Add 1 / r^2 prior on magnitude of the vector

This commit is contained in:
rstiskalek 2024-10-02 18:04:51 +01:00
parent 231a58d63c
commit 201e5e262f

View file

@ -925,10 +925,17 @@ def PV_validation_model(models, distmod_hyperparams_per_model,
inference_method : str inference_method : str
Either `mike` or `bayes`. Either `mike` or `bayes`.
""" """
ll = 0.0
field_calibration_params = sample_calibration( field_calibration_params = sample_calibration(
**field_calibration_hyperparams) **field_calibration_hyperparams)
ll = 0.0 # We sample the components of Vext with a uniform prior, which means
# there is a |Vext|^2 prior, we correct for this so that the sampling
# is effecitvely uniformly in magnitude of Vext and angles.
if "Vext" in field_calibration_params:
ll -= jnp.log(jnp.sum(field_calibration_params["Vext"]**2))
for n in range(len(models)): for n in range(len(models)):
model = models[n] model = models[n]
name = model.name name = model.name