mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-22 22:58:02 +00:00
Density field tests (#110)
* Add imports * Remove file * Add boxsize argument * Add script * Update script * Edit script * Add nbs
This commit is contained in:
parent
b88c0703f6
commit
1c736aaede
8 changed files with 1027 additions and 213 deletions
|
@ -15,6 +15,8 @@
|
||||||
from .density import (DensityField, PotentialField, TidalTensorField, # noqa
|
from .density import (DensityField, PotentialField, TidalTensorField, # noqa
|
||||||
VelocityField, radial_velocity, power_spectrum, # noqa
|
VelocityField, radial_velocity, power_spectrum, # noqa
|
||||||
overdensity_field) # noqa
|
overdensity_field) # noqa
|
||||||
|
from .enclosed_mass import (particles_enclosed_mass, # noqa
|
||||||
|
particles_enclosed_momentum, field_enclosed_mass) # noqa
|
||||||
from .interp import (evaluate_cartesian, evaluate_sky, field2rsp, # noqa
|
from .interp import (evaluate_cartesian, evaluate_sky, field2rsp, # noqa
|
||||||
fill_outside, make_sky, observer_peculiar_velocity, # noqa
|
fill_outside, make_sky, observer_peculiar_velocity, # noqa
|
||||||
smoothen_field, field_at_distance) # noqa
|
smoothen_field, field_at_distance) # noqa
|
||||||
|
|
182
csiborgtools/field/enclosed_mass.py
Normal file
182
csiborgtools/field/enclosed_mass.py
Normal file
|
@ -0,0 +1,182 @@
|
||||||
|
# Copyright (C) 2023 Richard Stiskalek
|
||||||
|
# This program is free software; you can redistribute it and/or modify it
|
||||||
|
# under the terms of the GNU General Public License as published by the
|
||||||
|
# Free Software Foundation; either version 3 of the License, or (at your
|
||||||
|
# option) any later version.
|
||||||
|
#
|
||||||
|
# This program is distributed in the hope that it will be useful, but
|
||||||
|
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
||||||
|
# Public License for more details.
|
||||||
|
#
|
||||||
|
# You should have received a copy of the GNU General Public License along
|
||||||
|
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||||
|
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||||
|
|
||||||
|
|
||||||
|
import numpy
|
||||||
|
from numba import jit
|
||||||
|
|
||||||
|
|
||||||
|
###############################################################################
|
||||||
|
# Enclosed mass at each distance from particles #
|
||||||
|
###############################################################################
|
||||||
|
|
||||||
|
|
||||||
|
@jit(nopython=True, boundscheck=False)
|
||||||
|
def _enclosed_mass(rdist, mass, rmax, start_index):
|
||||||
|
enclosed_mass = 0.
|
||||||
|
|
||||||
|
for i in range(start_index, len(rdist)):
|
||||||
|
if rdist[i] <= rmax:
|
||||||
|
enclosed_mass += mass[i]
|
||||||
|
else:
|
||||||
|
break
|
||||||
|
|
||||||
|
return enclosed_mass, i
|
||||||
|
|
||||||
|
|
||||||
|
def particles_enclosed_mass(rdist, mass, distances):
|
||||||
|
"""
|
||||||
|
Calculate the enclosed mass at each distance from a set of particles. Note
|
||||||
|
that the particles must be sorted by distance from the center of the box.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
rdist : 1-dimensional array
|
||||||
|
Sorted distance of particles from the center of the box.
|
||||||
|
mass : 1-dimensional array
|
||||||
|
Sorted mass of particles.
|
||||||
|
distances : 1-dimensional array
|
||||||
|
Distances at which to calculate the enclosed mass.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
enclosed_mass : 1-dimensional array
|
||||||
|
Enclosed mass at each distance.
|
||||||
|
"""
|
||||||
|
enclosed_mass = numpy.full_like(distances, 0.)
|
||||||
|
start_index = 0
|
||||||
|
for i, dist in enumerate(distances):
|
||||||
|
if i > 0:
|
||||||
|
enclosed_mass[i] += enclosed_mass[i - 1]
|
||||||
|
|
||||||
|
m, start_index = _enclosed_mass(rdist, mass, dist, start_index)
|
||||||
|
enclosed_mass[i] += m
|
||||||
|
|
||||||
|
return enclosed_mass
|
||||||
|
|
||||||
|
|
||||||
|
###############################################################################
|
||||||
|
# Enclosed mass from a density field #
|
||||||
|
###############################################################################
|
||||||
|
|
||||||
|
|
||||||
|
@jit(nopython=True)
|
||||||
|
def _cell_rdist(i, j, k, Ncells, boxsize):
|
||||||
|
"""Radial distance of the center of a cell from the center of the box."""
