mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-22 17:48:01 +00:00
Overlap calculation (#18)
* Move cosine similarity out * Basic overlap calculation * add overlap import * Add clump0 dict path * Update README * fix path bug * Save as dict instead * Change format to array of arrays * Update paths * Take fewer ICs for now * Change to structured array * Add overlap calculation * Start saving IDs * Add a blank space * Update TODO
This commit is contained in:
parent
13a9d11afe
commit
18f09767f4
6 changed files with 297 additions and 65 deletions
|
@ -7,14 +7,11 @@
|
|||
|
||||
|
||||
## Short-term TODO
|
||||
- [x] Add code to calculate the cross-correlation for resolved region only.
|
||||
- [ ] Calculate the spectra for all 101 boxes and visualise them.
|
||||
- [ ] See about the $z=70$ particles.
|
||||
- [ ] Implement the CIC binning.
|
||||
- [ ] Write a script to perform the matching on a node.
|
||||
|
||||
|
||||
## Long-term TODO
|
||||
- [ ] Calculate the cross-correlation in CSiBORG. Should see the scale of the constraints?
|
||||
- [ ] Find the distribution of particles in the first snapshot
|
||||
- [ ] Implement a custom model for matchin galaxies to halos.
|
||||
|
||||
|
||||
|
|
|
@ -13,6 +13,6 @@
|
|||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
|
||||
from .match import (brute_spatial_separation, RealisationsMatcher) # noqa
|
||||
from .match import (brute_spatial_separation, RealisationsMatcher, cosine_similarity, ParticleOverlap) # noqa
|
||||
from .num_density import (binned_counts, number_density) # noqa
|
||||
# from .correlation import (get_randoms_sphere, sphere_angular_tpcf) # noqa
|
||||
|
|
|
@ -79,6 +79,9 @@ class RealisationsMatcher:
|
|||
----------
|
||||
cats : :py:class`csiborgtools.read.CombinedHaloCatalogue`
|
||||
Combined halo catalogue to search.
|
||||
# NOTE add later
|
||||
# dtype : dtype, optional
|
||||
# Output precision. By default `numpy.float32`.
|
||||
"""
|
||||
_cats = None
|
||||
|
||||
|
@ -122,7 +125,216 @@ class RealisationsMatcher:
|
|||
"""
|
||||
return [i for i in range(self.cats.N) if i != n_sim]
|
||||
|
||||
def cosine_similarity(self, x, y):
|
||||
def _check_masskind(self, mass_kind):
|
||||
"""Check that `mass_kind` is a valid key."""
|
||||
if mass_kind not in self.cats[0].keys:
|
||||
raise ValueError("Invalid mass kind `{}`.".format(mass_kind))
|
||||
|
||||
@staticmethod
|
||||
def _cat2clump_mapping(cat_indxs, clump_indxs):
|
||||
"""
|
||||
Create a mapping from a catalogue array index to a clump array index.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
cat_indxs : 1-dimensional array
|
||||
Clump indices in the catalogue array.
|
||||
clump_indxs : 1-dimensional array
|
||||
Clump indices in the clump array.
|
||||
|
||||
Returns
|
||||
-------
|
||||
mapping : 1-dimensional array
|
||||
Mapping. The array indices match catalogue array and values are
|
||||
array positions in the clump array.
|
||||
"""
|
||||
mapping = numpy.full(cat_indxs.size, numpy.nan, dtype=int)
|
||||
__, ind1, ind2 = numpy.intersect1d(clump_indxs, cat_indxs,
|
||||
return_indices=True)
|
||||
mapping[ind2] = ind1
|
||||
return mapping
|
||||
|
||||
def cross_knn_position_single(self, n_sim, nmult=5, dlogmass=None,
|
||||
mass_kind="totpartmass", init_dist=False,
|
||||
overlap=False, verbose=True):
|
||||
r"""
|
||||
Find all neighbours within :math:`n_{\rm mult} R_{200c}` of halos in
|
||||
the `nsim`th simulation. Also enforces that the neighbours'
|
||||
:math:`\log M / M_\odot` be within `dlogmass` dex.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n_sim : int
|
||||
Index of an IC realisation in `self.cats` whose halos' neighbours
|
||||
in the remaining simulations to search for.
