mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-22 18:38:02 +00:00
Observer velocity script (#120)
* Rename script * Delete scripts * Add script * Edit script * Add script * Update nb * Update plotting * Update .gitignore * Update nb * Update nb * Add option to keep beta fixed
This commit is contained in:
parent
4093186f9a
commit
27c1f9249b
10 changed files with 361 additions and 723 deletions
1
.gitignore
vendored
1
.gitignore
vendored
|
@ -36,3 +36,4 @@ scripts_independent/clear.sh
|
||||||
# Generated plots
|
# Generated plots
|
||||||
plots/*
|
plots/*
|
||||||
|
|
||||||
|
notebooks/test.ipynb
|
||||||
|
|
|
@ -951,7 +951,7 @@ class SN_PV_validation_model(BaseFlowValidationModel):
|
||||||
|
|
||||||
return zobs_mean, zobs_var
|
return zobs_mean, zobs_var
|
||||||
|
|
||||||
def __call__(self, sample_alpha=True, fix_calibration=False):
|
def __call__(self, sample_alpha=True, sample_beta=True):
|
||||||
"""
|
"""
|
||||||
The supernova NumPyro PV validation model with SALT2 calibration.
|
The supernova NumPyro PV validation model with SALT2 calibration.
|
||||||
|
|
||||||
|
@ -960,34 +960,21 @@ class SN_PV_validation_model(BaseFlowValidationModel):
|
||||||
sample_alpha : bool, optional
|
sample_alpha : bool, optional
|
||||||
Whether to sample the density bias parameter `alpha`, otherwise
|
Whether to sample the density bias parameter `alpha`, otherwise
|
||||||
it is fixed to 1.
|
it is fixed to 1.
|
||||||
fix_calibration : str, optional
|
sample_beta : bool, optional
|
||||||
Whether to fix the calibration parameters. If not provided, they
|
Whether to sample the velocity bias parameter `beta`, otherwise
|
||||||
are sampled. If "Foundation" or "LOSS" is provided, the parameters
|
it is fixed to 1.
|
||||||
are fixed to the best inverse parameters for the Foundation or LOSS
|
|
||||||
catalogues.
|
Returns
|
||||||
|
-------
|
||||||
|
None
|
||||||
"""
|
"""
|
||||||
Vx = numpyro.sample("Vext_x", self._Vext)
|
Vx = numpyro.sample("Vext_x", self._Vext)
|
||||||
Vy = numpyro.sample("Vext_y", self._Vext)
|
Vy = numpyro.sample("Vext_y", self._Vext)
|
||||||
Vz = numpyro.sample("Vext_z", self._Vext)
|
Vz = numpyro.sample("Vext_z", self._Vext)
|
||||||
alpha = numpyro.sample("alpha", self._alpha) if sample_alpha else 1.0
|
alpha = numpyro.sample("alpha", self._alpha) if sample_alpha else 1.0
|
||||||
beta = numpyro.sample("beta", self._beta)
|
beta = numpyro.sample("beta", self._beta) if sample_beta else 1.0
|
||||||
sigma_v = numpyro.sample("sigma_v", self._sigma_v)
|
sigma_v = numpyro.sample("sigma_v", self._sigma_v)
|
||||||
|
|
||||||
if fix_calibration == "Foundation":
|
|
||||||
# Foundation inverse best parameters
|
|
||||||
e_mu_intrinsic = 0.064
|
|
||||||
alpha_cal = 0.135
|
|
||||||
beta_cal = 2.9
|
|
||||||
sigma_v = 149
|
|
||||||
mag_cal = -18.555
|
|
||||||
elif fix_calibration == "LOSS":
|
|
||||||
# LOSS inverse best parameters
|
|
||||||
e_mu_intrinsic = 0.123
|
|
||||||
alpha_cal = 0.123
|
|
||||||
beta_cal = 3.52
|
|
||||||
mag_cal = -18.195
|
|
||||||
sigma_v = 149
|
|
||||||
else:
|
|
||||||
e_mu_intrinsic = numpyro.sample("e_mu_intrinsic", self._e_mu)
|
e_mu_intrinsic = numpyro.sample("e_mu_intrinsic", self._e_mu)
|
||||||
mag_cal = numpyro.sample("mag_cal", self._mag_cal)
|
mag_cal = numpyro.sample("mag_cal", self._mag_cal)
|
||||||
alpha_cal = numpyro.sample("alpha_cal", self._alpha_cal)
|
alpha_cal = numpyro.sample("alpha_cal", self._alpha_cal)
|
||||||
|
@ -1168,7 +1155,7 @@ class TF_PV_validation_model(BaseFlowValidationModel):
|
||||||
|
|
||||||
return zobs_mean, zobs_var
|
return zobs_mean, zobs_var
|
||||||
|
|
||||||
def __call__(self, sample_alpha=True):
|
def __call__(self, sample_alpha=True, sample_beta=True):
|
||||||
"""
|
"""
|
||||||
The Tully-Fisher NumPyro PV validation model.
