsimx, min_overlap=0.0):
|
||||||
Reference simulation index.
|
Reference simulation index.
|
||||||
nsimx : int
|
nsimx : int
|
||||||
Cross simulation index.
|
Cross simulation index.
|
||||||
|
plot_std : bool, optional
|
||||||
|
Whether to plot thestd instead of mean.
|
||||||
min_overlap : float, optional
|
min_overlap : float, optional
|
||||||
Minimum overlap to consider.
|
Minimum overlap to consider.
|
||||||
|
|
||||||
|
@ -205,7 +337,8 @@ def plot_mass_vs_separation(nsim0, nsimx, min_overlap=0.0):
|
||||||
cat0 = open_cat(nsim0)
|
cat0 = open_cat(nsim0)
|
||||||
catx = open_cat(nsimx)
|
catx = open_cat(nsimx)
|
||||||
|
|
||||||
reader = csiborgtools.read.PairOverlap(cat0, catx, paths)
|
reader = csiborgtools.read.PairOverlap(cat0, catx, paths,
|
||||||
|
maxdist=155 / 0.705)
|
||||||
mass = numpy.log10(reader.cat0("totpartmass"))
|
mass = numpy.log10(reader.cat0("totpartmass"))
|
||||||
dist = reader.dist(in_initial=False, norm_kind="r200c")
|
dist = reader.dist(in_initial=False, norm_kind="r200c")
|
||||||
overlap = reader.overlap(True)
|
overlap = reader.overlap(True)
|
||||||
|
@ -217,7 +350,11 @@ def plot_mass_vs_separation(nsim0, nsimx, min_overlap=0.0):
|
||||||
dist = dist[mask, :]
|
dist = dist[mask, :]
|
||||||
dist = numpy.log10(dist)
|
dist = numpy.log10(dist)
|
||||||
|
|
||||||
p = numpy.polyfit(mass, dist[:, 0], 1)
|
if not plot_std:
|
||||||
|
p = numpy.polyfit(mass, dist[:, 0], 1)
|
||||||
|
else:
|
||||||
|
p = numpy.polyfit(mass, dist[:, 1], 1)
|
||||||
|
|
||||||
xrange = numpy.linspace(numpy.min(mass), numpy.max(mass), 1000)
|
xrange = numpy.linspace(numpy.min(mass), numpy.max(mass), 1000)
|
||||||
txt = r"$m = {}$, $c = {}$".format(*plt_utils.latex_float(*p, n=3))
|
txt = r"$m = {}$, $c = {}$".format(*plt_utils.latex_float(*p, n=3))
|
||||||
|
|
||||||
|
@ -225,7 +362,14 @@ def plot_mass_vs_separation(nsim0, nsimx, min_overlap=0.0):
|
||||||
fig, ax = plt.subplots()
|
fig, ax = plt.subplots()
|
||||||
ax.set_title(txt, fontsize="small")
|
ax.set_title(txt, fontsize="small")
|
||||||
|
|
||||||
cx = ax.hexbin(mass, dist[:, 0], mincnt=1, bins="log", gridsize=50)
|
if not plot_std:
|
||||||
|
cx = ax.hexbin(mass, dist[:, 0], mincnt=1, bins="log", gridsize=50)
|
||||||
|
ax.set_ylabel(r"$\log \langle \Delta R / R_{\rm 200c}\rangle$")
|
||||||
|
else:
|
||||||
|
cx = ax.hexbin(mass, dist[:, 1], mincnt=1, bins="log", gridsize=50)
|
||||||
|
ax.set_ylabel(
|
||||||
|
r"$\delta \log \langle \Delta R / R_{\rm 200c}\rangle$")
|
||||||
|
|
||||||
ax.plot(xrange, numpy.polyval(p, xrange), color="red",
|
ax.plot(xrange, numpy.polyval(p, xrange), color="red",
|
||||||
linestyle="--")
|
linestyle="--")
|
||||||
fig.colorbar(cx, label="Bin counts")
|
fig.colorbar(cx, label="Bin counts")
|
||||||
|
@ -234,7 +378,281 @@ def plot_mass_vs_separation(nsim0, nsimx, min_overlap=0.0):
|
||||||
|
|
||||||
fig.tight_layout()
|
fig.tight_layout()
|
||||||
for ext in ["png"]:
|
for ext in ["png"]:
|
||||||
fout = join(plt_utils.fout, f"mass_vs_sep_{nsim0}_{nsimx}.{ext}")
|
fout = join(plt_utils.fout,
|
||||||
|
f"mass_vs_sep_{nsim0}_{nsimx}_{min_overlap}.{ext}")
|
||||||
|
if plot_std:
|
||||||
|
fout = fout.replace(f".{ext}", f"_std.{ext}")
|
||||||
|
print(f"Saving to `{fout}`.")