|
||||
nmult : float or int, optional
|
||||
Multiple of :math:`R_{200c}` within which to return neighbours. By
|
||||
default 5.
|
||||
dlogmass : float, optional
|
||||
Tolerance on mass logarithmic mass difference. By default `None`.
|
||||
mass_kind : str, optional
|
||||
The mass kind whose similarity is to be checked. Must be a valid
|
||||
catalogue key. By default `totpartmass`, i.e. the total particle
|
||||
mass associated with a halo.
|
||||
init_dist : bool, optional
|
||||
Whether to calculate separation of the initial CMs. By default
|
||||
`False`.
|
||||
overlap : bool, optional
|
||||
Whether to calculate overlap between clumps in the initial
|
||||
snapshot. By default `False`. Note that this operation is
|
||||
substantially slower.
|
||||
verbose : bool, optional
|
||||
Iterator verbosity flag. By default `True`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
matches : composite array
|
||||
Array, indices are `(n_sims - 1, 4, n_halos, n_matches)`. The
|
||||
2nd axis is `index` of the neighbouring halo in its catalogue,
|
||||
`dist` is the 3D distance to the halo whose neighbours are
|
||||
searched, `dist0` is the separation of the initial CMs and
|
||||
`overlap` is the overlap over the initial clumps, all respectively.
|
||||
The latter two are calculated only if `init_dist` or `overlap` is
|
||||
`True`.
|
||||
|
||||
TODO:
|
||||
- [ ] Precalculate the mapping from halo index to clump array position
|
||||
"""
|
||||
self._check_masskind(mass_kind)
|
||||
# Radius, mass and positions of halos in `n_sim` IC realisation
|
||||
logmass = numpy.log10(self.cats[n_sim][mass_kind])
|
||||
R = self.cats[n_sim]["r200"]
|
||||
pos = self.cats[n_sim].positions
|
||||
if init_dist:
|
||||
pos0 = self.cats[n_sim].positions0 # These are CM positions
|
||||
if overlap:
|
||||
if verbose:
|
||||
print("Loading initial clump particles for `n_sim = {}`."
|
||||
.format(n_sim))
|
||||
# Grab a paths object. What it is set to is unimportant
|
||||
paths = self.cats[0].paths
|
||||
with open(paths.clump0_path(self.cats.n_sims[n_sim]), "rb") as f:
|
||||
clumps0 = numpy.load(f, allow_pickle=True)
|
||||
overlapper = ParticleOverlap()
|
||||
cat2clumps0 = self._cat2clump_mapping(self.cats[n_sim]["index"],
|
||||
clumps0["ID"])
|
||||
|
||||
matches = [None] * (self.cats.N - 1)
|
||||
# Verbose iterator
|
||||
if verbose:
|
||||
iters = enumerate(tqdm(self.search_sim_indices(n_sim)))
|
||||
else:
|
||||
iters = enumerate(self.search_sim_indices(n_sim))
|
||||
iters = enumerate(self.search_sim_indices(n_sim))
|
||||
# Search for neighbours in the other simulations
|
||||
for count, i in iters:
|
||||
dist, indxs = self.cats[i].radius_neigbours(pos, R * nmult)
|
||||
# Get rid of neighbors whose mass is too off
|
||||
if dlogmass is not None:
|
||||
for j, indx in enumerate(indxs):
|
||||
match_logmass = numpy.log10(self.cats[i][mass_kind][indx])
|
||||
mask = numpy.abs(match_logmass - logmass[j]) < dlogmass
|
||||
dist[j] = dist[j][mask]
|
||||
indxs[j] = indx[mask]
|
||||
|
||||
# Find distance to the between the initial CM
|
||||
dist0 = [numpy.asanyarray([], dtype=numpy.float64)] * dist.size
|
||||
if init_dist:
|
||||
with_neigbours = numpy.where([ii.size > 0 for ii in indxs])[0]
|
||||
# Fill the pre-allocated array on positions with neighbours
|
||||
for k in with_neigbours:
|
||||
dist0[k] = numpy.linalg.norm(
|
||||
pos0[k] - self.cats[i].positions0[indxs[k]], axis=1)
|
||||
|
||||
# Calculate the initial snapshot overlap
|
||||
cross = [numpy.asanyarray([], dtype=numpy.float64)] * dist.size
|
||||
if overlap:
|
||||
if verbose:
|
||||
print("Loading initial clump particles for `n_sim = {}` "
|
||||
"to compare against `n_sim = {}`.".format(i, n_sim))
|
||||
with open(paths.clump0_path(self.cats.n_sims[i]), 'rb') as f:
|
||||
clumpsx = numpy.load(f, allow_pickle=True)
|
||||
cat2clumpsx = self._cat2clump_mapping(self.cats[i]["index"],
|
||||
clumpsx["ID"])
|
||||
|
||||
# Loop only over halos that have neighbours
|
||||
with_neigbours = numpy.where([ii.size > 0 for ii in indxs])[0]
|
||||
for k in tqdm(with_neigbours) if verbose else with_neigbours:
|
||||
# Find which clump matches index of this halo from cat
|
||||
match0 = cat2clumps0[k]
|
||||
|
||||
# Get the clump and pre-calculate its cell assignment
|
||||
cl0 = clumps0["clump"][match0]
|
||||
cl0_cells = overlapper.assign_to_cell(
|
||||
*(cl0[p] for p in ('x', 'y', 'z')))
|
||||
dint = numpy.full(indxs[k].size, numpy.nan, numpy.float64)
|
||||
|
||||
# Loop over the ones we cross-correlate with
|
||||
for ii, ind in enumerate(indxs[k]):
|
||||
# Again which cross clump to this index
|
||||
matchx = cat2clumpsx[ind]
|
||||
dint[ii] = overlapper.mass_overlap(
|
||||
cl0, clumpsx["clump"][matchx], cl0_cells)
|
||||
|
||||
cross[k] = dint
|
||||
|
||||
# Append as a composite array
|
||||
matches[count] = numpy.asarray(
|
||||
[indxs, dist, dist0, cross], dtype=object)
|
||||
|
||||
return numpy.asarray(matches, dtype=object)
|
||||
|
||||
def cross_knn_position_all(self, nmult=5, dlogmass=None,
|
||||
mass_kind="totpartmass", init_dist=False,
|
||||
overlap=False, verbose=True):
|
||||
r"""
|
||||
Find all neighbours within :math:`n_{\rm mult} R_{200c}` of halos in
|
||||
all simulations listed in `self.cats`. Also enforces that the
|
||||
neighbours' :math:`\log M_{200c}` be within `dlogmass` dex.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nmult : float or int, optional
|
||||
Multiple of :math:`R_{200c}` within which to return neighbours. By
|
||||
default 5.
|
||||
dlogmass : float, optional
|
||||
Tolerance on mass logarithmic mass difference. By default `None`.
|
||||
mass_kind : str, optional
|
||||
The mass kind whose similarity is to be checked. Must be a valid
|
||||
catalogue key. By default `totpartmass`, i.e. the total particle
|
||||
mass associated with a halo.
|
||||
init_dist : bool, optional
|
||||
Whether to calculate separation of the initial CMs. By default
|
||||
`False`.
|
||||
overlap : bool, optional
|
||||
Whether to calculate overlap between clumps in the initial
|
||||
snapshot. By default `False`. Note that this operation is
|
||||
substantially slower.
|
||||
verbose : bool, optional
|
||||
Iterator verbosity flag. By default `True`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
matches : list of composite arrays
|
||||
List whose length is `n_sims`. For description of its elements see
|
||||
`self.cross_knn_position_single(...)`.
|
||||
"""
|
||||
N = self.cats.N # Number of catalogues
|
||||
matches = [None] * N
|
||||
# Loop over each catalogue
|
||||
for i in trange(N) if verbose else range(N):
|
||||
matches[i] = self.cross_knn_position_single(
|
||||
i, nmult, dlogmass, mass_kind=mass_kind, init_dist=init_dist,
|
||||
overlap=overlap, verbose=verbose)
|
||||
return matches
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Matching statistics #
|
||||
###############################################################################
|
||||
|
||||
|
||||
def cosine_similarity(x, y):
|
||||
r"""
|
||||
Calculate the cosine similarity between two Cartesian vectors. Defined
|
||||
as :math:`\Sum_{i} x_i y_{i} / (|x| * |y|)`.