|
||||||
|
xi = boxsize / Ncells * (i + 0.5) - boxsize / 2
|
||||||
|
yi = boxsize / Ncells * (j + 0.5) - boxsize / 2
|
||||||
|
zi = boxsize / Ncells * (k + 0.5) - boxsize / 2
|
||||||
|
|
||||||
|
return (xi**2 + yi**2 + zi**2)**0.5
|
||||||
|
|
||||||
|
|
||||||
|
@jit(nopython=True, boundscheck=False)
|
||||||
|
def _field_enclosed_mass(field, rmax, boxsize):
|
||||||
|
Ncells = field.shape[0]
|
||||||
|
cell_volume = (1000 * boxsize / Ncells)**3
|
||||||
|
|
||||||
|
mass = 0.
|
||||||
|
volume = 0.
|
||||||
|
for i in range(Ncells):
|
||||||
|
for j in range(Ncells):
|
||||||
|
for k in range(Ncells):
|
||||||
|
if _cell_rdist(i, j, k, Ncells, boxsize) < rmax:
|
||||||
|
mass += field[i, j, k]
|
||||||
|
volume += 1.
|
||||||
|
|
||||||
|
return mass * cell_volume, volume * cell_volume
|
||||||
|
|
||||||
|
|
||||||
|
def field_enclosed_mass(field, distances, boxsize):
|
||||||
|
"""
|
||||||
|
Calculate the approximate enclosed mass within a given radius from a
|
||||||
|
density field, counts the mass in cells and volume of cells whose
|
||||||
|
centers are within the radius.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
field : 3-dimensional array
|
||||||
|
Density field in units of `h^2 Msun / kpc^3`.
|
||||||
|
rmax : 1-dimensional array
|
||||||
|
Radii to calculate the enclosed mass at in `Mpc / h`.
|
||||||
|
boxsize : float
|
||||||
|
Box size in `Mpc / h`.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
enclosed_mass : 1-dimensional array
|
||||||
|
Enclosed mass at each distance.
|
||||||
|
enclosed_volume : 1-dimensional array
|
||||||
|
Enclosed grid-like volume at each distance.
|
||||||
|
"""
|
||||||
|
enclosed_mass = numpy.zeros_like(distances)
|
||||||
|
enclosed_volume = numpy.zeros_like(distances)
|
||||||
|
for i, dist in enumerate(distances):
|
||||||
|
enclosed_mass[i], enclosed_volume[i] = _field_enclosed_mass(
|
||||||
|
field, dist, boxsize)
|
||||||
|
|
||||||
|
return enclosed_mass, enclosed_volume
|
||||||
|
|
||||||
|
|
||||||
|
###############################################################################
|
||||||
|
# Enclosed momentum at each distance from particles #
|
||||||
|
###############################################################################
|
||||||
|
|
||||||
|
|
||||||
|
@jit(nopython=True, boundscheck=False)
|
||||||
|
def _enclosed_momentum(rdist, mass, vel, rmax, start_index):
|
||||||
|
bulk_momentum = numpy.zeros(3, dtype=rdist.dtype)
|
||||||
|
|
||||||
|
for i in range(start_index, len(rdist)):
|
||||||
|
if rdist[i] <= rmax:
|
||||||
|
bulk_momentum += mass[i] * vel[i]
|
||||||
|
else:
|
||||||
|
break
|
||||||
|
|
||||||
|
return bulk_momentum, i
|
||||||
|
|
||||||
|
|
||||||
|
def particles_enclosed_momentum(rdist, mass, vel, distances):
|
||||||
|
"""
|
||||||
|
Calculate the enclosed momentum at each distance. Note that the particles
|
||||||
|
must be sorted by distance from the center of the box.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
rdist : 1-dimensional array
|
||||||
|
Sorted distance of particles from the center of the box.
|
||||||
|
mass : 1-dimensional array
|
||||||
|
Sorted mass of particles.
|
||||||
|
vel : 2-dimensional array
|
||||||
|
Sorted velocity of particles.