|
||||||
|
fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
|
||||||
|
plt.close()
|
||||||
|
|
||||||
|
|
||||||
|
@cache_to_disk(7)
|
||||||
|
def get_max_key(nsim0, key):
|
||||||
|
"""
|
||||||
|
Get the value of a maximum overlap halo's property.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
nsim0 : int
|
||||||
|
Reference simulation index.
|
||||||
|
key : str
|
||||||
|
Property to get.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
mass0 : 1-dimensional array
|
||||||
|
Mass of the reference haloes.
|
||||||
|
key_val : 1-dimensional array
|
||||||
|
Value of the property of the reference haloes.
|
||||||
|
max_overlap : 2-dimensional array
|
||||||
|
Maximum overlap of the reference haloes.
|
||||||
|
stat : 2-dimensional array
|
||||||
|
Value of the property of the maximum overlap halo.
|
||||||
|
"""
|
||||||
|
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||||
|
nsimxs = csiborgtools.read.get_cross_sims(nsim0, paths, smoothed=True)
|
||||||
|
nsimxs = nsimxs
|
||||||
|
cat0 = open_cat(nsim0)
|
||||||
|
|
||||||
|
catxs = []
|
||||||
|
print("Opening catalogues...", flush=True)
|
||||||
|
for nsimx in tqdm(nsimxs):
|
||||||
|
catxs.append(open_cat(nsimx))
|
||||||
|
|
||||||
|
reader = csiborgtools.read.NPairsOverlap(cat0, catxs, paths)
|
||||||
|
|
||||||
|
mass0 = reader.cat0("totpartmass")
|
||||||
|
key_val = reader.cat0(key)
|
||||||
|
max_overlap = reader.max_overlap(True)
|
||||||
|
stat = reader.max_overlap_key(key, True)
|
||||||
|
return mass0, key_val, max_overlap, stat
|
||||||
|
|
||||||
|
|
||||||
|
def plot_maxoverlap_mass(nsim0):
|
||||||
|
"""
|
||||||
|
Plot the mass of the reference haloes against the mass of the maximum
|
||||||
|
overlap haloes.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
nsim0 : int
|
||||||
|
Reference simulation index.
|
||||||
|
"""
|
||||||
|
mass0, __, __, stat = get_max_key(nsim0, "totpartmass")
|
||||||
|
|
||||||
|
mu = numpy.mean(stat, axis=1)
|
||||||
|
std = numpy.std(numpy.log10(stat), axis=1)
|
||||||
|
mu = numpy.log10(mu)
|
||||||
|
|
||||||
|
mass0 = numpy.log10(mass0)
|
||||||
|
with plt.style.context(plt_utils.mplstyle):
|
||||||
|
fig, axs = plt.subplots(ncols=2, figsize=(3.5 * 1.75, 2.625))
|
||||||
|
|
||||||
|
im0 = axs[0].hexbin(mass0, mu, mincnt=1, bins="log", gridsize=50)
|
||||||
|
im1 = axs[1].hexbin(mass0, std, mincnt=1, bins="log", gridsize=50)
|
||||||
|
|
||||||
|
m = numpy.isfinite(mass0) & numpy.isfinite(mu)
|
||||||
|
print("True to expectation corr: ", kendalltau(mass0[m], mu[m]))
|
||||||
|
|
||||||
|
t = numpy.linspace(*numpy.percentile(mass0, [0, 100]), 1000)
|
||||||
|
axs[0].plot(t, t, color="red", linestyle="--")
|
||||||
|
axs[0].plot(t, t + 0.2, color="red", linestyle="--", alpha=0.5)
|
||||||
|
axs[0].plot(t, t - 0.2, color="red", linestyle="--", alpha=0.5)
|
||||||
|
|
||||||
|
axs[0].set_xlabel(r"$\log M_{\rm tot} / M_\odot$")
|
||||||
|
axs[1].set_xlabel(r"$\log M_{\rm tot} / M_\odot$")
|
||||||
|
axs[0].set_ylabel(r"Max. overlap mean of $\log M_{\rm tot} / M_\odot$")
|
||||||
|
axs[1].set_ylabel(r"Max. overlap std. of $\log M_{\rm tot} / M_\odot$")
