CDF for nearest neighbour (#63)

* Updat ebounds

* fix mistake

* add plot script

* fix which sims

* Add Poisson

* Just docs

* Hide things to __main__

* Rename paths

* Move old script

* Remove radpos

* Paths renaming

* Paths renaming

* Remove trunk stuff

* Add import

* Add nearest neighbour search

* Add Quijote fiducial indices

* Add final snapshot matching

* Add fiducial observer selection

* add boxsizes

* Add reading functions

* Little stuff

* Bring back the fiducial observer

* Add arguments

* Add quijote paths

* Add notes

* Get this running

* Add yaml

* Remove Poisson stuff

* Get the 2PCF script running

* Add not finished htings

* Remove comment

* Verbosity only on 0th rank!

* Update plotting style

* Add nearest neighbour CDF

* Save radial distance too

* Add centres

* Add basic plotting
This commit is contained in:
Richard Stiskalek 2023-05-21 22:46:28 +01:00 committed by GitHub
parent 369438f881
commit 2185846e90
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
34 changed files with 1254 additions and 351 deletions

View file

@ -12,18 +12,19 @@
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""A script to calculate the KNN-CDF for a set of CSiBORG halo catalogues."""
"""
A script to calculate the KNN-CDF for a set of halo catalogues.
"""
from argparse import ArgumentParser
from copy import deepcopy
from datetime import datetime
from warnings import warn
from distutils.util import strtobool
import joblib
import numpy
import yaml
from mpi4py import MPI
from sklearn.neighbors import NearestNeighbors
from taskmaster import master_process, worker_process
from taskmaster import work_delegation
try:
import csiborgtools
@ -33,161 +34,122 @@ except ModuleNotFoundError:
sys.path.append("../")
import csiborgtools
###############################################################################
# MPI and arguments #
###############################################################################
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
nproc = comm.Get_size()
parser = ArgumentParser()
parser.add_argument("--runs", type=str, nargs="+")
parser.add_argument("--ics", type=int, nargs="+", default=None,
help="IC realisations. If `-1` processes all simulations.")
parser.add_argument("--simname", type=str, choices=["csiborg", "quijote"])
args = parser.parse_args()
with open("../scripts/cluster_knn_auto.yml", "r") as file:
config = yaml.safe_load(file)
Rmax = 155 / 0.705 # Mpc (h = 0.705) high resolution region radius
totvol = 4 * numpy.pi * Rmax**3 / 3
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
knncdf = csiborgtools.clustering.kNN_1DCDF()
if args.ics is None or args.ics[0] == -1:
if args.simname == "csiborg":
ics = paths.get_ics()
else:
ics = paths.get_quijote_ics()
else:
ics = args.ics
from utils import open_catalogues
###############################################################################
# Analysis #
###############################################################################
def do_auto(args, config, cats, nsim, paths):
"""
Calculate the kNN-CDF single catalogue auto-correlation.
Parameters
----------
args : argparse.Namespace
Command line arguments.
config : dict
Configuration dictionary.
cats : dict
Dictionary of halo catalogues. Keys are simulation indices, values are
the catalogues.
nsim : int
Simulation index.
paths : csiborgtools.paths.Paths
Paths object.
def read_single(nsim, selection, nobs=None):
# We first read the full catalogue without applying any bounds.
if args.simname == "csiborg":
cat = csiborgtools.read.HaloCatalogue(nsim, paths)
else:
cat = csiborgtools.read.QuijoteHaloCatalogue(nsim, paths, nsnap=4,
origin=nobs)
cat.apply_bounds({"dist": (0, Rmax)})
# We then first read off the primary selection bounds.
sel = selection["primary"]
pname = None
xs = sel["names"] if isinstance(sel["names"], list) else [sel["names"]]
for _name in xs:
if _name in cat.keys:
pname = _name
if pname is None:
raise KeyError(f"Invalid names `{sel['name']}`.")
cat.apply_bounds({pname: (sel.get("min", None), sel.get("max", None))})
# Now the secondary selection bounds. If needed transfrom the secondary
# property before applying the bounds.
if "secondary" in selection:
sel = selection["secondary"]
sname = None
xs = sel["names"] if isinstance(sel["names"], list) else [sel["names"]]
for _name in xs:
if _name in cat.keys:
sname = _name
if sname is None:
raise KeyError(f"Invalid names `{sel['name']}`.")
if sel.get("toperm", False):
cat[sname] = numpy.random.permutation(cat[sname])
if sel.get("marked", False):
cat[sname] = csiborgtools.clustering.normalised_marks(
cat[pname], cat[sname], nbins=config["nbins_marks"])