|
||||||
|
distances : 1-dimensional array
|
||||||
|
Distances at which to calculate the enclosed momentum.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
bulk_momentum : 2-dimensional array
|
||||||
|
Enclosed momentum at each distance.
|
||||||
|
"""
|
||||||
|
bulk_momentum = numpy.zeros((len(distances), 3))
|
||||||
|
start_index = 0
|
||||||
|
for i, dist in enumerate(distances):
|
||||||
|
if i > 0:
|
||||||
|
bulk_momentum[i] += bulk_momentum[i - 1]
|
||||||
|
|
||||||
|
v, start_index = _enclosed_momentum(rdist, mass, vel, dist,
|
||||||
|
start_index)
|
||||||
|
bulk_momentum[i] += v
|
||||||
|
|
||||||
|
return bulk_momentum
|
|
@ -229,7 +229,7 @@ def dms_to_degrees(degrees, arcminutes=None, arcseconds=None):
|
||||||
return degrees + (arcminutes or 0) / 60 + (arcseconds or 0) / 3600
|
return degrees + (arcminutes or 0) / 60 + (arcseconds or 0) / 3600
|
||||||
|
|
||||||
|
|
||||||
def real2redshift(pos, vel, observer_location, observer_velocity, box,
|
def real2redshift(pos, vel, observer_location, observer_velocity, boxsize,
|
||||||
periodic_wrap=True, make_copy=True):
|
periodic_wrap=True, make_copy=True):
|
||||||
r"""
|
r"""
|
||||||
Convert real-space position to redshift space position.
|
Convert real-space position to redshift space position.
|
||||||
|
@ -244,8 +244,8 @@ def real2redshift(pos, vel, observer_location, observer_velocity, box,
|
||||||
Observer location in `Mpc / h`.
|
Observer location in `Mpc / h`.
|
||||||
observer_velocity: 1-dimensional array `(3,)`
|
observer_velocity: 1-dimensional array `(3,)`
|
||||||
Observer velocity in `km / s`.
|
Observer velocity in `km / s`.
|
||||||
box : py:class:`csiborg.read.CSiBORG1Box`
|
boxsize : float
|
||||||
Box units.
|
Box size in `Mpc / h`.
|
||||||
periodic_wrap : bool, optional
|
periodic_wrap : bool, optional
|
||||||
Whether to wrap around the box, particles may be outside the default
|
Whether to wrap around the box, particles may be outside the default
|
||||||
bounds once RSD is applied.
|
bounds once RSD is applied.
|
||||||
|
@ -278,7 +278,6 @@ def real2redshift(pos, vel, observer_location, observer_velocity, box,
|
||||||
vel += observer_velocity
|
vel += observer_velocity
|
||||||
|
|
||||||
if periodic_wrap:
|
if periodic_wrap:
|
||||||
boxsize = box.box2mpc(1.)
|
|
||||||
pos = periodic_wrap_grid(pos, boxsize)
|
pos = periodic_wrap_grid(pos, boxsize)
|
||||||
|
|
||||||
return pos
|
return pos
|
||||||
|
|
|
@ -1,37 +0,0 @@
|
||||||
Various column names
|
|
||||||
|
|
||||||
Clump file columns:
|
|
||||||
"index", "lev", "parent", "ncell", "peak_x", "peak_y", "peak_z", "rho-", "rho+", "rho_av", "mass_cl", "relevance"
|
|
||||||
|
|
||||||
Mergertree file columns:
|
|
||||||
"clump", "progenitor", "prog outputnr", "desc mass", "desc npart", "desc x", "desc y", "desc z", "desc vx", "desc vy", "desc vz"
|
|
||||||
|
|
||||||
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
||||||
|
|
||||||
|
|
||||||
The merger trees are stored in `output_XXXXX/mergertree_XXXXX.txtYYYYY` files. Each file contains 11 columns:
|
|
||||||
|
|
||||||
* `clump`: clump ID of a clump at this output number
|
|
||||||
* `progenitor`: the progenitor clump ID in output number "prog_outputnr"
|
|
||||||
* `prog_outputnr`: the output number of when the progenitor was an alive clump
|
|
||||||
* `desc mass`: mass of the current clump.
|
|
||||||
* `desc npart`: number of particles of the current clump.
|
|
||||||
* `desc x,y,z`: x, y, z position of current clump.
|
|
||||||
* `desc vx, vy, vz`: x, y, z velocities of current clump.