|
The Tully-Fisher NumPyro PV validation model.
|
||||||
|
|
||||||
|
@ -1177,12 +1164,19 @@ class TF_PV_validation_model(BaseFlowValidationModel):
|
||||||
sample_alpha : bool, optional
|
sample_alpha : bool, optional
|
||||||
Whether to sample the density bias parameter `alpha`, otherwise
|
Whether to sample the density bias parameter `alpha`, otherwise
|
||||||
it is fixed to 1.
|
it is fixed to 1.
|
||||||
|
sample_beta : bool, optional
|
||||||
|
Whether to sample the velocity bias parameter `beta`, otherwise
|
||||||
|
it is fixed to 1.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
None
|
||||||
"""
|
"""
|
||||||
Vx = numpyro.sample("Vext_x", self._Vext)
|
Vx = numpyro.sample("Vext_x", self._Vext)
|
||||||
Vy = numpyro.sample("Vext_y", self._Vext)
|
Vy = numpyro.sample("Vext_y", self._Vext)
|
||||||
Vz = numpyro.sample("Vext_z", self._Vext)
|
Vz = numpyro.sample("Vext_z", self._Vext)
|
||||||
alpha = numpyro.sample("alpha", self._alpha) if sample_alpha else 1.0
|
alpha = numpyro.sample("alpha", self._alpha) if sample_alpha else 1.0
|
||||||
beta = numpyro.sample("beta", self._beta)
|
beta = numpyro.sample("beta", self._beta) if sample_beta else 1.0
|
||||||
sigma_v = numpyro.sample("sigma_v", self._sigma_v)
|
sigma_v = numpyro.sample("sigma_v", self._sigma_v)
|
||||||
|
|
||||||
e_mu_intrinsic = numpyro.sample("e_mu_intrinsic", self._e_mu)
|
e_mu_intrinsic = numpyro.sample("e_mu_intrinsic", self._e_mu)
|
||||||
|
@ -1291,7 +1285,7 @@ def get_model(loader, zcmb_max=None, verbose=True):
|
||||||
###############################################################################
|
###############################################################################
|
||||||
|
|
||||||
|
|
||||||
def sample_prior(model, seed, sample_alpha, as_dict=False):
|
def sample_prior(model, seed, model_kwargs, as_dict=False):
|
||||||
"""
|
"""
|
||||||
Sample a single set of parameters from the prior of the model.
|
Sample a single set of parameters from the prior of the model.
|
||||||
|
|
||||||
|
@ -1301,8 +1295,8 @@ def sample_prior(model, seed, sample_alpha, as_dict=False):
|
||||||
NumPyro model.
|
NumPyro model.
|
||||||
seed : int
|
seed : int
|
||||||
Random seed.
|
Random seed.
|
||||||
sample_alpha : bool
|
model_kwargs : dict
|
||||||
Whether to sample the density bias parameter `alpha`.
|
Additional keyword arguments to pass to the model.
|
||||||
as_dict : bool, optional
|
as_dict : bool, optional
|
||||||
Whether to return the parameters as a dictionary or a list of
|
Whether to return the parameters as a dictionary or a list of
|
||||||
parameters.
|
parameters.
|
||||||
|
@ -1314,7 +1308,7 @@ def sample_prior(model, seed, sample_alpha, as_dict=False):
|
||||||
only a dictionary.
|
only a dictionary.