|
||||||
|
|
||||||
|
ims = [im0, im1]
|
||||||
|
for i in range(2):
|
||||||
|
axins = inset_axes(axs[i], width="100%", height="5%",
|
||||||
|
loc='upper center', borderpad=-0.75)
|
||||||
|
fig.colorbar(ims[i], cax=axins, orientation="horizontal",
|
||||||
|
label="Bin counts")
|
||||||
|
axins.xaxis.tick_top()
|
||||||
|
axins.xaxis.set_tick_params(labeltop=True)
|
||||||
|
axins.xaxis.set_label_position("top")
|
||||||
|
|
||||||
|
fig.tight_layout()
|
||||||
|
for ext in ["png"]:
|
||||||
|
fout = join(plt_utils.fout,
|
||||||
|
f"max_totpartmass_{nsim0}.{ext}")
|
||||||
|
print(f"Saving to `{fout}`.")
|
||||||
|
fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
|
||||||
|
plt.close()
|
||||||
|
|
||||||
|
|
||||||
|
def plot_maxoverlapstat(nsim0, key):
|
||||||
|
"""
|
||||||
|
Plot the mass of the reference haloes against the value of the maximum
|
||||||
|
overlap statistic.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
nsim0 : int
|
||||||
|
Reference simulation index.
|
||||||
|
key : str
|
||||||
|
Property to get.
|
||||||
|
"""
|
||||||
|
assert key != "totpartmass"
|
||||||
|
mass0, key_val, __, stat = get_max_key(nsim0, key)
|
||||||
|
|
||||||
|
xlabels = {"lambda200c": r"\log \lambda_{\rm 200c}"}
|
||||||
|
key_label = xlabels.get(key, key)
|
||||||
|
|
||||||
|
mass0 = numpy.log10(mass0)
|
||||||
|
key_val = numpy.log10(key_val)
|
||||||
|
|
||||||
|
mu = numpy.mean(stat, axis=1)
|
||||||
|
std = numpy.std(numpy.log10(stat), axis=1)
|
||||||
|
mu = numpy.log10(mu)
|
||||||
|
|
||||||
|
with plt.style.context(plt_utils.mplstyle):
|
||||||
|
fig, axs = plt.subplots(ncols=3, figsize=(3.5 * 2, 2.625))
|
||||||
|
|
||||||
|
im0 = axs[0].hexbin(mass0, mu, mincnt=1, bins="log", gridsize=30)
|
||||||
|
im1 = axs[1].hexbin(mass0, std, mincnt=1, bins="log", gridsize=30)
|
||||||
|
im2 = axs[2].hexbin(key_val, mu, mincnt=1, bins="log", gridsize=30)
|
||||||
|
m = numpy.isfinite(key_val) & numpy.isfinite(mu)
|
||||||
|
print("True to expectation corr: ", kendalltau(key_val[m], mu[m]))
|
||||||
|
|
||||||
|
axs[0].set_xlabel(r"$\log M_{\rm tot} / M_\odot$")
|
||||||
|
axs[0].set_ylabel(r"Max. overlap mean of ${}$".format(key_label))
|
||||||
|
axs[1].set_xlabel(r"$\log M_{\rm tot} / M_\odot$")
|
||||||
|
axs[1].set_ylabel(r"Max. overlap std. of ${}$".format(key_label))
|
||||||
|
axs[2].set_xlabel(r"${}$".format(key_label))
|
||||||
|
axs[2].set_ylabel(r"Max. overlap mean of ${}$".format(key_label))
|
||||||
|
|
||||||
|
ims = [im0, im1, im2]
|
||||||
|
for i in range(3):
|
||||||
|
axins = inset_axes(axs[i], width="100%", height="5%",
|
||||||
|
loc='upper center', borderpad=-0.75)
|
||||||
|
fig.colorbar(ims[i], cax=axins, orientation="horizontal",
|
||||||
|
label="Bin counts")
|
||||||
|
axins.xaxis.tick_top()
|
||||||
|
axins.xaxis.set_tick_params(labeltop=True)
|
||||||
|
axins.xaxis.set_label_position("top")
|
||||||
|
|
||||||
|
fig.tight_layout()
|
||||||
|
for ext in ["png"]:
|
||||||
|
fout = join(plt_utils.fout,
|
||||||
|
f"max_{key}_{nsim0}.{ext}")
|
||||||
|
print(f"Saving to `{fout}`.")
