mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-22 17:58:01 +00:00
Density field tests (#110)
* Add imports * Remove file * Add boxsize argument * Add script * Update script * Edit script * Add nbs
This commit is contained in:
parent
b88c0703f6
commit
1c736aaede
8 changed files with 1027 additions and 213 deletions
|
@ -15,6 +15,8 @@
|
|||
from .density import (DensityField, PotentialField, TidalTensorField, # noqa
|
||||
VelocityField, radial_velocity, power_spectrum, # noqa
|
||||
overdensity_field) # noqa
|
||||
from .enclosed_mass import (particles_enclosed_mass, # noqa
|
||||
particles_enclosed_momentum, field_enclosed_mass) # noqa
|
||||
from .interp import (evaluate_cartesian, evaluate_sky, field2rsp, # noqa
|
||||
fill_outside, make_sky, observer_peculiar_velocity, # noqa
|
||||
smoothen_field, field_at_distance) # noqa
|
||||
|
|
182
csiborgtools/field/enclosed_mass.py
Normal file
182
csiborgtools/field/enclosed_mass.py
Normal file
|
@ -0,0 +1,182 @@
|
|||
# Copyright (C) 2023 Richard Stiskalek
|
||||
# This program is free software; you can redistribute it and/or modify it
|
||||
# under the terms of the GNU General Public License as published by the
|
||||
# Free Software Foundation; either version 3 of the License, or (at your
|
||||
# option) any later version.
|
||||
#
|
||||
# This program is distributed in the hope that it will be useful, but
|
||||
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
||||
# Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along
|
||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
|
||||
|
||||
import numpy
|
||||
from numba import jit
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Enclosed mass at each distance from particles #
|
||||
###############################################################################
|
||||
|
||||
|
||||
@jit(nopython=True, boundscheck=False)
|
||||
def _enclosed_mass(rdist, mass, rmax, start_index):
|
||||
enclosed_mass = 0.
|
||||
|
||||
for i in range(start_index, len(rdist)):
|
||||
if rdist[i] <= rmax:
|
||||
enclosed_mass += mass[i]
|
||||
else:
|
||||
break
|
||||
|
||||
return enclosed_mass, i
|
||||
|
||||
|
||||
def particles_enclosed_mass(rdist, mass, distances):
|
||||
"""
|
||||
Calculate the enclosed mass at each distance from a set of particles. Note
|
||||
that the particles must be sorted by distance from the center of the box.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
rdist : 1-dimensional array
|
||||
Sorted distance of particles from the center of the box.
|
||||
mass : 1-dimensional array
|
||||
Sorted mass of particles.
|
||||
distances : 1-dimensional array
|
||||
Distances at which to calculate the enclosed mass.
|
||||
|
||||
Returns
|
||||
-------
|
||||
enclosed_mass : 1-dimensional array
|
||||
Enclosed mass at each distance.
|
||||
"""
|
||||
enclosed_mass = numpy.full_like(distances, 0.)
|
||||
start_index = 0
|
||||
for i, dist in enumerate(distances):
|
||||
if i > 0:
|
||||
enclosed_mass[i] += enclosed_mass[i - 1]
|
||||
|
||||
m, start_index = _enclosed_mass(rdist, mass, dist, start_index)
|
||||
enclosed_mass[i] += m
|
||||
|
||||
return enclosed_mass
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Enclosed mass from a density field #
|
||||
###############################################################################
|
||||
|
||||
|
||||
@jit(nopython=True)
|
||||
def _cell_rdist(i, j, k, Ncells, boxsize):
|
||||
"""Radial distance of the center of a cell from the center of the box."""
|
||||
xi = boxsize / Ncells * (i + 0.5) - boxsize / 2
|
||||
yi = boxsize / Ncells * (j + 0.5) - boxsize / 2
|
||||
zi = boxsize / Ncells * (k + 0.5) - boxsize / 2
|
||||
|
||||
return (xi**2 + yi**2 + zi**2)**0.5
|
||||
|
||||
|
||||
@jit(nopython=True, boundscheck=False)
|
||||
def _field_enclosed_mass(field, rmax, boxsize):
|
||||
Ncells = field.shape[0]
|
||||
cell_volume = (1000 * boxsize / Ncells)**3
|
||||
|
||||
mass = 0.