|
||||
|
@ -152,104 +364,96 @@ class RealisationsMatcher:
|
|||
return out[0]
|
||||
return out
|
||||
|
||||
def cross_knn_position_single(self, n_sim, nmult=5, dlogmass=None,
|
||||
init_dist=False, verbose=True):
|
||||
r"""
|
||||
Find all neighbours within :math:`n_{\rm mult} R_{200c}` of halos in
|
||||
the `nsim`th simulation. Also enforces that the neighbours'
|
||||
:math:`\log M_{200c}` be within `dlogmass` dex.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n_sim : int
|
||||
Index of an IC realisation in `self.cats` whose halos' neighbours
|
||||
in the remaining simulations to search for.
|
||||
nmult : float or int, optional
|
||||
Multiple of :math:`R_{200c}` within which to return neighbours. By
|
||||
default 5.
|
||||
dlogmass : float, optional
|
||||
Tolerance on mass logarithmic mass difference. By default `None`.
|
||||
init_dist : bool, optional
|
||||
Whether to calculate separation of the initial CMs. By default
|
||||
`False`.
|
||||
verbose : bool, optional
|
||||
Iterator verbosity flag. By default `True`.
|
||||
class ParticleOverlap:
|
||||
"""
|
||||
TODO:
|
||||
- [ ] Class documentation
|
||||
"""
|
||||
_bins = None
|
||||
|
||||
def __init__(self, bins=None):
|
||||
if bins is None:
|
||||
dx = 1 / 2**11
|
||||
bins = numpy.arange(0, 1 + dx, dx)
|
||||
self.bins = bins
|
||||
|
||||
@property
|
||||
def bins(self):
|
||||
"""
|
||||
The grid spacing. Assumed to be equal for all three dimensions. Units
|
||||
ought to match the requested coordinates.
|
||||
|
||||
Returns
|
||||
-------
|
||||
matches : composite array
|
||||
Array, indices are `(n_sims - 1, 3, n_halos, n_matches)`. The
|
||||
2nd axis is `index` of the neighbouring halo in its catalogue,
|
||||
`dist`, which is the 3D distance to the halo whose neighbours are
|
||||
searched, and `dist0` which is the separation of the initial CMs.
|
||||
The latter is calculated only if `init_dist` is `True`.
|
||||
bins : 1-dimensional array
|
||||
"""
|
||||
# Radius, M200c and positions of halos in `n_sim` IC realisation
|
||||
logm200 = numpy.log10(self.cats[n_sim]["m200"])
|
||||
R = self.cats[n_sim]["r200"]
|
||||
pos = self.cats[n_sim].positions
|
||||
if init_dist:
|
||||
pos0 = self.cats[n_sim].positions0 # These are CM positions
|
||||
matches = [None] * (self.cats.N - 1)
|
||||
# Verbose iterator
|
||||
if verbose:
|
||||
iters = enumerate(tqdm(self.search_sim_indices(n_sim)))
|
||||
else:
|
||||
iters = enumerate(self.search_sim_indices(n_sim))
|
||||
# Search for neighbours in the other simulations
|
||||
for count, i in iters:
|
||||
dist, indxs = self.cats[i].radius_neigbours(pos, R * nmult)
|
||||
# Get rid of neighbors whose mass is too off
|
||||
if dlogmass is not None:
|
||||
for j, indx in enumerate(indxs):
|
||||
match_logm200 = numpy.log10(self.cats[i]["m200"][indx])
|
||||
mask = numpy.abs(match_logm200 - logm200[j]) < dlogmass
|
||||
dist[j] = dist[j][mask]
|
||||
indxs[j] = indx[mask]
|
||||
# Find distance to the between the initial CM
|
||||
dist0 = [numpy.asanyarray([], dtype=numpy.float64)] * dist.size
|
||||
if init_dist:
|
||||
with_neigbours = numpy.where([ii.size > 0 for ii in indxs])[0]
|
||||
# Fill the pre-allocated array on positions with neighbours
|
||||
for k in with_neigbours:
|
||||
dist0[k] = numpy.linalg.norm(
|
||||
pos0[k] - self.cats[i].positions0[indxs[k]], axis=1)
|
||||
return self._bins
|
||||
|
||||
# Append as a composite array
|
||||
matches[count] = numpy.asarray([indxs, dist, dist0], dtype=object)
|
||||
@bins.setter
|
||||
def bins(self, bins):
|
||||
"""Sets `bins`."""