|
||||||
|
fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
|
||||||
|
plt.close()
|
||||||
|
|
||||||
|
|
||||||
|
@cache_to_disk(7)
|
||||||
|
def get_expected_mass(nsim0, min_overlap):
|
||||||
|
"""
|
||||||
|
Get the expected mass of a reference halo given its overlap with halos
|
||||||
|
from other simulations.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
nsim0 : int
|
||||||
|
Reference simulation index.
|
||||||
|
min_overlap : float
|
||||||
|
Minimum overlap to consider between a pair of haloes.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
mass : 1-dimensional array
|
||||||
|
Mass of the reference haloes.
|
||||||
|
mu : 1-dimensional array
|
||||||
|
Expected mass of the matched haloes.
|
||||||
|
std : 1-dimensional array
|
||||||
|
Standard deviation of the expected mass of the matched haloes.
|
||||||
|
prob_nomatch : 2-dimensional array
|
||||||
|
Probability of not matching the reference halo.
|
||||||
|
"""
|
||||||
|
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||||
|
nsimxs = csiborgtools.read.get_cross_sims(nsim0, paths, smoothed=True)
|
||||||
|
nsimxs = nsimxs
|
||||||
|
cat0 = open_cat(nsim0)
|
||||||
|
|
||||||
|
catxs = []
|
||||||
|
print("Opening catalogues...", flush=True)
|
||||||
|
for nsimx in tqdm(nsimxs):
|
||||||
|
catxs.append(open_cat(nsimx))
|
||||||
|
|
||||||
|
reader = csiborgtools.read.NPairsOverlap(cat0, catxs, paths)
|
||||||
|
mass = reader.cat0("totpartmass")
|
||||||
|
|
||||||
|
mu, std = reader.counterpart_mass(True, overlap_threshold=min_overlap,
|
||||||
|
in_log=False, return_full=False)
|
||||||
|
prob_nomatch = reader.prob_nomatch(True)
|
||||||
|
return mass, mu, std, prob_nomatch
|
||||||
|
|
||||||
|
|
||||||
|
def plot_mass_vs_expected_mass(nsim0, min_overlap=0, max_prob_nomatch=1):
|
||||||
|
"""
|
||||||
|
Plot the mass of a reference halo against the expected mass of its
|
||||||
|
counterparts.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
nsim0 : int
|
||||||
|
Reference simulation index.
|
||||||
|
min_overlap : float, optional
|
||||||
|
Minimum overlap between a pair of haloes to consider.
|
||||||
|
max_prob_nomatch : float, optional
|
||||||
|
Maximum probability of no match to consider.