|
||||||
"""
|
"""
|
||||||
predictive = Predictive(model, num_samples=1)
|
predictive = Predictive(model, num_samples=1)
|
||||||
samples = predictive(PRNGKey(seed), sample_alpha=sample_alpha)
|
samples = predictive(PRNGKey(seed), **model_kwargs)
|
||||||
|
|
||||||
if as_dict:
|
if as_dict:
|
||||||
return samples
|
return samples
|
||||||
|
@ -1327,7 +1321,7 @@ def sample_prior(model, seed, sample_alpha, as_dict=False):
|
||||||
return x, keys
|
return x, keys
|
||||||
|
|
||||||
|
|
||||||
def make_loss(model, keys, sample_alpha=True, to_jit=True):
|
def make_loss(model, keys, model_kwargs, to_jit=True):
|
||||||
"""
|
"""
|
||||||
Generate a loss function for the NumPyro model, that is the negative
|
Generate a loss function for the NumPyro model, that is the negative
|
||||||
log-likelihood. Note that this loss function cannot be automatically
|
log-likelihood. Note that this loss function cannot be automatically
|
||||||
|
@ -1339,8 +1333,8 @@ def make_loss(model, keys, sample_alpha=True, to_jit=True):
|
||||||
NumPyro model.
|
NumPyro model.
|
||||||
keys : list
|
keys : list
|
||||||
List of parameter names.
|
List of parameter names.
|
||||||
sample_alpha : bool, optional
|
model_kwargs : dict
|
||||||
Whether to sample the density bias parameter `alpha`.
|
Additional keyword arguments to pass to the model.
|
||||||
to_jit : bool, optional
|
to_jit : bool, optional
|
||||||
Whether to JIT the loss function.
|
Whether to JIT the loss function.
|
||||||
|
|
||||||
|
@ -1353,8 +1347,7 @@ def make_loss(model, keys, sample_alpha=True, to_jit=True):
|
||||||
def f(x):
|
def f(x):
|
||||||
samples = {key: x[i] for i, key in enumerate(keys)}
|
samples = {key: x[i] for i, key in enumerate(keys)}
|
||||||
|
|
||||||
loss = -util.log_likelihood(
|
loss = -util.log_likelihood(model, samples, **model_kwargs)["ll"]
|
||||||
model, samples, sample_alpha=sample_alpha)["ll"]
|
|
||||||
|
|
||||||
loss += cond(samples["sigma_v"] > 0, lambda: 0., lambda: jnp.inf)
|
loss += cond(samples["sigma_v"] > 0, lambda: 0., lambda: jnp.inf)
|
||||||
loss += cond(samples["e_mu_intrinsic"] > 0, lambda: 0., lambda: jnp.inf) # noqa
|
loss += cond(samples["e_mu_intrinsic"] > 0, lambda: 0., lambda: jnp.inf) # noqa
|
||||||
|
|
File diff suppressed because one or more lines are too long
|
@ -28,6 +28,7 @@ def read_samples(catalogue, simname, ksmooth, include_calibration=False,
|
||||||
print(f"\nReading {catalogue} fitted to {simname} with ksmooth = {ksmooth}.", flush=True) # noqa
|
print(f"\nReading {catalogue} fitted to {simname} with ksmooth = {ksmooth}.", flush=True) # noqa
|
||||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||||
nsims = paths.get_ics(simname)
|
nsims = paths.get_ics(simname)
|
||||||
|
FDIR_LG = "/mnt/extraspace/rstiskalek/csiborg_postprocessing/peculiar_velocity/observer" # noqa
|
||||||
|
|
||||||
Vx, Vy, Vz, beta, sigma_v, alpha = [], [], [], [], [], []
|
Vx, Vy, Vz, beta, sigma_v, alpha = [], [], [], [], [], []
|
||||||
BIC, AIC, logZ, chi2 = [], [], [], []
|
BIC, AIC, logZ, chi2 = [], [], [], []
|
||||||
|
@ -39,17 +40,6 @@ def read_samples(catalogue, simname, ksmooth, include_calibration=False,
|
||||||
else:
|
else:
|
||||||
raise ValueError(f"Catalogue {catalogue} not recognized.")
|
raise ValueError(f"Catalogue {catalogue} not recognized.")