|
||||
bins = numpy.asarray(bins) if isinstance(bins, list) else bins
|
||||
assert bins.ndim == 1, "`bins` must be a 1-dimensional array."
|
||||
self._bins = bins
|
||||
|
||||
return numpy.asarray(matches, dtype=object)
|
||||
|
||||
def cross_knn_position_all(self, nmult=5, dlogmass=None,
|
||||
init_dist=False, verbose=True):
|
||||
r"""
|
||||
Find all neighbours within :math:`n_{\rm mult} R_{200c}` of halos in
|
||||
all simulations listed in `self.cats`. Also enforces that the
|
||||
neighbours' :math:`\log M_{200c}` be within `dlogmass` dex.
|
||||
def assign_to_cell(self, x, y, z):
|
||||
"""
|
||||
Assign particles specified by coordinates `x`, `y`, and `z` to grid
|
||||
cells.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nmult : float or int, optional
|
||||
Multiple of :math:`R_{200c}` within which to return neighbours. By
|
||||
default 5.
|
||||
dlogmass : float, optional
|
||||
Tolerance on mass logarithmic mass difference. By default `None`.
|
||||
init_dist : bool, optional
|
||||
Whether to calculate separation of the initial CMs. By default
|
||||
`False`.
|
||||
verbose : bool, optional
|
||||
Iterator verbosity flag. By default `True`.
|
||||
x, y, z : 1-dimensional arrays
|
||||
Positions of particles in the box.
|
||||
|
||||
Returns
|
||||
-------
|
||||
matches : list of composite arrays
|
||||
List whose length is `n_sims`. For description of its elements see
|
||||
`self.cross_knn_position_single(...)`.
|
||||
cells : 1-dimensional array
|
||||
Cell ID of each particle.
|
||||
"""
|
||||
N = self.cats.N # Number of catalogues
|
||||
matches = [None] * N
|
||||
# Loop over each catalogue
|
||||
for i in trange(N) if verbose else range(N):
|
||||
matches[i] = self.cross_knn_position_single(
|
||||
i, nmult, dlogmass, init_dist)
|
||||
return matches
|
||||
assert x.ndim == 1 and x.size == y.size == z.size
|
||||
xbin = numpy.digitize(x, self.bins)
|
||||
ybin = numpy.digitize(y, self.bins)
|
||||
zbin = numpy.digitize(z, self.bins)
|
||||
N = self.bins.size
|
||||
|
||||
return xbin + ybin * N + zbin * N**2
|
||||
|
||||
def mass_overlap(self, clump1, clump2, cells1=None):
|
||||
r"""
|
||||
Calculate the particle, mass-weighted overlap between two halos.
|
||||
Defined as
|
||||
|
||||
..math::
|
||||
(M_{u,1} + M_{u,2}) / (M_1 + M_2),
|
||||
|
||||
where :math:`M_{u, 1}` is the mass of particles of the first halo in
|
||||
cells that are also present in the second halo and :math:`M_1` is the
|
||||
total particle mass of the first halo.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
clump1, clump2 : structured arrays
|
||||
Structured arrays corresponding to the two clumps. Should contain
|
||||
keys `x`, `y`, `z` and `M`.