|
||||
volume = 0.
|
||||
for i in range(Ncells):
|
||||
for j in range(Ncells):
|
||||
for k in range(Ncells):
|
||||
if _cell_rdist(i, j, k, Ncells, boxsize) < rmax:
|
||||
mass += field[i, j, k]
|
||||
volume += 1.
|
||||
|
||||
return mass * cell_volume, volume * cell_volume
|
||||
|
||||
|
||||
def field_enclosed_mass(field, distances, boxsize):
|
||||
"""
|
||||
Calculate the approximate enclosed mass within a given radius from a
|
||||
density field, counts the mass in cells and volume of cells whose
|
||||
centers are within the radius.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
field : 3-dimensional array
|
||||
Density field in units of `h^2 Msun / kpc^3`.
|
||||
rmax : 1-dimensional array
|
||||
Radii to calculate the enclosed mass at in `Mpc / h`.
|
||||
boxsize : float
|
||||
Box size in `Mpc / h`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
enclosed_mass : 1-dimensional array
|
||||
Enclosed mass at each distance.
|
||||
enclosed_volume : 1-dimensional array
|
||||
Enclosed grid-like volume at each distance.
|
||||
"""
|
||||
enclosed_mass = numpy.zeros_like(distances)
|
||||
enclosed_volume = numpy.zeros_like(distances)
|
||||
for i, dist in enumerate(distances):
|
||||
enclosed_mass[i], enclosed_volume[i] = _field_enclosed_mass(
|
||||
field, dist, boxsize)
|
||||
|
||||
return enclosed_mass, enclosed_volume
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Enclosed momentum at each distance from particles #
|
||||
###############################################################################
|
||||
|
||||
|
||||
@jit(nopython=True, boundscheck=False)
|
||||
def _enclosed_momentum(rdist, mass, vel, rmax, start_index):
|
||||
bulk_momentum = numpy.zeros(3, dtype=rdist.dtype)
|
||||
|
||||
for i in range(start_index, len(rdist)):
|
||||
if rdist[i] <= rmax:
|
||||
bulk_momentum += mass[i] * vel[i]
|
||||
else:
|
||||
break
|
||||
|
||||
return bulk_momentum, i
|
||||
|
||||
|
||||
def particles_enclosed_momentum(rdist, mass, vel, distances):
|
||||
"""
|
||||
Calculate the enclosed momentum at each distance. Note that the particles
|
||||
must be sorted by distance from the center of the box.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
rdist : 1-dimensional array
|
||||
Sorted distance of particles from the center of the box.
|
||||
mass : 1-dimensional array
|
||||
Sorted mass of particles.
|
||||
vel : 2-dimensional array
|
||||
Sorted velocity of particles.
|
||||
distances : 1-dimensional array
|
||||
Distances at which to calculate the enclosed momentum.
|
||||
|
||||
Returns
|
||||
-------
|
||||
bulk_momentum : 2-dimensional array
|
||||
Enclosed momentum at each distance.
|
||||
"""
|
||||
bulk_momentum = numpy.zeros((len(distances), 3))
|
||||
start_index = 0
|
||||
for i, dist in enumerate(distances):
|
||||
if i > 0:
|
||||
bulk_momentum[i] += bulk_momentum[i - 1]
|
||||
|
||||
v, start_index = _enclosed_momentum(rdist, mass, vel, dist,
|
||||
start_index)
|
||||
bulk_momentum[i] += v
|
||||
|
||||
return bulk_momentum
|
|
@ -229,7 +229,7 @@ def dms_to_degrees(degrees, arcminutes=None, arcseconds=None):
|
|||
return degrees + (arcminutes or 0) / 60 + (arcseconds or 0) / 3600
|
||||
|
||||
|
||||
def real2redshift(pos, vel, observer_location, observer_velocity, box,
|
||||
def real2redshift(pos, vel, observer_location, observer_velocity, boxsize,
|
||||
periodic_wrap=True, make_copy=True):
|
||||
r"""
|
||||
Convert real-space position to redshift space position.
|
||||
|
@ -244,8 +244,8 @@ def real2redshift(pos, vel, observer_location, observer_velocity, box,
|
|||
Observer location in `Mpc / h`.
