Density field tests (#110)

* Add imports

* Remove file

* Add boxsize argument

* Add script

* Update script

* Edit script

* Add nbs
This commit is contained in:
Richard Stiskalek 2024-02-26 12:36:29 +00:00 committed by GitHub
parent b88c0703f6
commit 1c736aaede
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
8 changed files with 1027 additions and 213 deletions

View file

@ -15,6 +15,8 @@
from .density import (DensityField, PotentialField, TidalTensorField, # noqa
VelocityField, radial_velocity, power_spectrum, # noqa
overdensity_field) # noqa
from .enclosed_mass import (particles_enclosed_mass, # noqa
particles_enclosed_momentum, field_enclosed_mass) # noqa
from .interp import (evaluate_cartesian, evaluate_sky, field2rsp, # noqa
fill_outside, make_sky, observer_peculiar_velocity, # noqa
smoothen_field, field_at_distance) # noqa

View file

@ -0,0 +1,182 @@
# Copyright (C) 2023 Richard Stiskalek
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
import numpy
from numba import jit
###############################################################################
# Enclosed mass at each distance from particles #
###############################################################################
@jit(nopython=True, boundscheck=False)
def _enclosed_mass(rdist, mass, rmax, start_index):
enclosed_mass = 0.
for i in range(start_index, len(rdist)):
if rdist[i] <= rmax:
enclosed_mass += mass[i]
else:
break
return enclosed_mass, i
def particles_enclosed_mass(rdist, mass, distances):
"""
Calculate the enclosed mass at each distance from a set of particles. Note
that the particles must be sorted by distance from the center of the box.
Parameters
----------
rdist : 1-dimensional array
Sorted distance of particles from the center of the box.
mass : 1-dimensional array
Sorted mass of particles.
distances : 1-dimensional array
Distances at which to calculate the enclosed mass.
Returns
-------
enclosed_mass : 1-dimensional array
Enclosed mass at each distance.
"""
enclosed_mass = numpy.full_like(distances, 0.)
start_index = 0
for i, dist in enumerate(distances):
if i > 0:
enclosed_mass[i] += enclosed_mass[i - 1]
m, start_index = _enclosed_mass(rdist, mass, dist, start_index)
enclosed_mass[i] += m
return enclosed_mass
###############################################################################
# Enclosed mass from a density field #
###############################################################################
@jit(nopython=True)
def _cell_rdist(i, j, k, Ncells, boxsize):
"""Radial distance of the center of a cell from the center of the box."""
xi = boxsize / Ncells * (i + 0.5) - boxsize / 2
yi = boxsize / Ncells * (j + 0.5) - boxsize / 2
zi = boxsize / Ncells * (k + 0.5) - boxsize / 2
return (xi**2 + yi**2 + zi**2)**0.5
@jit(nopython=True, boundscheck=False)
def _field_enclosed_mass(field, rmax, boxsize):
Ncells = field.shape[0]
cell_volume = (1000 * boxsize / Ncells)**3
mass = 0.
volume = 0.
for i in range(Ncells):
for j in range(Ncells):
for k in range(Ncells):
if _cell_rdist(i, j, k, Ncells, boxsize) < rmax:
mass += field[i, j, k]
volume += 1.
return mass * cell_volume, volume * cell_volume
def field_enclosed_mass(field, distances, boxsize):
"""
Calculate the approximate enclosed mass within a given radius from a
density field, counts the mass in cells and volume of cells whose
centers are within the radius.
Parameters
----------
field : 3-dimensional array
Density field in units of `h^2 Msun / kpc^3`.
rmax : 1-dimensional array
Radii to calculate the enclosed mass at in `Mpc / h`.
boxsize : float
Box size in `Mpc / h`.
Returns
-------
enclosed_mass : 1-dimensional array
Enclosed mass at each distance.
enclosed_volume : 1-dimensional array
Enclosed grid-like volume at each distance.
"""
enclosed_mass = numpy.zeros_like(distances)
enclosed_volume = numpy.zeros_like(distances)
for i, dist in enumerate(distances):
enclosed_mass[i], enclosed_volume[i] = _field_enclosed_mass(
field, dist, boxsize)
return enclosed_mass, enclosed_volume
###############################################################################
# Enclosed momentum at each distance from particles #
###############################################################################
@jit(nopython=True, boundscheck=False)
def _enclosed_momentum(rdist, mass, vel, rmax, start_index):
bulk_momentum = numpy.zeros(3, dtype=rdist.dtype)
for i in range(start_index, len(rdist)):
if rdist[i] <= rmax:
bulk_momentum += mass[i] * vel[i]
else:
break
return bulk_momentum, i
def particles_enclosed_momentum(rdist, mass, vel, distances):
"""
Calculate the enclosed momentum at each distance. Note that the particles
must be sorted by distance from the center of the box.
Parameters
----------
rdist : 1-dimensional array
Sorted distance of particles from the center of the box.
mass : 1-dimensional array
Sorted mass of particles.
vel : 2-dimensional array
Sorted velocity of particles.
distances : 1-dimensional array
Distances at which to calculate the enclosed momentum.
Returns
-------
bulk_momentum : 2-dimensional array
Enclosed momentum at each distance.
"""
bulk_momentum = numpy.zeros((len(distances), 3))
start_index = 0
for i, dist in enumerate(distances):
if i > 0:
bulk_momentum[i] += bulk_momentum[i - 1]
v, start_index = _enclosed_momentum(rdist, mass, vel, dist,
start_index)
bulk_momentum[i] += v
return bulk_momentum