|
||||||
|
"""
|
||||||
|
mass, mu, std, prob_nomatch = get_expected_mass(nsim0, min_overlap)
|
||||||
|
|
||||||
|
std = std / mu / numpy.log(10)
|
||||||
|
mass = numpy.log10(mass)
|
||||||
|
mu = numpy.log10(mu)
|
||||||
|
prob_nomatch = numpy.nanmedian(prob_nomatch, axis=1)
|
||||||
|
|
||||||
|
# bins = numpy.arange(numpy.min(mass), numpy.max(mass), 0.2)
|
||||||
|
mask = numpy.isfinite(mass) & numpy.isfinite(mu)
|
||||||
|
mask &= (prob_nomatch < max_prob_nomatch)
|
||||||
|
# stat_x, stat_mu, stat_std = plt_utils.binned_trend(
|
||||||
|
# mass[mask], mu[mask], 1 - prob_nomatch[mask], bins)
|
||||||
|
|
||||||
|
with plt.style.context(plt_utils.mplstyle):
|
||||||
|
fig, axs = plt.subplots(ncols=3, figsize=(3.5 * 2, 2.625))
|
||||||
|
|
||||||
|
im0 = axs[0].hexbin(mass[mask], mu[mask], mincnt=1, bins="log",
|
||||||
|
gridsize=50,)
|
||||||
|
im1 = axs[1].hexbin(mass[mask], std[mask], mincnt=1, bins="log",
|
||||||
|
gridsize=50)
|
||||||
|
im2 = axs[2].hexbin(1 - prob_nomatch[mask], mass[mask] - mu[mask],
|
||||||
|
gridsize=50, C=mass[mask],
|
||||||
|
reduce_C_function=numpy.nanmedian)
|
||||||
|
axs[2].axhline(0, color="red", linestyle="--", alpha=0.5)
|
||||||
|
|
||||||
|
axs[0].set_xlabel(r"True $\log M_{\rm tot} / M_\odot$")
|
||||||
|
axs[0].set_ylabel(r"Expected $\log M_{\rm tot} / M_\odot$")
|
||||||
|
axs[1].set_xlabel(r"True $\log M_{\rm tot} / M_\odot$")
|
||||||
|
axs[1].set_ylabel(r"Std. of $\sigma_{\log M_{\rm tot}}$")
|
||||||
|
axs[2].set_xlabel(r"1 - median prob. of no match")
|
||||||
|
axs[2].set_ylabel(r"$\log M_{\rm tot} - \log M_{\rm tot, exp}$")
|
||||||
|
|
||||||
|
t = numpy.linspace(*numpy.percentile(mass[mask], [0, 100]), 1000)
|
||||||
|
axs[0].plot(t, t, color="red", linestyle="--")
|
||||||
|
axs[0].plot(t, t + 0.2, color="red", linestyle="--", alpha=0.5)
|
||||||
|
axs[0].plot(t, t - 0.2, color="red", linestyle="--", alpha=0.5)
|
||||||
|
|
||||||
|
ims = [im0, im1, im2]
|
||||||
|
labels = ["Bin counts", "Bin counts", r"$\log M_{\rm tot}$"]
|
||||||
|
for i in range(3):
|
||||||
|
axins = inset_axes(axs[i], width="100%", height="5%",
|
||||||
|
loc='upper center', borderpad=-0.75)
|
||||||
|
fig.colorbar(ims[i], cax=axins, orientation="horizontal",
|
||||||
|
label=labels[i])
|
||||||
|
axins.xaxis.tick_top()
|
||||||
|
axins.xaxis.set_tick_params(labeltop=True)
|
||||||
|
axins.xaxis.set_label_position("top")
|
||||||
|
|
||||||
|
fig.tight_layout()
|
||||||
|
for ext in ["png"]:
|
||||||
|
fout = join(plt_utils.fout,
|
||||||
|
f"mass_vs_expmass_{nsim0}_{max_prob_nomatch}.{ext}")
|
||||||
print(f"Saving to `{fout}`.")
|
print(f"Saving to `{fout}`.")
|
||||||
fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
|
fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
|
||||||
plt.close()
|
plt.close()
|
||||||
|
@ -714,7 +1132,7 @@ def plot_significance(simname, runs, nsim, nobs, kind, kwargs, runs_to_mass):
|
||||||
plt.close()
|
plt.close()
|
||||||
|
|
||||||
|
|
||||||
def make_binlims(run, runs_to_mass):
|
def make_binlims(run, runs_to_mass, upper_threshold=None):
|
||||||
"""
|
"""
|
||||||
Make bin limits for the 1NN distance runs, corresponding to the first half
|
Make bin limits for the 1NN distance runs, corresponding to the first half
|
||||||
of the log-mass bin.
|
of the log-mass bin.
|
||||||
|
@ -725,13 +1143,18 @@ def make_binlims(run, runs_to_mass):
|
||||||
Run name.
|
Run name.
|
||||||
runs_to_mass : dict
|
runs_to_mass : dict
|
||||||
Dictionary mapping run names to total halo mass range.
|
Dictionary mapping run names to total halo mass range.
|
||||||
|
upper_threshold : float, optional
|
||||||
|
Bin width in dex. If set to `None`, the bin width is taken from the
|
||||||
|
`runs_to_mass` dictionary.