|
||||||
|
|
||||||
if subtract_LG_velocity >= 0:
|
|
||||||
fdir = "/mnt/extraspace/rstiskalek/csiborg_postprocessing/field_shells"
|
|
||||||
fname = join(fdir, f"enclosed_mass_{simname}.npz")
|
|
||||||
if exists(fname):
|
|
||||||
d = np.load(fname)
|
|
||||||
R = d["distances"][subtract_LG_velocity]
|
|
||||||
print(f"Reading off enclosed velocity from R = {R} Mpc / h.")
|
|
||||||
V_LG = d["cumulative_velocity"][:, subtract_LG_velocity, :]
|
|
||||||
else:
|
|
||||||
raise FileNotFoundError(f"File {fname} not found.")
|
|
||||||
|
|
||||||
fname = f"/mnt/extraspace/rstiskalek/csiborg_postprocessing/peculiar_velocity/flow_samples_{catalogue}_{simname}_smooth_{ksmooth}.hdf5" # noqa
|
fname = f"/mnt/extraspace/rstiskalek/csiborg_postprocessing/peculiar_velocity/flow_samples_{catalogue}_{simname}_smooth_{ksmooth}.hdf5" # noqa
|
||||||
with File(fname, 'r') as f:
|
with File(fname, 'r') as f:
|
||||||
for i, nsim in enumerate(nsims):
|
for i, nsim in enumerate(nsims):
|
||||||
|
@ -57,15 +47,28 @@ def read_samples(catalogue, simname, ksmooth, include_calibration=False,
|
||||||
Vy.append(f[f"sim_{nsim}/Vext_y"][:])
|
Vy.append(f[f"sim_{nsim}/Vext_y"][:])
|
||||||
Vz.append(f[f"sim_{nsim}/Vext_z"][:])
|
Vz.append(f[f"sim_{nsim}/Vext_z"][:])
|
||||||
|
|
||||||
if subtract_LG_velocity >= 0:
|
|
||||||
Vx[-1] += V_LG[i, 0]
|
|
||||||
Vy[-1] += V_LG[i, 1]
|
|
||||||
Vz[-1] += V_LG[i, 2]
|
|
||||||
|
|
||||||
alpha.append(f[f"sim_{nsim}/alpha"][:])
|
alpha.append(f[f"sim_{nsim}/alpha"][:])
|
||||||
beta.append(f[f"sim_{nsim}/beta"][:])
|
beta.append(f[f"sim_{nsim}/beta"][:])
|
||||||
sigma_v.append(f[f"sim_{nsim}/sigma_v"][:])
|
sigma_v.append(f[f"sim_{nsim}/sigma_v"][:])
|
||||||
|
|
||||||
|
if subtract_LG_velocity >= 0:
|
||||||
|
fname = join(FDIR_LG, f"{simname}_{nsim}_observer_velocity.npz") # noqa
|
||||||
|
if not exists(fname):
|
||||||
|
raise FileNotFoundError(f"File {fname} not found.")
|
||||||
|
d = np.load(fname)
|
||||||
|
R = d["smooth_scales"][subtract_LG_velocity]
|
||||||
|
if i == 0:
|
||||||
|
print(f"Subtracting LG velocity with kernel {R} Mpc / h.", flush=True) # noqa
|
||||||
|
Vx_LG, Vy_LG, Vz_LG = d["vobs"][subtract_LG_velocity]
|
||||||
|
if simname == "Carrick2015":
|
||||||
|
Vx[-1] += beta[-1] * Vx_LG
|
||||||
|
Vy[-1] += beta[-1] * Vy_LG
|
||||||
|
Vz[-1] += beta[-1] * Vz_LG
|
||||||
|
else:
|
||||||
|
Vx[-1] += Vx_LG
|
||||||
|
Vy[-1] += Vy_LG
|
||||||
|
Vz[-1] += Vz_LG
|
||||||
|
|
||||||
BIC.append(f[f"sim_{nsim}/BIC"][...])
|
BIC.append(f[f"sim_{nsim}/BIC"][...])
|
||||||
AIC.append(f[f"sim_{nsim}/AIC"][...])
|
AIC.append(f[f"sim_{nsim}/AIC"][...])