|
|
||||||
|
|
||||||
desc_mass and desc_npart will be either inclusive or exclusive, depending on how you set the `use_exclusive_mass` parameter.
|
|
||||||
(See below for details)
|
|
||||||
|
|
||||||
**How to read the output:**
|
|
||||||
|
|
||||||
* A clump > 0 has progenitor > 0: Standard case. A direct progenitor from the adjacent previous snapshot was identified for this clump.
|
|
||||||
* A clump > 0 has progenitor = 0: no progenitor could be established and the clump is treated as newly formed.
|
|
||||||
* A clump > 0 has progenitor < 0: it means that no direct progenitor could be found in the adjacent previous snapshot, but a progenitor was identified from an earlier, non-adjacent snapshot.
|
|
||||||
* A clump < 0 has progenitor > 0: this progenitor merged into this clump, but is not this clump's main progenitor.
|
|
||||||
* A clump < 0 has progenitor < 0: this shouldn't happen.
|
|
||||||
|
|
||||||
### Visualisation
|
|
||||||
|
|
||||||
`ramses/utils/py/mergertreeplot.py` is a python 2 script to plot the merger trees as found by this patch.
|
|
||||||
Details on options and usage are at the start of the script as a comment.
|
|
|
@ -1,13 +1,13 @@
|
||||||
nthreads=6
|
nthreads=1
|
||||||
memory=64
|
memory=64
|
||||||
on_login=${1}
|
on_login=${1}
|
||||||
queue="berg"
|
queue="berg"
|
||||||
env="/mnt/zfsusers/rstiskalek/csiborgtools/venv_csiborg/bin/python"
|
env="/mnt/zfsusers/rstiskalek/csiborgtools/venv_csiborg/bin/python"
|
||||||
file="field_prop.py"
|
file="field_prop.py"
|
||||||
kind="radvel"
|
kind="density"
|
||||||
simname="csiborg2_random"
|
simname="csiborg1"
|
||||||
nsims="-1"
|
nsims="9844"
|
||||||
MAS="SPH"
|
MAS="PCS"
|
||||||
grid=1024
|
grid=1024
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
# Copyright (C) 2022 Richard Stiskalek
|
# Copyright (C) 2023 Richard Stiskalek
|
||||||
# This program is free software; you can redistribute it and/or modify it
|
# This program is free software; you can redistribute it and/or modify it
|
||||||
# under the terms of the GNU General Public License as published by the
|
# under the terms of the GNU General Public License as published by the
|
||||||
# Free Software Foundation; either version 3 of the License, or (at your
|
# Free Software Foundation; either version 3 of the License, or (at your
|
||||||
|
@ -27,7 +27,6 @@ from gc import collect
|
||||||
import csiborgtools
|
import csiborgtools
|
||||||
import numpy
|
import numpy
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
from numba import jit
|
|
||||||
|
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
|
|
||||||
|
@ -132,167 +131,6 @@ def get_particles(reader, boxsize, get_velocity=True, verbose=True):
|
||||||
return dist, mass
|
return dist, mass
|
||||||
|
|
||||||
|
|
||||||
###############################################################################
|
|
||||||
# Calculate the enclosed mass at each distance #
|
|
||||||
###############################################################################
|
|
||||||
|
|
||||||
|
|
||||||
@jit(nopython=True, boundscheck=False)
|
|
||||||
def _enclosed_mass(rdist, mass, rmax, start_index):
|
|
||||||
enclosed_mass = 0.
|
|
||||||
|
|
||||||
for i in range(start_index, len(rdist)):
|
|
||||||
if rdist[i] <= rmax:
|
|
||||||
enclosed_mass += mass[i]
|
|
||||||
else:
|
|
||||||
break
|
|
||||||
|
|
||||||
return enclosed_mass, i
|
|
||||||
|
|
||||||
|
|
||||||
def enclosed_mass(rdist, mass, distances):
|
|
||||||
"""
|
|
||||||
Calculate the enclosed mass at each distance.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
rdist : 1-dimensional array
|
|
||||||
Distance of particles from the center of the box.
|
|
||||||
mass : 1-dimensional array
|
|
||||||
Mass of particles.
|
|
||||||
distances : 1-dimensional array
|
|
||||||
Distances at which to calculate the enclosed mass.
|
|
||||||
|
|
||||||
Returns
|
|
||||||
-------
|
|
||||||
enclosed_mass : 1-dimensional array
|
|
||||||
Enclosed mass at each distance.