View file

@ -229,7 +229,7 @@ def dms_to_degrees(degrees, arcminutes=None, arcseconds=None):
return degrees + (arcminutes or 0) / 60 + (arcseconds or 0) / 3600
def real2redshift(pos, vel, observer_location, observer_velocity, box,
def real2redshift(pos, vel, observer_location, observer_velocity, boxsize,
periodic_wrap=True, make_copy=True):
r"""
Convert real-space position to redshift space position.
@ -244,8 +244,8 @@ def real2redshift(pos, vel, observer_location, observer_velocity, box,
Observer location in `Mpc / h`.
observer_velocity: 1-dimensional array `(3,)`
Observer velocity in `km / s`.
box : py:class:`csiborg.read.CSiBORG1Box`
Box units.
boxsize : float
Box size in `Mpc / h`.
periodic_wrap : bool, optional
Whether to wrap around the box, particles may be outside the default
bounds once RSD is applied.
@ -278,7 +278,6 @@ def real2redshift(pos, vel, observer_location, observer_velocity, box,
vel += observer_velocity
if periodic_wrap:
boxsize = box.box2mpc(1.)
pos = periodic_wrap_grid(pos, boxsize)
return pos

View file

@ -1,37 +0,0 @@
Various column names
Clump file columns:
"index", "lev", "parent", "ncell", "peak_x", "peak_y", "peak_z", "rho-", "rho+", "rho_av", "mass_cl", "relevance"
Mergertree file columns:
"clump", "progenitor", "prog outputnr", "desc mass", "desc npart", "desc x", "desc y", "desc z", "desc vx", "desc vy", "desc vz"
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
The merger trees are stored in `output_XXXXX/mergertree_XXXXX.txtYYYYY` files. Each file contains 11 columns:
* `clump`: clump ID of a clump at this output number
* `progenitor`: the progenitor clump ID in output number "prog_outputnr"
* `prog_outputnr`: the output number of when the progenitor was an alive clump
* `desc mass`: mass of the current clump.
* `desc npart`: number of particles of the current clump.
* `desc x,y,z`: x, y, z position of current clump.
* `desc vx, vy, vz`: x, y, z velocities of current clump.
desc_mass and desc_npart will be either inclusive or exclusive, depending on how you set the `use_exclusive_mass` parameter.
(See below for details)
**How to read the output:**
* A clump > 0 has progenitor > 0: Standard case. A direct progenitor from the adjacent previous snapshot was identified for this clump.
* A clump > 0 has progenitor = 0: no progenitor could be established and the clump is treated as newly formed.
* A clump > 0 has progenitor < 0: it means that no direct progenitor could be found in the adjacent previous snapshot, but a progenitor was identified from an earlier, non-adjacent snapshot.
* A clump < 0 has progenitor > 0: this progenitor merged into this clump, but is not this clump's main progenitor.
* A clump < 0 has progenitor < 0: this shouldn't happen.
### Visualisation
`ramses/utils/py/mergertreeplot.py` is a python 2 script to plot the merger trees as found by this patch.
Details on options and usage are at the start of the script as a comment.

View file

@ -1,13 +1,13 @@
nthreads=6
nthreads=1
memory=64
on_login=${1}
queue="berg"
env="/mnt/zfsusers/rstiskalek/csiborgtools/venv_csiborg/bin/python"
file="field_prop.py"
kind="radvel"
simname="csiborg2_random"
nsims="-1"
MAS="SPH"
kind="density"
simname="csiborg1"
nsims="9844"
MAS="PCS"
grid=1024