|
||||
observer_velocity: 1-dimensional array `(3,)`
|
||||
Observer velocity in `km / s`.
|
||||
box : py:class:`csiborg.read.CSiBORG1Box`
|
||||
Box units.
|
||||
boxsize : float
|
||||
Box size in `Mpc / h`.
|
||||
periodic_wrap : bool, optional
|
||||
Whether to wrap around the box, particles may be outside the default
|
||||
bounds once RSD is applied.
|
||||
|
@ -278,7 +278,6 @@ def real2redshift(pos, vel, observer_location, observer_velocity, box,
|
|||
vel += observer_velocity
|
||||
|
||||
if periodic_wrap:
|
||||
boxsize = box.box2mpc(1.)
|
||||
pos = periodic_wrap_grid(pos, boxsize)
|
||||
|
||||
return pos
|
||||
|
|
|
@ -1,37 +0,0 @@
|
|||
Various column names
|
||||
|
||||
Clump file columns:
|
||||
"index", "lev", "parent", "ncell", "peak_x", "peak_y", "peak_z", "rho-", "rho+", "rho_av", "mass_cl", "relevance"
|
||||
|
||||
Mergertree file columns:
|
||||
"clump", "progenitor", "prog outputnr", "desc mass", "desc npart", "desc x", "desc y", "desc z", "desc vx", "desc vy", "desc vz"
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
|
||||
The merger trees are stored in `output_XXXXX/mergertree_XXXXX.txtYYYYY` files. Each file contains 11 columns:
|
||||
|
||||
* `clump`: clump ID of a clump at this output number
|
||||
* `progenitor`: the progenitor clump ID in output number "prog_outputnr"
|
||||
* `prog_outputnr`: the output number of when the progenitor was an alive clump
|
||||
* `desc mass`: mass of the current clump.
|
||||
* `desc npart`: number of particles of the current clump.
|
||||
* `desc x,y,z`: x, y, z position of current clump.
|
||||
* `desc vx, vy, vz`: x, y, z velocities of current clump.
|
||||
|
||||
desc_mass and desc_npart will be either inclusive or exclusive, depending on how you set the `use_exclusive_mass` parameter.
|
||||
(See below for details)
|
||||
|
||||
**How to read the output:**
|
||||
|
||||
* A clump > 0 has progenitor > 0: Standard case. A direct progenitor from the adjacent previous snapshot was identified for this clump.
|
||||
* A clump > 0 has progenitor = 0: no progenitor could be established and the clump is treated as newly formed.
|
||||
* A clump > 0 has progenitor < 0: it means that no direct progenitor could be found in the adjacent previous snapshot, but a progenitor was identified from an earlier, non-adjacent snapshot.
|
||||
* A clump < 0 has progenitor > 0: this progenitor merged into this clump, but is not this clump's main progenitor.
|
||||
* A clump < 0 has progenitor < 0: this shouldn't happen.
|
||||
|
||||
### Visualisation
|
||||
|
||||
`ramses/utils/py/mergertreeplot.py` is a python 2 script to plot the merger trees as found by this patch.
|
||||
Details on options and usage are at the start of the script as a comment.
|
|
@ -1,13 +1,13 @@
|
|||
nthreads=6
|
||||
nthreads=1
|
||||
memory=64
|
||||
on_login=${1}
|
||||
queue="berg"
|
||||
env="/mnt/zfsusers/rstiskalek/csiborgtools/venv_csiborg/bin/python"
|
||||
file="field_prop.py"
|
||||
kind="radvel"
|
||||
simname="csiborg2_random"
|
||||
nsims="-1"
|
||||
MAS="SPH"
|
||||
kind="density"
|
||||
simname="csiborg1"
|
||||
nsims="9844"
|
||||
MAS="PCS"
|
||||
grid=1024
|
||||
|
||||
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright (C) 2022 Richard Stiskalek
|
||||
# Copyright (C) 2023 Richard Stiskalek
|
||||
# This program is free software; you can redistribute it and/or modify it
|
||||
# under the terms of the GNU General Public License as published by the
|
||||
# Free Software Foundation; either version 3 of the License, or (at your
|
||||
|
@ -27,7 +27,6 @@ from gc import collect
|
|||
import csiborgtools
|
||||
import numpy
|
||||
from tqdm import tqdm
|
||||
from numba import jit
|
||||
|
||||
from datetime import datetime
|
||||
|
||||
|
@ -132,167 +131,6 @@ def get_particles(reader, boxsize, get_velocity=True, verbose=True):
|
|||
return dist, mass
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Calculate the enclosed mass at each distance #
|
||||
###############################################################################
|
||||
|
||||
|
||||
@jit(nopython=True, boundscheck=False)
|
||||
def _enclosed_mass(rdist, mass, rmax, start_index):
|
||||
enclosed_mass = 0.