|
||||
cells1 : 1-dimensional array, optional
|
||||
Optionlaly precomputed cells of `clump1`. Be careful when using
|
||||
this to ensure it matches `clump1`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
overlap : float
|
||||
"""
|
||||
# 1-dimensional cell ID of each particle in clump1 and clump2
|
||||
if cells1 is None:
|
||||
cells1 = self.assign_to_cell(*[clump1[p] for p in ('x', 'y', 'z')])
|
||||
cells2 = self.assign_to_cell(*[clump2[p] for p in ('x', 'y', 'z')])
|
||||
# Elementwise cells1 in cells2 and vice versa
|
||||
m1 = numpy.isin(cells1, cells2)
|
||||
m2 = numpy.isin(cells2, cells1)
|
||||
# Summed shared mass and the total
|
||||
interp = numpy.sum(clump1["M"][m1]) + numpy.sum(clump2["M"][m2])
|
||||
mtot = numpy.sum(clump1["M"]) + numpy.sum(clump2["M"])
|
||||
|
||||
return interp / mtot
|
||||
|
|
|
@ -378,7 +378,8 @@ class CombinedHaloCatalogue:
|
|||
def __init__(self, paths, min_m500=None, max_dist=None, verbose=True):
|
||||
# Read simulations and their maximum snapshots
|
||||
# NOTE later change this back to all simulations
|
||||
self._n_sims = [7468, 7588, 8020, 8452, 8836]
|
||||
# self._n_sims = [7468, 7588, 8020, 8452, 8836]
|
||||
self._n_sims = [7468, 7588]
|
||||
# self._n_sims = paths.ic_ids
|
||||
n_snaps = [paths.get_maximum_snapshot(i) for i in self._n_sims]
|
||||
self._n_snaps = numpy.asanyarray(n_snaps)
|
||||
|
|
|
@ -72,7 +72,6 @@ class CSiBORGPaths:
|
|||
_initmatch_path = None
|
||||
_to_new = None
|
||||
|
||||
# NOTE deuglify this stuff
|
||||
def __init__(self, n_sim=None, n_snap=None, srcdir=None, dumpdir=None,
|
||||
mmain_path=None, initmatch_path=None, to_new=False):
|
||||
if srcdir is None:
|
||||
|
@ -425,6 +424,24 @@ class CSiBORGPaths:
|
|||
n_sim = self.get_n_sim(n_sim)
|
||||
return min(self.get_snapshots(n_sim))
|
||||
|
||||
def clump0_path(self, nsim):
|
||||
"""
|
||||
Path to a single dumped clump's particles. This is expected to point
|
||||
to a dictonary whose keys are the clump indices and items structured
|
||||
arrays with the clump's particles in the initial snapshot.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsim : int
|
||||
Index of the initial conditions (IC) realisation.
|
||||
|
||||
Returns
|
||||
-------
|
||||
path : str
|
||||
"""
|
||||
cdir = join(self.dumpdir, "initmatch")
|
||||
return join(cdir, "clump_{}_{}.npy".format(nsim, "particles"))
|
||||
|
||||
def snapshot_path(self, n_snap=None, n_sim=None):
|
||||
"""
|
||||
Path to a CSiBORG IC realisation snapshot.
|
||||
|
@ -839,7 +856,7 @@ def read_mmain(n, srcdir, fname="Mmain_{}.npy"):
|
|||
return out
|
||||
|
||||
|
||||
def read_initcm(n, srcdir, fname="clump_cm_{}.npy"):
|
||||
def read_initcm(n, srcdir, fname="clump_{}_cm.npy"):
|
||||
"""
|
||||
Read `clump_cm`, i.e. the center of mass of a clump at redshift z = 70.
|
||||
If the file does not exist returns `None`.