View file

@ -1,4 +1,4 @@
# Copyright (C) 2022 Richard Stiskalek
# Copyright (C) 2023 Richard Stiskalek
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
@ -27,7 +27,6 @@ from gc import collect
import csiborgtools
import numpy
from tqdm import tqdm
from numba import jit
from datetime import datetime
@ -132,167 +131,6 @@ def get_particles(reader, boxsize, get_velocity=True, verbose=True):
return dist, mass
###############################################################################
# Calculate the enclosed mass at each distance #
###############################################################################
@jit(nopython=True, boundscheck=False)
def _enclosed_mass(rdist, mass, rmax, start_index):
enclosed_mass = 0.
for i in range(start_index, len(rdist)):
if rdist[i] <= rmax:
enclosed_mass += mass[i]
else:
break
return enclosed_mass, i
def enclosed_mass(rdist, mass, distances):
"""
Calculate the enclosed mass at each distance.
Parameters
----------
rdist : 1-dimensional array
Distance of particles from the center of the box.
mass : 1-dimensional array
Mass of particles.
distances : 1-dimensional array
Distances at which to calculate the enclosed mass.
Returns
-------
enclosed_mass : 1-dimensional array
Enclosed mass at each distance.
"""
enclosed_mass = numpy.full_like(distances, 0.)
start_index = 0
for i, dist in enumerate(distances):
if i > 0:
enclosed_mass[i] += enclosed_mass[i - 1]
m, start_index = _enclosed_mass(rdist, mass, dist, start_index)
enclosed_mass[i] += m
return enclosed_mass
###############################################################################
# Calculate enclosed mass from a density field #
###############################################################################
@jit(nopython=True)
def _cell_rdist(i, j, k, Ncells, boxsize):
"""Radial distance of the center of a cell from the center of the box."""
xi = boxsize / Ncells * (i + 0.5) - boxsize / 2
yi = boxsize / Ncells * (j + 0.5) - boxsize / 2
zi = boxsize / Ncells * (k + 0.5) - boxsize / 2
return (xi**2 + yi**2 + zi**2)**0.5
@jit(nopython=True, boundscheck=False)
def _field_enclosed_mass(field, rmax, boxsize):
Ncells = field.shape[0]
cell_volume = (1000 * boxsize / Ncells)**3
mass = 0.
volume = 0.
for i in range(Ncells):
for j in range(Ncells):
for k in range(Ncells):
if _cell_rdist(i, j, k, Ncells, boxsize) < rmax:
mass += field[i, j, k]
volume += 1.
return mass * cell_volume, volume * cell_volume
def field_enclosed_mass(field, distances, boxsize):
"""
Calculate the approximate enclosed mass within a given radius from a
density field.
Parameters
----------
field : 3-dimensional array
Density field in units of `h^2 Msun / kpc^3`.
rmax : 1-dimensional array
Radii to calculate the enclosed mass at in `Mpc / h`.
boxsize : float
Box size in `Mpc / h`.
Returns
-------
enclosed_mass : 1-dimensional array
Enclosed mass at each distance.
enclosed_volume : 1-dimensional array
Enclosed grid-like volume at each distance.
"""
enclosed_mass = numpy.zeros_like(distances)
enclosed_volume = numpy.zeros_like(distances)
for i, dist in enumerate(distances):
enclosed_mass[i], enclosed_volume[i] = _field_enclosed_mass(
field, dist, boxsize)
return enclosed_mass, enclosed_volume
###############################################################################
# Calculate the enclosed momentum at each distance #
###############################################################################
@jit(nopython=True, boundscheck=False)
def _enclosed_momentum(rdist, mass, vel, rmax, start_index):
bulk_momentum = numpy.zeros(3, dtype=rdist.dtype)
for i in range(start_index, len(rdist)):
if rdist[i] <= rmax:
bulk_momentum += mass[i] * vel[i]
else:
break
return bulk_momentum, i
def enclosed_momentum(rdist, mass, vel, distances):
"""
Calculate the enclosed momentum at each distance.
Parameters
----------
rdist : 1-dimensional array
Distance of particles from the center of the box.
mass : 1-dimensional array
Mass of particles.
vel : 2-dimensional array
Velocity of particles.
distances : 1-dimensional array
Distances at which to calculate the enclosed momentum.
Returns
-------
bulk_momentum : 2-dimensional array
Enclosed momentum at each distance.
"""
bulk_momentum = numpy.zeros((len(distances), 3))
start_index = 0
for i, dist in enumerate(distances):
if i > 0:
bulk_momentum[i] += bulk_momentum[i - 1]
v, start_index = _enclosed_momentum(rdist, mass, vel, dist,
start_index)
bulk_momentum[i] += v
return bulk_momentum
###############################################################################
# Main & command line interface #
###############################################################################
@ -316,7 +154,7 @@ def main_borg(args, folder):
else:
raise ValueError(f"Unknown simname: `{args.simname}`.")
cumulative_mass[i, :], cumulative_volume[i, :] = field_enclosed_mass(
cumulative_mass[i, :], cumulative_volume[i, :] = csiborgtools.field.field_enclosed_mass( # noqa
field, distances, boxsize)
# Finally save the output
@ -343,12 +181,14 @@ def main_csiborg(args, folder):
rdist, mass, vel = get_particles(reader, boxsize, verbose=False)
# Calculate masses
cumulative_mass[i, :] = enclosed_mass(rdist, mass, distances)
mass135[i] = enclosed_mass(rdist, mass, [135])[0]
cumulative_mass[i, :] = csiborgtools.field.particles_enclosed_mass(
rdist, mass, distances)
mass135[i] = csiborgtools.field.particles_enclosed_mass(
rdist, mass, [135])[0]
masstot[i] = numpy.sum(mass)
# Calculate velocities
cumulative_velocity[i, ...] = enclosed_momentum(
cumulative_velocity[i, ...] = csiborgtools.field.particles_enclosed_momentum( # noqa
rdist, mass, vel, distances)
for j in range(3): # Normalize the momentum to get velocity out of it.
cumulative_velocity[i, :, j] /= cumulative_mass[i, :]

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long