CDF for nearest neighbour (#63)

* Updat ebounds

* fix mistake

* add plot script

* fix which sims

* Add Poisson

* Just docs

* Hide things to __main__

* Rename paths

* Move old script

* Remove radpos

* Paths renaming

* Paths renaming

* Remove trunk stuff

* Add import

* Add nearest neighbour search

* Add Quijote fiducial indices

* Add final snapshot matching

* Add fiducial observer selection

* add boxsizes

* Add reading functions

* Little stuff

* Bring back the fiducial observer

* Add arguments

* Add quijote paths

* Add notes

* Get this running

* Add yaml

* Remove Poisson stuff

* Get the 2PCF script running

* Add not finished htings

* Remove comment

* Verbosity only on 0th rank!

* Update plotting style

* Add nearest neighbour CDF

* Save radial distance too

* Add centres

* Add basic plotting
This commit is contained in:
Richard Stiskalek 2023-05-21 22:46:28 +01:00 committed by GitHub
parent 369438f881
commit 2185846e90
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
34 changed files with 1254 additions and 351 deletions

View file

@ -50,7 +50,7 @@ partreader = csiborgtools.read.ParticleReader(paths)
pars_extract = ["x", "y", "z", "M", "ID"]
if args.ics is None or args.ics[0] == -1:
ics = paths.get_ics()
ics = paths.get_ics("csiborg")
else:
ics = args.ics
@ -64,7 +64,7 @@ for i in jobs:
print(f"{datetime.now()}: reading and processing simulation {nsim}.",
flush=True)
# We first load the particle IDs in the final snapshot.
pidf = csiborgtools.read.read_h5(paths.particles_path(nsim))
pidf = csiborgtools.read.read_h5(paths.particles(nsim))
pidf = pidf["particle_ids"]
# Then we load the particles in the initil snapshot and make sure that
# their particle IDs are sorted as in the final snapshot.
@ -78,5 +78,5 @@ for i in jobs:
collect()
part0 = part0[numpy.argsort(numpy.argsort(pidf))]
print(f"{datetime.now()}: dumping particles for {nsim}.", flush=True)
with h5py.File(paths.initmatch_path(nsim, "particles"), "w") as f:
with h5py.File(paths.initmatch(nsim, "particles"), "w") as f:
f.create_dataset("particles", data=part0)