cat.apply_bounds({sname: (sel.get("min", None), sel.get("max", None))})
return cat
def do_auto(run, nsim, nobs=None):
"""Calculate the kNN-CDF single catalgoue autocorrelation."""
_config = config.get(run, None)
if _config is None:
warn(f"No configuration for run {run}.", UserWarning, stacklevel=1)
return
rvs_gen = csiborgtools.clustering.RVSinsphere(Rmax)
cat = read_single(nsim, _config, nobs=nobs)
Returns
-------
None
"""
rvs_gen = csiborgtools.clustering.RVSinsphere(args.Rmax)
knncdf = csiborgtools.clustering.kNN_1DCDF()
cat = cats[nsim]
knn = cat.knn(in_initial=False)
rs, cdf = knncdf(
knn, rvs_gen=rvs_gen, nneighbours=config["nneighbours"],
rmin=config["rmin"], rmax=config["rmax"],
nsamples=int(config["nsamples"]), neval=int(config["neval"]),
batch_size=int(config["batch_size"]), random_state=config["seed"])
fout = paths.knnauto_path(args.simname, run, nsim, nobs)
print(f"Saving output to `{fout}`.")
totvol = (4 / 3) * numpy.pi * args.Rmax ** 3
fout = paths.knnauto(args.simname, args.run, nsim)
if args.verbose:
print(f"Saving output to `{fout}`.")
joblib.dump({"rs": rs, "cdf": cdf, "ndensity": len(cat) / totvol}, fout)
def do_cross_rand(run, nsim, nobs=None):
"""Calculate the kNN-CDF cross catalogue random correlation."""
_config = config.get(run, None)
if _config is None:
warn(f"No configuration for run {run}.", UserWarning, stacklevel=1)
return
def do_cross_rand(args, config, cats, nsim, paths):
"""
Calculate the kNN-CDF cross catalogue random correlation.
rvs_gen = csiborgtools.clustering.RVSinsphere(Rmax)
cat = read_single(nsim, _config)
Parameters
----------
args : argparse.Namespace
Command line arguments.
config : dict
Configuration dictionary.
cats : dict
Dictionary of halo catalogues. Keys are simulation indices, values are
the catalogues.
nsim : int
Simulation index.
paths : csiborgtools.paths.Paths
Paths object.
Returns
-------
None
"""
rvs_gen = csiborgtools.clustering.RVSinsphere(args.Rmax)
cat = cats[nsim]
knn1 = cat.knn(in_initial=False)
knn2 = NearestNeighbors()
pos2 = rvs_gen(len(cat).shape[0])
knn2.fit(pos2)
knncdf = csiborgtools.clustering.kNN_1DCDF()
rs, cdf0, cdf1, joint_cdf = knncdf.joint(
knn1, knn2, rvs_gen=rvs_gen, nneighbours=int(config["nneighbours"]),
rmin=config["rmin"], rmax=config["rmax"],
nsamples=int(config["nsamples"]), neval=int(config["neval"]),
batch_size=int(config["batch_size"]), random_state=config["seed"])
corr = knncdf.joint_to_corr(cdf0, cdf1, joint_cdf)
fout = paths.knnauto_path(args.simname, run, nsim, nobs)
print(f"Saving output to `{fout}`.")
fout = paths.knnauto(args.simname, args.run, nsim)
if args.verbose:
print(f"Saving output to `{fout}`.", flush=True)
joblib.dump({"rs": rs, "corr": corr}, fout)
def do_runs(nsim):
for run in args.runs:
iters = range(27) if args.simname == "quijote" else [None]
for nobs in iters:
if "random" in run:
do_cross_rand(run, nsim, nobs)
else:
do_auto(run, nsim, nobs)
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--run", type=str, help="Run name.")
parser.add_argument("--simname", type=str, choices=["csiborg", "quijote"],
help="Simulation name")
parser.add_argument("--nsims", type=int, nargs="+", default=None,
help="Indices of simulations to cross. If `-1` processes all simulations.") # noqa
parser.add_argument("--Rmax", type=float, default=155/0.705,
help="High-resolution region radius") # noqa
parser.add_argument("--verbose", type=lambda x: bool(strtobool(x)),
default=False)
args = parser.parse_args()
with open("./cluster_knn_auto.yml", "r") as file:
config = yaml.safe_load(file)
comm = MPI.COMM_WORLD
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
cats = open_catalogues(args, config, paths, comm)
###############################################################################
# MPI task delegation #
###############################################################################
if args.verbose and comm.Get_rank() == 0:
print(f"{datetime.now()}: starting to calculate the kNN statistic.")
def do_work(nsim):
if "random" in args.run:
do_cross_rand(args, config, cats, nsim, paths)
else:
do_auto(args, config, cats, nsim, paths)
if nproc > 1:
if rank == 0:
tasks = deepcopy(ics)
master_process(tasks, comm, verbose=True)
else:
worker_process(do_runs, comm, verbose=False)
else:
tasks = deepcopy(ics)
for task in tasks:
print("{}: completing task `{}`.".format(datetime.now(), task))
do_runs(task)
comm.Barrier()
nsims = list(cats.keys())
work_delegation(do_work, nsims, comm, master_verbose=args.verbose)
if rank == 0:
print("{}: all finished.".format(datetime.now()))
quit() # Force quit the script
comm.Barrier()
if comm.Get_rank() == 0:
print(f"{datetime.now()}: all finished. Quitting.")