|
||||||
logZ.append(f[f"sim_{nsim}/logZ"][...])
|
logZ.append(f[f"sim_{nsim}/logZ"][...])
|
||||||
|
|
116
scripts/field_observer_velocity.py
Normal file
116
scripts/field_observer_velocity.py
Normal file
|
@ -0,0 +1,116 @@
|
||||||
|
# Copyright (C) 2023 Richard Stiskalek
|
||||||
|
# This program is free software; you can redistribute it and/or modify it
|
||||||
|
# under the terms of the GNU General Public License as published by the
|
||||||
|
# Free Software Foundation; either version 3 of the License, or (at your
|
||||||
|
# option) any later version.
|
||||||
|
#
|
||||||
|
# This program is distributed in the hope that it will be useful, but
|
||||||
|
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
||||||
|
# Public License for more details.
|
||||||
|
#
|
||||||
|
# You should have received a copy of the GNU General Public License along
|
||||||
|
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||||
|
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||||
|
"""
|
||||||
|
|
||||||
|
"""
|
||||||
|
from argparse import ArgumentParser
|
||||||
|
from datetime import datetime
|
||||||
|
from os.path import join
|
||||||
|
from warnings import warn
|
||||||
|
|
||||||
|
import csiborgtools
|
||||||
|
import numpy as np
|
||||||
|
from astropy.coordinates import SkyCoord
|
||||||
|
from mpi4py import MPI
|
||||||
|
from taskmaster import work_delegation
|
||||||
|
|
||||||
|
from utils import get_nsims
|
||||||
|
|
||||||
|
FDIR = "/mnt/extraspace/rstiskalek/csiborg_postprocessing/peculiar_velocity/observer" # noqa
|
||||||
|
|
||||||
|
|
||||||
|
def t():
|
||||||
|
return datetime.now()
|
||||||
|
|
||||||
|
|
||||||
|
def read_velocity_field(args, nsim):
|
||||||
|
if args.simname == "csiborg1":
|
||||||
|
reader = csiborgtools.read.CSiBORG1Field(nsim)
|
||||||
|
return reader.velocity_field("SPH", 1024)
|
||||||
|
elif "csiborg2" in args.simname:
|
||||||
|
kind = args.simname.split("_")[-1]
|
||||||
|
reader = csiborgtools.read.CSiBORG2Field(nsim, kind)
|
||||||
|
return reader.velocity_field("SPH", 1024)
|
||||||
|
elif args.simname == "Carrick2015":
|
||||||
|
folder = "/mnt/extraspace/rstiskalek/catalogs"
|
||||||
|
warn(f"Using local paths from `{folder}`.", RuntimeWarning)
|
||||||
|
fpath = join(folder, "twompp_velocity_carrick2015.npy")
|
||||||
|
field = np.load(fpath).astype(np.float32)
|
||||||
|
|
||||||
|
# Because the Carrick+2015 data is in the following form:
|
||||||
|
# "The velocities are predicted peculiar velocities in the CMB
|
||||||
|
# frame in Galactic Cartesian coordinates, generated from the
|
||||||
|
# \(\delta_g^*\) field with \(\beta^* = 0.43\) and an external
|
||||||
|
# dipole \(V_\mathrm{ext} = [89,-131,17]\) (Carrick et al Table 3)
|
||||||
|
# has already been added.""
|
||||||
|
field[0] -= 89
|
||||||
|
field[1] -= -131
|
||||||
|
field[2] -= 17
|
||||||
|
field /= 0.43
|
||||||
|
return field
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unknown simname: `{args.simname}`.")
|
||||||
|
|
||||||
|
|
||||||
|
def main(smooth_scales, nsim, args):
|
||||||
|
velocity_field = read_velocity_field(args, nsim)
|
||||||
|
boxsize = csiborgtools.simname2boxsize(args.simname)
|
||||||
|
|
||||||
|
if smooth_scales is None:
|
||||||
|
smooth_scales = [0]
|
||||||
|
smooth_scales = np.asanyarray(smooth_scales) / boxsize
|
||||||
|
|
||||||
|
vobs = csiborgtools.field.observer_peculiar_velocity(
|
||||||
|
velocity_field, smooth_scales=smooth_scales, observer=None,
|
||||||
|
verbose=False)
|
||||||
|
|
||||||
|
# For Carrick+2015 the velocity vector is in the Galactic frame, so we
|
||||||
|
# need to convert it to RA/dec
|
||||||
|
if args.simname == "Carrick2015":
|
||||||
|
coord = SkyCoord(vobs, unit='kpc', frame='galactic',
|
||||||
|
representation_type='cartesian').transform_to("icrs")
|
||||||
|
vobs = coord.cartesian.xyz.value.T
|
||||||
|
|
||||||
|
fname = join(FDIR, f"{args.simname}_{nsim}_observer_velocity.npz")
|
||||||
|
print(f"Saving to `{fname}`.")