|
||||
|
||||
for i in range(start_index, len(rdist)):
|
||||
if rdist[i] <= rmax:
|
||||
enclosed_mass += mass[i]
|
||||
else:
|
||||
break
|
||||
|
||||
return enclosed_mass, i
|
||||
|
||||
|
||||
def enclosed_mass(rdist, mass, distances):
|
||||
"""
|
||||
Calculate the enclosed mass at each distance.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
rdist : 1-dimensional array
|
||||
Distance of particles from the center of the box.
|
||||
mass : 1-dimensional array
|
||||
Mass of particles.
|
||||
distances : 1-dimensional array
|
||||
Distances at which to calculate the enclosed mass.
|
||||
|
||||
Returns
|
||||
-------
|
||||
enclosed_mass : 1-dimensional array
|
||||
Enclosed mass at each distance.
|
||||
"""
|
||||
enclosed_mass = numpy.full_like(distances, 0.)
|
||||
start_index = 0
|
||||
for i, dist in enumerate(distances):
|
||||
if i > 0:
|
||||
enclosed_mass[i] += enclosed_mass[i - 1]
|
||||
|
||||
m, start_index = _enclosed_mass(rdist, mass, dist, start_index)
|
||||
enclosed_mass[i] += m
|
||||
|
||||
return enclosed_mass
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Calculate enclosed mass from a density field #
|
||||
###############################################################################
|
||||
|
||||
|
||||
@jit(nopython=True)
|
||||
def _cell_rdist(i, j, k, Ncells, boxsize):
|
||||
"""Radial distance of the center of a cell from the center of the box."""
|
||||
xi = boxsize / Ncells * (i + 0.5) - boxsize / 2
|
||||
yi = boxsize / Ncells * (j + 0.5) - boxsize / 2
|
||||
zi = boxsize / Ncells * (k + 0.5) - boxsize / 2
|
||||
|
||||
return (xi**2 + yi**2 + zi**2)**0.5
|
||||
|
||||
|
||||
@jit(nopython=True, boundscheck=False)
|
||||
def _field_enclosed_mass(field, rmax, boxsize):
|
||||
Ncells = field.shape[0]
|
||||
cell_volume = (1000 * boxsize / Ncells)**3
|
||||
|
||||
mass = 0.
|
||||
volume = 0.
|
||||
for i in range(Ncells):
|
||||
for j in range(Ncells):
|
||||
for k in range(Ncells):
|
||||
if _cell_rdist(i, j, k, Ncells, boxsize) < rmax:
|
||||
mass += field[i, j, k]
|
||||
volume += 1.
|
||||
|
||||
return mass * cell_volume, volume * cell_volume
|
||||
|
||||
|
||||
def field_enclosed_mass(field, distances, boxsize):
|
||||
"""
|
||||
Calculate the approximate enclosed mass within a given radius from a
|
||||
density field.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
field : 3-dimensional array
|
||||
Density field in units of `h^2 Msun / kpc^3`.
|
||||
rmax : 1-dimensional array
|
||||
Radii to calculate the enclosed mass at in `Mpc / h`.
|
||||
boxsize : float
|
||||
Box size in `Mpc / h`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
enclosed_mass : 1-dimensional array
|
||||
Enclosed mass at each distance.
|
||||
enclosed_volume : 1-dimensional array
|
||||
Enclosed grid-like volume at each distance.
