add num density

This commit is contained in:
rstiskalek 2022-11-06 09:05:51 +00:00
parent 3979650663
commit 1cd3f10848
2 changed files with 108 additions and 0 deletions

View file

@ -14,4 +14,5 @@
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
from .match import brute_spatial_separation # noqa
from .num_density import (binned_counts, number_density) # noqa
# from .correlation import (get_randoms_sphere, sphere_angular_tpcf) # noqa

View file

@ -0,0 +1,107 @@
# Copyright (C) 2022 Richard Stiskalek
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""
Calculation of number density functions.
"""
import numpy
def binned_counts(x, bins):
"""
Calculate number of samples in bins.
Parameters
----------
x : 1-dimensional array
Samples' values.
bins : 1-dimensional array
Bin edges of shape `(n_edges, )`.
Returns
-------
centres : 1-dimensional array
Bin centres of shape `(n_edges - 1, )`.
counts : 1-dimensional array
Bin counts of shape `(n_edges - 1, )`.
"""
if not isinstance(bins, numpy.ndarray) and bins.ndim == 1:
raise TypeError("`bins` must a 1-dimensional array.")
n_bins = bins.size
# Bin centres
centres = numpy.asarray(
[0.5 * (bins[i + 1] + bins[i]) for i in range(n_bins - 1)])
# Bin counts
out = numpy.full(n_bins - 1, numpy.nan, dtype=int)
for i in range(n_bins - 1):
out[i] = numpy.sum((x >= bins[i]) & (x < bins[i + 1]))
return centres, out
def number_density(data, feat, bins, max_dist, to_log10):
"""
Calculate volume-limited number density of a feature `feat` from array
`data`, normalised also by the bin width.
Parameters
----------
data : structured array
Input array of halos.
feat : str
Parameter whose number density to calculate.
bins : 1-dimensional array
Bin edges. Note that if `to_log10` then the edges must be specified
in the logarithmic space, not linear.
max_dist : float
Maximum radial distance of the volume limited sample.
to_log10 : bool
Whether to take a logarithm of base 10 of the feature. If so, then the
bins must also be logarithmic.
Returns
-------
centres : 1-dimensional array
Bin centres of shape `(n_edges - 1, )`. If `to_log10` then converts the
bin centres back to linear space.
nd : 1-dimensional array
Number density of shape `(n_edges - 1, )`.
nd_err : 1-dimensional array
Poissonian uncertainty of `nd` of shape `(n_edges - 1, )`.
"""
# Extract the param and optionally convert to log10
x = data[feat]
x = numpy.log10(x) if to_log10 else x
# Get only things within distance from the origin
rdist = (data["peak_x"]**2 + data["peak_y"]**2 + data["peak_z"]**2)**0.5
x = x[rdist < max_dist]
# Make sure bins equally spaced
dbins = numpy.diff(bins)
dbin = dbins[0]
if not numpy.alltrue(dbins == dbin):
raise ValueError("Bins must be equally spaced. Currently `{}`."
.format(bins))
# Encompassed volume around the origin
volume = 4 * numpy.pi / 3 * max_dist**3
# Poissonian statistics
bin_centres, counts = binned_counts(x, bins)
nd = counts / volume / dbin
nd_err = counts**0.5 / volume / dbin
# Convert bins to linear space if log10
if to_log10:
bin_centres = 10**bin_centres
return bin_centres, nd, nd_err