|
||||||
|
np.savez(fname, vobs=vobs, smooth_scales=smooth_scales * boxsize)
|
||||||
|
|
||||||
|
|
||||||
|
###############################################################################
|
||||||
|
# Main & command line interface #
|
||||||
|
###############################################################################
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
parser = ArgumentParser()
|
||||||
|
parser.add_argument("--simname", type=str, help="Simulation name.",
|
||||||
|
choices=["csiborg1", "csiborg2_main", "csiborg2_varysmall", "csiborg2_random", "Carrick2015"]) # noqa
|
||||||
|
args = parser.parse_args()
|
||||||
|
args.nsims = [-1]
|
||||||
|
comm = MPI.COMM_WORLD
|
||||||
|
|
||||||
|
smooth_scales = [0, 0.5, 1.0, 2.0, 4.0, 40.0]
|
||||||
|
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||||
|
nsims = get_nsims(args, paths)
|
||||||
|
|
||||||
|
def main_(nsim):
|
||||||
|
main(smooth_scales, nsim, args)
|
||||||
|
|
||||||
|
work_delegation(main_, nsims, comm, master_verbose=True)
|
||||||
|
|
||||||
|
comm.Barrier()
|
||||||
|
|
||||||
|
if comm.Get_rank() == 0:
|
||||||
|
print("All finished.", flush=True)
|
|
@ -1,17 +1,13 @@
|
||||||
nthreads=1
|
nthreads=5
|
||||||
memory=32
|
memory=40
|
||||||
on_login=${1}
|
on_login=0
|
||||||
queue="berg"
|
queue="berg"
|
||||||
env="/mnt/zfsusers/rstiskalek/csiborgtools/venv_csiborg/bin/python"
|
env="/mnt/zfsusers/rstiskalek/csiborgtools/venv_csiborg/bin/python"
|
||||||
file="field_shells.py"
|
file="field_observer_velocity.py"
|
||||||
|
|
||||||
field="overdensity"
|
simname=${1}
|
||||||
simname="borg2"
|
|
||||||
MAS="SPH"
|
|
||||||
grid=1024
|
|
||||||
|
|
||||||
|
pythoncm="$env $file --simname $simname"
|
||||||
pythoncm="$env $file --field $field --simname $simname --MAS $MAS --grid $grid"
|
|
||||||
if [ $on_login -eq 1 ]; then
|
if [ $on_login -eq 1 ]; then
|
||||||
echo $pythoncm
|
echo $pythoncm
|
||||||
$pythoncm
|
$pythoncm
|
|
@ -1,94 +0,0 @@
|
||||||
|
|
||||||
# Copyright (C) 2022 Richard Stiskalek
|
|
||||||
# This program is free software; you can redistribute it and/or modify it
|
|
||||||
# under the terms of the GNU General Public License as published by the
|
|
||||||
# Free Software Foundation; either version 3 of the License, or (at your
|
|
||||||
# option) any later version.
|
|
||||||
#
|
|
||||||
# This program is distributed in the hope that it will be useful, but
|
|
||||||
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
||||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
|
||||||
# Public License for more details.
|
|
||||||
#
|
|
||||||
# You should have received a copy of the GNU General Public License along
|
|
||||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
|
||||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
||||||
"""
|
|
||||||
NOTE: This script is pretty dodgy.
|
|
||||||
|
|
||||||
A script to calculate the mean and standard deviation of a field at different
|
|
||||||
distances from the center of the box such that at each distance the field is
|
|
||||||
evaluated at uniformly-spaced points on a sphere.