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
xmin, xmax : floats
|
xmin, xmax : floats
|
||||||
"""
|
"""
|
||||||
xmin, xmax = runs_to_mass[run]
|
xmin, xmax = runs_to_mass[run]
|
||||||
xmax = xmin + (xmax - xmin) / 2
|
if upper_threshold is not None:
|
||||||
|
xmax = xmin + upper_threshold
|
||||||
|
|
||||||
xmin, xmax = 10**xmin, 10**xmax
|
xmin, xmax = 10**xmin, 10**xmax
|
||||||
if run == "mass009":
|
if run == "mass009":
|
||||||
xmax = numpy.infty
|
xmax = numpy.infty
|
||||||
|
@ -782,9 +1205,9 @@ def plot_significance_vs_mass(simname, runs, nsim, nobs, kind, kwargs,
|
||||||
else:
|
else:
|
||||||
y = numpy.log10(make_ks(simname, run, nsim, nobs, kwargs))
|
y = numpy.log10(make_ks(simname, run, nsim, nobs, kwargs))
|
||||||
|
|
||||||
xmin, xmax = make_binlims(run, runs_to_mass)
|
xmin, xmax = make_binlims(run, runs_to_mass, upper_threshold)
|
||||||
|
|
||||||
mask = (x >= xmin) & (x < xmax if upper_threshold else True)
|
mask = (x >= xmin) & (x < xmax)
|
||||||
xs.append(numpy.log10(x[mask]))
|
xs.append(numpy.log10(x[mask]))
|
||||||
ys.append(y[mask])
|
ys.append(y[mask])
|
||||||
|
|
||||||
|
@ -922,7 +1345,7 @@ def plot_kl_vs_overlap(runs, nsim, kwargs, runs_to_mass, plot_std=True,
|
||||||
for run in runs:
|
for run in runs:
|
||||||
nn_data = nn_reader.read_single("csiborg", run, nsim, nobs=None)
|
nn_data = nn_reader.read_single("csiborg", run, nsim, nobs=None)
|
||||||
nn_hindxs = nn_data["ref_hindxs"]
|
nn_hindxs = nn_data["ref_hindxs"]
|
||||||
mass, overlap_hindxs, summed_overlap, prob_nomatch = get_overlap(nsim)
|
mass, overlap_hindxs, __, summed_overlap, prob_nomatch = get_overlap(nsim) # noqa
|
||||||
|
|
||||||
# We need to match the hindxs between the two.
|
# We need to match the hindxs between the two.
|
||||||
hind2overlap_array = {hind: i for i, hind in enumerate(overlap_hindxs)}
|
hind2overlap_array = {hind: i for i, hind in enumerate(overlap_hindxs)}
|
||||||
|
@ -935,7 +1358,7 @@ def plot_kl_vs_overlap(runs, nsim, kwargs, runs_to_mass, plot_std=True,
|
||||||
x = make_kl("csiborg", run, nsim, nobs=None, kwargs=kwargs)
|
x = make_kl("csiborg", run, nsim, nobs=None, kwargs=kwargs)
|
||||||
y1 = 1 - numpy.mean(prob_nomatch, axis=1)
|
y1 = 1 - numpy.mean(prob_nomatch, axis=1)
|
||||||
y2 = numpy.std(prob_nomatch, axis=1)
|
y2 = numpy.std(prob_nomatch, axis=1)
|
||||||
cmin, cmax = make_binlims(run, runs_to_mass)