|
||||
|
|
|
@ -24,8 +24,7 @@ import numpy
|
|||
from datetime import datetime
|
||||
from mpi4py import MPI
|
||||
from distutils.util import strtobool
|
||||
from os.path import join, isdir
|
||||
from os import mkdir
|
||||
from os.path import join
|
||||
from os import remove
|
||||
from sys import stdout
|
||||
from gc import collect
|
||||
|
@ -51,21 +50,15 @@ fin_paths = csiborgtools.read.CSiBORGPaths(to_new=False)
|
|||
nsims = init_paths.ic_ids
|
||||
|
||||
# Output files
|
||||
dumpdir = "/mnt/extraspace/rstiskalek/csiborg/initmatch"
|
||||
ftemp = join(dumpdir, "temp", "temp_{}_{}.npy")
|
||||
fperm = join(dumpdir, "clump_cm_{}.npy")
|
||||
dumpdir = "/mnt/extraspace/rstiskalek/csiborg/"
|
||||
ftemp = join(dumpdir, "temp_initmatch", "temp_{}_{}_{}.npy")
|
||||
fpermcm = join(dumpdir, "initmatch", "clump_{}_cm.npy")
|
||||
fpermpart = join(dumpdir, "initmatch", "clump_{}_particles.npy")
|
||||
|
||||
for nsim in nsims:
|
||||
if rank == 0:
|
||||
print("{}: reading simulation {}.".format(datetime.now(), nsim))
|
||||
stdout.flush()
|
||||
# Check that the output folder for this sim exists
|
||||
clumpdumpdir = join(dumpdir, "out_{}".format(nsim))
|
||||
if args.dump_clumps and rank == 0 and not isdir(clumpdumpdir):
|
||||
mkdir(clumpdumpdir)
|
||||
|
||||
# Barrier to make sure we created the directory with the rank 0
|
||||
comm.Barrier()
|
||||
|
||||
# Set the snapshot numbers
|
||||
init_paths.set_info(nsim, init_paths.get_minimum_snapshot(nsim))
|
||||
|
@ -111,15 +104,16 @@ for nsim in nsims:
|
|||
cm = numpy.asanyarray(
|
||||
[numpy.average(x0[p], weights=x0["M"]) for p in ('x', 'y', 'z')])
|
||||
# Dump the center of mass
|
||||
with open(ftemp.format(nsim, n), 'wb') as f:
|
||||
with open(ftemp.format(nsim, n, "cm"), 'wb') as f:
|
||||
numpy.save(f, cm)
|
||||
# Optionally dump the entire clump
|
||||
if args.dump_clumps:
|
||||
fout = join(clumpdumpdir, "clump_{}.npy".format(n))
|
||||
stdout.flush()
|
||||
with open(fout, "wb") as f:
|
||||
with open(ftemp.format(nsim, n, "clump"), "wb") as f:
|
||||
numpy.save(f, x0)
|
||||
|
||||
del part0, clump_ids
|
||||
collect()
|
||||
|
||||
comm.Barrier()
|
||||
if rank == 0:
|
||||
print("Collecting CM files...")
|
||||
|
@ -130,14 +124,33 @@ for nsim in nsims:
|
|||
out = numpy.full(njobs, numpy.nan, dtype=dtype)
|
||||
|
||||
for i, n in enumerate(unique_clumpids):
|
||||
with open(ftemp.format(nsim, n), 'rb') as f:
|
||||
fpath = ftemp.format(nsim, n, "cm")
|
||||
with open(fpath, 'rb') as f:
|
||||
fin = numpy.load(f)
|
||||
out['x'][i] = fin[0]
|
||||
out['y'][i] = fin[1]
|
||||
out['z'][i] = fin[2]
|
||||
out["ID"][i] = n
|
||||
remove(ftemp.format(nsim, n))
|
||||
|
||||
print("Dumping CM files to .. `{}`.".format(fperm.format(nsim)))
|
||||
with open(fperm.format(nsim), 'wb') as f:
|
||||
remove(fpath)
|
||||
print("Dumping CM files to .. `{}`.".format(fpermcm.format(nsim)))
|
||||
with open(fpermcm.format(nsim), 'wb') as f:
|
||||
numpy.save(f, out)
|
||||
|
||||
print("Collecting clump files...")
|
||||
stdout.flush()
|
||||
out = [None] * unique_clumpids.size
|
||||
dtype = {"names": ["clump", "ID"], "formats": [object, numpy.int32]}
|
||||
out = numpy.full(unique_clumpids.size, numpy.nan, dtype=dtype)
|
||||
for i, n in enumerate(unique_clumpids):
|
||||
fpath = ftemp.format(nsim, n, "clump")
|
||||
with open(fpath, 'rb') as f:
|
||||
fin = numpy.load(f)
|
||||
out["clump"][i] = fin
|
||||
out["ID"][i] = n
|
||||
remove(fpath)
|
||||
print("Dumping clump files to .. `{}`.".format(fpermpart.format(nsim)))
|
||||
with open(fpermpart.format(nsim), "wb") as f:
|
||||
numpy.save(f, out)
|
||||
|
||||
del out
|
||||
collect()
|
||||
|
|
Loading…
Reference in a new issue