|
|
||||||
"""
|
|
||||||
enclosed_mass = numpy.full_like(distances, 0.)
|
|
||||||
start_index = 0
|
|
||||||
for i, dist in enumerate(distances):
|
|
||||||
if i > 0:
|
|
||||||
enclosed_mass[i] += enclosed_mass[i - 1]
|
|
||||||
|
|
||||||
m, start_index = _enclosed_mass(rdist, mass, dist, start_index)
|
|
||||||
enclosed_mass[i] += m
|
|
||||||
|
|
||||||
return enclosed_mass
|
|
||||||
|
|
||||||
|
|
||||||
###############################################################################
|
|
||||||
# Calculate enclosed mass from a density field #
|
|
||||||
###############################################################################
|
|
||||||
|
|
||||||
|
|
||||||
@jit(nopython=True)
|
|
||||||
def _cell_rdist(i, j, k, Ncells, boxsize):
|
|
||||||
"""Radial distance of the center of a cell from the center of the box."""
|
|
||||||
xi = boxsize / Ncells * (i + 0.5) - boxsize / 2
|
|
||||||
yi = boxsize / Ncells * (j + 0.5) - boxsize / 2
|
|
||||||
zi = boxsize / Ncells * (k + 0.5) - boxsize / 2
|
|
||||||
|
|
||||||
return (xi**2 + yi**2 + zi**2)**0.5
|
|
||||||
|
|
||||||
|
|
||||||
@jit(nopython=True, boundscheck=False)
|
|
||||||
def _field_enclosed_mass(field, rmax, boxsize):
|
|
||||||
Ncells = field.shape[0]
|
|
||||||
cell_volume = (1000 * boxsize / Ncells)**3
|
|
||||||
|
|
||||||
mass = 0.
|
|
||||||
volume = 0.
|
|
||||||
for i in range(Ncells):
|
|
||||||
for j in range(Ncells):
|
|
||||||
for k in range(Ncells):
|
|
||||||
if _cell_rdist(i, j, k, Ncells, boxsize) < rmax:
|
|
||||||
mass += field[i, j, k]
|
|
||||||
volume += 1.
|
|
||||||
|
|
||||||
return mass * cell_volume, volume * cell_volume
|
|
||||||
|
|
||||||
|
|
||||||
def field_enclosed_mass(field, distances, boxsize):
|
|
||||||
"""
|
|
||||||
Calculate the approximate enclosed mass within a given radius from a
|
|
||||||
density field.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
field : 3-dimensional array
|
|
||||||
Density field in units of `h^2 Msun / kpc^3`.
|
|
||||||
rmax : 1-dimensional array
|
|
||||||
Radii to calculate the enclosed mass at in `Mpc / h`.
|
|
||||||
boxsize : float
|
|
||||||
Box size in `Mpc / h`.
|
|
||||||
|
|
||||||
Returns
|
|
||||||
-------
|
|
||||||
enclosed_mass : 1-dimensional array
|
|
||||||
Enclosed mass at each distance.
|
|
||||||
enclosed_volume : 1-dimensional array
|
|
||||||
Enclosed grid-like volume at each distance.
|
|
||||||
"""
|
|
||||||
enclosed_mass = numpy.zeros_like(distances)
|
|
||||||
enclosed_volume = numpy.zeros_like(distances)
|
|
||||||
for i, dist in enumerate(distances):
|
|
||||||
enclosed_mass[i], enclosed_volume[i] = _field_enclosed_mass(
|
|
||||||
field, dist, boxsize)
|
|
||||||
|
|
||||||
return enclosed_mass, enclosed_volume
|
|
||||||
|
|
||||||
|
|
||||||
###############################################################################
|
|
||||||
# Calculate the enclosed momentum at each distance #
|
|
||||||
###############################################################################
|
|
||||||
|
|
||||||
|
|
||||||
@jit(nopython=True, boundscheck=False)
|
|
||||||
def _enclosed_momentum(rdist, mass, vel, rmax, start_index):
|
|
||||||
bulk_momentum = numpy.zeros(3, dtype=rdist.dtype)
|
|
||||||
|
|
||||||
for i in range(start_index, len(rdist)):
|
|
||||||
if rdist[i] <= rmax:
|
|
||||||
bulk_momentum += mass[i] * vel[i]
|
|
||||||
else:
|
|
||||||
break
|
|
||||||
|
|
||||||
return bulk_momentum, i
|
|
||||||
|
|
||||||
|
|
||||||
def enclosed_momentum(rdist, mass, vel, distances):
|
|
||||||
"""
|
|
||||||
Calculate the enclosed momentum at each distance.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
rdist : 1-dimensional array
|
|
||||||
Distance of particles from the center of the box.