|
cmin, cmax = make_binlims(run, runs_to_mass, upper_threshold)
|
||||||
mask = (mass >= cmin) & (mass < cmax if upper_threshold else True)
|
mask = (mass >= cmin) & (mass < cmax if upper_threshold else True)
|
||||||
xs.append(x[mask])
|
xs.append(x[mask])
|
||||||
ys1.append(y1[mask])
|
ys1.append(y1[mask])
|
||||||
|
@ -957,7 +1380,7 @@ def plot_kl_vs_overlap(runs, nsim, kwargs, runs_to_mass, plot_std=True,
|
||||||
|
|
||||||
plt.colorbar(label=r"$\log M_{\rm tot} / M_\odot$")
|
plt.colorbar(label=r"$\log M_{\rm tot} / M_\odot$")
|
||||||
plt.xlabel(r"$D_{\mathrm{KL}}$ of $r_{1\mathrm{NN}}$ distribution")
|
plt.xlabel(r"$D_{\mathrm{KL}}$ of $r_{1\mathrm{NN}}$ distribution")
|
||||||
plt.ylabel(r"$1 - \langle \eta^{\mathcal{B}}_a \rangle_{\mathcal{B}}$")
|
plt.ylabel("1 - mean prob. of no match")
|
||||||
|
|
||||||
plt.tight_layout()
|
plt.tight_layout()
|
||||||
for ext in ["png"]:
|
for ext in ["png"]:
|
||||||
|
@ -1020,15 +1443,38 @@ if __name__ == "__main__":
|
||||||
}
|
}
|
||||||
|
|
||||||
# cached_funcs = ["get_overlap", "read_dist", "make_kl", "make_ks"]
|
# cached_funcs = ["get_overlap", "read_dist", "make_kl", "make_ks"]
|
||||||
cached_funcs = ["get_overlap"]
|
cached_funcs = ["get_max_key"]
|
||||||
if args.clean:
|
if args.clean:
|
||||||
for func in cached_funcs:
|
for func in cached_funcs:
|
||||||
print(f"Cleaning cache for function {func}.")
|
print(f"Cleaning cache for function {func}.")
|
||||||
delete_disk_caches_for_function(func)
|
delete_disk_caches_for_function(func)
|
||||||
|
|
||||||
if True:
|
if False:
|
||||||
plot_mass_vs_separation(7444 + 24, 8956 + 24 * 3)
|
plot_mass_vs_pairoverlap(7444 + 24, 8956 + 24 * 3)
|
||||||
|
|
||||||
|
if False:
|
||||||
|
plot_mass_vs_maxpairoverlap(7444 + 24, 8956 + 24 * 3)
|
||||||
|
|
||||||
|
if False:
|
||||||
|
plot_mass_vsmedmaxoverlap(7444)
|
||||||
|
|
||||||
|
if False:
|
||||||
|
plot_summed_overlap_vs_mass(7444)
|
||||||
|
|
||||||
|
if True:
|
||||||
|
plot_mass_vs_separation(7444 + 24, 8956 + 24 * 3, min_overlap=0.0)
|
||||||
|
|
||||||
|
if False:
|
||||||
|
plot_maxoverlap_mass(7444)
|
||||||
|
|
||||||
|
if False:
|
||||||
|
plot_maxoverlapstat(7444, "lambda200c")
|
||||||
|
|
||||||
|
if False:
|
||||||
|
plot_maxoverlapstat(7444, "totpartmass")
|
||||||
|
|
||||||
|
if False:
|
||||||
|
plot_mass_vs_expected_mass(7444, max_prob_nomatch=1.0)