|
|
||||||
|
|
||||||
The script is not parallelized in any way but it should not take very long, the
|
|
||||||
main bottleneck is reading the data from disk.
|
|
||||||
"""
|
|
||||||
from argparse import ArgumentParser
|
|
||||||
from os.path import join
|
|
||||||
|
|
||||||
import csiborgtools
|
|
||||||
import numpy
|
|
||||||
from tqdm import tqdm
|
|
||||||
|
|
||||||
|
|
||||||
def main(args):
|
|
||||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
|
||||||
boxsize = csiborgtools.simname2boxsize(args.simname)
|
|
||||||
distances = numpy.linspace(0, boxsize / 2, 101)[1:]
|
|
||||||
nsims = paths.get_ics(args.simname)
|
|
||||||
folder = "/mnt/extraspace/rstiskalek/csiborg_postprocessing/field_shells"
|
|
||||||
|
|
||||||
mus = numpy.zeros((len(nsims), len(distances)))
|
|
||||||
stds = numpy.zeros((len(nsims), len(distances)))
|
|
||||||
for i, nsim in enumerate(tqdm(nsims, desc="Simulations")):
|
|
||||||
# Get the correct field loader
|
|
||||||
if args.simname == "csiborg1":
|
|
||||||
reader = csiborgtools.read.CSiBORG1Field(nsim, paths)
|
|
||||||
elif "csiborg2" in args.simname:
|
|
||||||
kind = args.simname.split("_")[-1]
|
|
||||||
reader = csiborgtools.read.CSiBORG2Field(nsim, kind, paths)
|
|
||||||
elif args.simname == "borg2":
|
|
||||||
reader = csiborgtools.read.BORG2Field(nsim, paths)
|
|
||||||
else:
|
|
||||||
raise ValueError(f"Unknown simname: `{args.simname}`.")
|
|
||||||
|
|
||||||
# Get the field
|
|
||||||
if args.field == "density":
|
|
||||||
field = reader.density_field(args.MAS, args.grid)
|
|
||||||
elif args.field == "overdensity":
|
|
||||||
if args.simname == "borg2":
|
|
||||||
field = reader.overdensity_field()
|
|
||||||
else:
|
|
||||||
field = reader.density_field(args.MAS, args.grid)
|
|
||||||
csiborgtools.field.overdensity_field(field, make_copy=False)
|
|
||||||
elif args.field == "radvel":
|
|
||||||
field = reader.radial_velocity_field(args.MAS, args.grid)
|
|
||||||
else:
|
|
||||||
raise ValueError(f"Unknown field: `{args.field}`.")
|
|
||||||
|
|
||||||
# Evaluate this field at different distances
|
|
||||||
vals = [csiborgtools.field.field_at_distance(field, distance, boxsize)
|
|
||||||
for distance in distances]
|
|
||||||
|
|
||||||
# Calculate the mean and standard deviation
|
|
||||||
mus[i, :] = [numpy.mean(val) for val in vals]
|
|
||||||
stds[i, :] = [numpy.std(val) for val in vals]
|
|
||||||
|
|
||||||
# Finally save the output
|
|
||||||
fname = f"{args.simname}_{args.field}_{args.MAS}_{args.grid}.npz"
|
|
||||||
fname = join(folder, fname)
|
|
||||||
numpy.savez(fname, mean=mus, std=stds, distances=distances)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
parser = ArgumentParser()
|
|
||||||
parser.add_argument("--field", type=str, help="Field type.",
|
|
||||||
choices=["density", "overdensity", "radvel"])
|
|
||||||
parser.add_argument("--simname", type=str, help="Simulation name.",
|
|
||||||
choices=["csiborg1", "csiborg2_main", "csiborg2_varysmall", "csiborg2_random", "borg2"]) # noqa
|
|
||||||
parser.add_argument("--MAS", type=str, help="Mass assignment scheme.",
|
|
||||||
choices=["NGP", "CIC", "TSC", "PCS", "SPH"])
|
|
||||||
parser.add_argument("--grid", type=int, help="Grid size.")
|
|
||||||
args = parser.parse_args()
|
|
||||||
|
|
||||||
main(args)
|
|
File diff suppressed because one or more lines are too long
Loading…
Reference in a new issue