|
|
||||||
mass : 1-dimensional array
|
|
||||||
Mass of particles.
|
|
||||||
vel : 2-dimensional array
|
|
||||||
Velocity of particles.
|
|
||||||
distances : 1-dimensional array
|
|
||||||
Distances at which to calculate the enclosed momentum.
|
|
||||||
|
|
||||||
Returns
|
|
||||||
-------
|
|
||||||
bulk_momentum : 2-dimensional array
|
|
||||||
Enclosed momentum at each distance.
|
|
||||||
"""
|
|
||||||
bulk_momentum = numpy.zeros((len(distances), 3))
|
|
||||||
start_index = 0
|
|
||||||
for i, dist in enumerate(distances):
|
|
||||||
if i > 0:
|
|
||||||
bulk_momentum[i] += bulk_momentum[i - 1]
|
|
||||||
|
|
||||||
v, start_index = _enclosed_momentum(rdist, mass, vel, dist,
|
|
||||||
start_index)
|
|
||||||
bulk_momentum[i] += v
|
|
||||||
|
|
||||||
return bulk_momentum
|
|
||||||
|
|
||||||
|
|
||||||
###############################################################################
|
###############################################################################
|
||||||
# Main & command line interface #
|
# Main & command line interface #
|
||||||
###############################################################################
|
###############################################################################
|
||||||
|
@ -316,7 +154,7 @@ def main_borg(args, folder):
|
||||||
else:
|
else:
|
||||||
raise ValueError(f"Unknown simname: `{args.simname}`.")
|
raise ValueError(f"Unknown simname: `{args.simname}`.")
|
||||||
|
|
||||||
cumulative_mass[i, :], cumulative_volume[i, :] = field_enclosed_mass(
|
cumulative_mass[i, :], cumulative_volume[i, :] = csiborgtools.field.field_enclosed_mass( # noqa
|
||||||
field, distances, boxsize)
|
field, distances, boxsize)
|
||||||
|
|
||||||
# Finally save the output
|
# Finally save the output
|
||||||
|
@ -343,12 +181,14 @@ def main_csiborg(args, folder):
|
||||||
rdist, mass, vel = get_particles(reader, boxsize, verbose=False)
|
rdist, mass, vel = get_particles(reader, boxsize, verbose=False)
|
||||||
|
|
||||||
# Calculate masses
|
# Calculate masses
|
||||||
cumulative_mass[i, :] = enclosed_mass(rdist, mass, distances)
|
cumulative_mass[i, :] = csiborgtools.field.particles_enclosed_mass(
|
||||||
mass135[i] = enclosed_mass(rdist, mass, [135])[0]
|
rdist, mass, distances)
|
||||||
|
mass135[i] = csiborgtools.field.particles_enclosed_mass(
|
||||||
|
rdist, mass, [135])[0]
|
||||||
masstot[i] = numpy.sum(mass)
|
masstot[i] = numpy.sum(mass)
|
||||||
|
|
||||||
# Calculate velocities
|
# Calculate velocities
|
||||||
cumulative_velocity[i, ...] = enclosed_momentum(
|
cumulative_velocity[i, ...] = csiborgtools.field.particles_enclosed_momentum( # noqa
|
||||||
rdist, mass, vel, distances)
|
rdist, mass, vel, distances)
|
||||||
for j in range(3): # Normalize the momentum to get velocity out of it.
|
for j in range(3): # Normalize the momentum to get velocity out of it.
|
||||||
cumulative_velocity[i, :, j] /= cumulative_mass[i, :]
|
cumulative_velocity[i, :, j] /= cumulative_mass[i, :]
|
||||||
|
|
437
scripts/mass_enclosed_8600.ipynb
Normal file
437
scripts/mass_enclosed_8600.ipynb
Normal file
File diff suppressed because one or more lines are too long
391
scripts/test_ic_generator.ipynb
Normal file
391
scripts/test_ic_generator.ipynb
Normal file
File diff suppressed because one or more lines are too long
Loading…
Reference in a new issue