|
||||||
|
|
||||||
# Plot 1NN distance distributions.
|
# Plot 1NN distance distributions.
|
||||||
if False:
|
if False:
|
||||||
|
@ -1052,23 +1498,25 @@ if __name__ == "__main__":
|
||||||
kwargs=neighbour_kwargs,
|
kwargs=neighbour_kwargs,
|
||||||
runs_to_mass=runs_to_mass)
|
runs_to_mass=runs_to_mass)
|
||||||
|
|
||||||
|
if False:
|
||||||
|
# runs = [[f"mass00{i}"] for i in range(1, 10)]
|
||||||
|
runs = [[f"mass00{i}"] for i in [4]]
|
||||||
|
for runs_ in runs:
|
||||||
|
# runs = ["mass007"]
|
||||||
|
for kind in ["kl"]:
|
||||||
|
plot_significance_vs_mass("csiborg", runs_, 7444, nobs=None,
|
||||||
|
kind=kind, kwargs=neighbour_kwargs,
|
||||||
|
runs_to_mass=runs_to_mass,
|
||||||
|
upper_threshold=100)
|
||||||
|
|
||||||
|
if False:
|
||||||
|
# runs = [f"mass00{i}" for i in range(1, 10)]
|
||||||
|
runs = ["mass004"]
|
||||||
|
plot_kl_vs_ks("csiborg", runs, 7444, None, kwargs=neighbour_kwargs,
|
||||||
|
runs_to_mass=runs_to_mass, upper_threshold=100)
|
||||||
|
|
||||||
if False:
|
if False:
|
||||||
# runs = [f"mass00{i}" for i in range(1, 10)]
|
# runs = [f"mass00{i}" for i in range(1, 10)]
|
||||||
runs = ["mass007"]
|
runs = ["mass007"]
|
||||||
for kind in ["kl", "ks"]:
|
|
||||||
plot_significance_vs_mass("csiborg", runs, 7444, nobs=None,
|
|
||||||
kind=kind, kwargs=neighbour_kwargs,
|
|
||||||
runs_to_mass=runs_to_mass,
|
|
||||||
upper_threshold=True)
|
|
||||||
|
|
||||||
if False:
|
|
||||||
# runs = [f"mass00{i}" for i in range(1, 10)]
|
|
||||||
runs = ["mass006"]
|
|
||||||
plot_kl_vs_ks("csiborg", runs, 7444, None, kwargs=neighbour_kwargs,
|
|
||||||
runs_to_mass=runs_to_mass, upper_threshold=True)
|
|
||||||
|
|
||||||
if False:
|
|
||||||
# runs = [f"mass00{i}" for i in range(1, 10)]
|
|
||||||
runs = ["mass006"]
|
|
||||||
plot_kl_vs_overlap(runs, 7444, neighbour_kwargs, runs_to_mass,
|
plot_kl_vs_overlap(runs, 7444, neighbour_kwargs, runs_to_mass,
|
||||||
upper_threshold=True, plot_std=False)
|
upper_threshold=100, plot_std=False)
|
||||||
|
|
|
@ -13,6 +13,9 @@
|
||||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||||
|
|
||||||
|
import numpy
|
||||||
|
from scipy.stats import binned_statistic
|
||||||
|
|
||||||
dpi = 600
|
dpi = 600
|
||||||
fout = "../plots/"
|
fout = "../plots/"
|
||||||
mplstyle = ["science"]
|
mplstyle = ["science"]
|
||||||
|
@ -51,3 +54,40 @@ def latex_float(*floats, n=2):
|
||||||
if len(floats) == 1:
|
if len(floats) == 1:
|
||||||
return latex_floats[0]
|
return latex_floats[0]
|
||||||
return latex_floats
|
return latex_floats
|
||||||
|
|
||||||
|
|
||||||
|
def binned_trend(x, y, weights, bins):
|
||||||
|
"""
|
||||||
|
Calculate the weighted mean and standard deviation of `y` in bins of `x`.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
x : 1-dimensional array
|
||||||
|
The x-coordinates of the data points.
|
||||||
|
y : 1-dimensional array
|
||||||
|
The y-coordinates of the data points.
|
||||||
|
weights : 1-dimensional array
|
||||||
|
The weights of the data points.
|
||||||
|
bins : 1-dimensional array
|
||||||
|
The bin edges.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
stat_x : 1-dimensional array
|
||||||
|
The x-coordinates of the binned data points.
|
||||||
|
stat_mu : 1-dimensional array
|
||||||
|
The weighted mean of `y` in bins of `x`.
|
||||||
|
stat_std : 1-dimensional array
|
||||||
|
The weighted standard deviation of `y` in bins of `x`.
|
||||||
|
"""
|
||||||
|
stat_mu, __, __ = binned_statistic(x, y * weights, bins=bins,
|
||||||
|
statistic="sum")
|
||||||
|
stat_std, __, __ = binned_statistic(x, y * weights, bins=bins,
|
||||||
|
statistic=numpy.var)
|
||||||
|
stat_w, __, __ = binned_statistic(x, weights, bins=bins, statistic="sum")
|
||||||
|
|
||||||
|
stat_x = (bins[1:] + bins[:-1]) / 2
|
||||||
|
stat_mu /= stat_w
|
||||||
|
stat_std /= stat_w
|
||||||
|
stat_std = numpy.sqrt(stat_std)
|
||||||
|
return stat_x, stat_mu, stat_std
|
||||||
|
|
Loading…
Reference in a new issue