|
||||
"""
|
||||
enclosed_mass = numpy.zeros_like(distances)
|
||||
enclosed_volume = numpy.zeros_like(distances)
|
||||
for i, dist in enumerate(distances):
|
||||
enclosed_mass[i], enclosed_volume[i] = _field_enclosed_mass(
|
||||
field, dist, boxsize)
|
||||
|
||||
return enclosed_mass, enclosed_volume
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Calculate the enclosed momentum at each distance #
|
||||
###############################################################################
|
||||
|
||||
|
||||
@jit(nopython=True, boundscheck=False)
|
||||
def _enclosed_momentum(rdist, mass, vel, rmax, start_index):
|
||||
bulk_momentum = numpy.zeros(3, dtype=rdist.dtype)
|
||||
|
||||
for i in range(start_index, len(rdist)):
|
||||
if rdist[i] <= rmax:
|
||||
bulk_momentum += mass[i] * vel[i]
|
||||
else:
|
||||
break
|
||||
|
||||
return bulk_momentum, i
|
||||
|
||||
|
||||
def enclosed_momentum(rdist, mass, vel, distances):
|
||||
"""
|
||||
Calculate the enclosed momentum at each distance.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
rdist : 1-dimensional array
|
||||
Distance of particles from the center of the box.
|
||||
mass : 1-dimensional array
|
||||
Mass of particles.
|
||||
vel : 2-dimensional array
|
||||
Velocity of particles.
|
||||
distances : 1-dimensional array
|
||||
Distances at which to calculate the enclosed momentum.
|
||||
|
||||
Returns
|
||||
-------
|
||||
bulk_momentum : 2-dimensional array
|
||||
Enclosed momentum at each distance.
|
||||
"""
|
||||
bulk_momentum = numpy.zeros((len(distances), 3))
|
||||
start_index = 0
|
||||
for i, dist in enumerate(distances):
|
||||
if i > 0:
|
||||
bulk_momentum[i] += bulk_momentum[i - 1]
|
||||
|
||||
v, start_index = _enclosed_momentum(rdist, mass, vel, dist,
|
||||
start_index)
|
||||
bulk_momentum[i] += v
|
||||
|
||||
return bulk_momentum
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Main & command line interface #
|
||||
###############################################################################
|
||||
|
@ -316,7 +154,7 @@ def main_borg(args, folder):
|
|||
else:
|
||||
raise ValueError(f"Unknown simname: `{args.simname}`.")
|
||||
|
||||
cumulative_mass[i, :], cumulative_volume[i, :] = field_enclosed_mass(
|
||||
cumulative_mass[i, :], cumulative_volume[i, :] = csiborgtools.field.field_enclosed_mass( # noqa
|
||||
field, distances, boxsize)
|
||||
|
||||
# Finally save the output
|
||||
|
@ -343,12 +181,14 @@ def main_csiborg(args, folder):
|
|||
rdist, mass, vel = get_particles(reader, boxsize, verbose=False)
|
||||
|
||||
# Calculate masses
|
||||
cumulative_mass[i, :] = enclosed_mass(rdist, mass, distances)
|
||||
mass135[i] = enclosed_mass(rdist, mass, [135])[0]
|
||||
cumulative_mass[i, :] = csiborgtools.field.particles_enclosed_mass(
|
||||
rdist, mass, distances)
|
||||
mass135[i] = csiborgtools.field.particles_enclosed_mass(
|
||||
rdist, mass, [135])[0]
|
||||
masstot[i] = numpy.sum(mass)
|
||||
|
||||
# Calculate velocities
|
||||
cumulative_velocity[i, ...] = enclosed_momentum(
|
||||
cumulative_velocity[i, ...] = csiborgtools.field.particles_enclosed_momentum( # noqa
|
||||
rdist, mass, vel, distances)
|
||||
for j in range(3): # Normalize the momentum to get velocity out of it.
|
||||
cumulative_velocity[i, :, j] /= cumulative_mass[i, :]
|
||||
|
|
437
scripts/mass_enclosed_8600.ipynb
Normal file
437
scripts/mass_enclosed_8600.ipynb
Normal file
File diff suppressed because one or more lines are too long
391
scripts/test_ic_generator.ipynb
Normal file
391
scripts/test_ic_generator.ipynb
Normal file
File diff suppressed because one or more lines are too long
Loading…
Reference in a new issue