X-ray data (#9)

* add xray reading

* add import

* add more comments

* add data

* add nb

* add MCXC shortcut

* add match indxs to Planck of MCXC

* add import

* update TODO

* update readme

* add famous clusters

* add 2mpp_groups

* shorten paths

* add 2M++ groups

* add import

* Update TODO
This commit is contained in:
Richard Stiskalek 2022-11-10 07:40:44 +00:00 committed by GitHub
parent f69def9878
commit 17badf2652
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
6 changed files with 3350 additions and 21 deletions

View file

@ -1,9 +1,10 @@
# CSiBORG tools # CSiBORG tools
## :scroll: Short-term TODO ## :scroll: Short-term TODO
- [ ] Add half-mass radius and its corresponding concentration. - [x] Add the X-ray clusters
- [ ] Model the Planck SZ selection function. - [x] Match the X-ray clusters to Planck
- [ ] Calculate catalogues for all realisations. - [ ] Calculate catalogues for all realisations.
- [ ] Implement Max's halo matching
## :hourglass: Long-term TODO ## :hourglass: Long-term TODO
@ -12,4 +13,5 @@
- [ ] Calculate DM environmental properties. - [ ] Calculate DM environmental properties.
## :bulb: Open questions ## :bulb: Open questions
- Completeness of clusters. Optical clusters catalogues are a bit of a mess..

View file

@ -19,5 +19,5 @@ from .readsim import (get_csiborg_ids, get_sim_path, get_snapshots, # noqa
drop_zero_indx, # noqa drop_zero_indx, # noqa
read_clumpid, read_clumps, read_mmain, # noqa read_clumpid, read_clumps, read_mmain, # noqa
merge_mmain_to_clumps) # noqa merge_mmain_to_clumps) # noqa
from .readobs import (read_planck2015, read_2mpp) # noqa from .readobs import (read_planck2015, read_mcxc, read_2mpp, read_2mpp_groups, match_planck_to_mcxc) # noqa
from .outsim import (dump_split, combine_splits) # noqa from .outsim import (dump_split, combine_splits) # noqa

View file

@ -18,11 +18,14 @@ Scripts to read in observation.
import numpy import numpy
from astropy.io import fits from astropy.io import fits
from astropy.coordinates import SkyCoord
from astropy import units as u
from ..utils import (add_columns, cols_to_structured) from ..utils import (add_columns, cols_to_structured)
F64 = numpy.float64
def read_planck2015(fpath, dist_cosmo, max_comdist=None):
def read_planck2015(fpath, cosmo, max_comdist=None):
r""" r"""
Read the Planck 2nd Sunyaev-Zeldovich source catalogue [1]. The following Read the Planck 2nd Sunyaev-Zeldovich source catalogue [1]. The following
is performed: is performed:
@ -34,22 +37,24 @@ def read_planck2015(fpath, dist_cosmo, max_comdist=None):
---------- ----------
fpath : str fpath : str
Path to the source catalogue. Path to the source catalogue.
dist_cosmo : `astropy.cosmology` object cosmo : `astropy.cosmology` object
The cosmology to calculate cluster comoving distance from redshift. The cosmology to calculate cluster comoving distance from redshift and
convert their mass.
max_comdist : float, optional max_comdist : float, optional
Maximum comoving distance threshold in units of :math:`\mathrm{MPc}`. Maximum comoving distance threshold in units of :math:`\mathrm{Mpc}`.
By default `None` and no threshold is applied. By default `None` and no threshold is applied.
Returns
-------
out : structured array
The catalogue structured array.
References References
---------- ----------
[1] https://heasarc.gsfc.nasa.gov/W3Browse/all/plancksz2.html [1] https://heasarc.gsfc.nasa.gov/W3Browse/all/plancksz2.html
Returns
-------
out : `astropy.io.fits.FITS_rec`
The catalogue structured array.
""" """
data = fits.open(fpath)[1].data data = fits.open(fpath)[1].data
hdata = 0.7
# Convert FITS to a structured array # Convert FITS to a structured array
out = numpy.full(data.size, numpy.nan, dtype=data.dtype.descr) out = numpy.full(data.size, numpy.nan, dtype=data.dtype.descr)
for name in out.dtype.names: for name in out.dtype.names:
@ -57,11 +62,12 @@ def read_planck2015(fpath, dist_cosmo, max_comdist=None):
# Take only clusters with redshifts # Take only clusters with redshifts
out = out[out["REDSHIFT"] >= 0] out = out[out["REDSHIFT"] >= 0]
# Add comoving distance # Add comoving distance
dist = dist_cosmo.comoving_distance(out["REDSHIFT"]).value dist = cosmo.comoving_distance(out["REDSHIFT"]).value
out = add_columns(out, dist, "COMDIST") out = add_columns(out, dist, "COMDIST")
# Convert masses # Convert masses
for par in ("MSZ", "MSZ_ERR_UP", "MSZ_ERR_LOW"): for par in ("MSZ", "MSZ_ERR_UP", "MSZ_ERR_LOW"):
out[par] *= 1e14 out[par] *= 1e14
out[par] *= (hdata / cosmo.h)**2
# Distance threshold # Distance threshold
if max_comdist is not None: if max_comdist is not None:
out = out[out["COMDIST"] < max_comdist] out = out[out["COMDIST"] < max_comdist]
@ -69,15 +75,81 @@ def read_planck2015(fpath, dist_cosmo, max_comdist=None):
return out return out
def read_mcxc(fpath, cosmo, max_comdist=None):
r"""
Read the MCXC Meta-Catalog of X-Ray Detected Clusters of Galaxies
catalogue [1], with data description at [2] and download at [3].
Note
----
The exact mass conversion has non-trivial dependence on :math:`H(z)`, see
[1] for more details. However, this should be negligible.
Parameters
----------
fpath : str
Path to the source catalogue obtained from [3]. Expected to be the fits
file.
cosmo : `astropy.cosmology` object
The cosmology to calculate cluster comoving distance from redshift and
convert their mass.
max_comdist : float, optional
Maximum comoving distance threshold in units of :math:`\mathrm{Mpc}`.
By default `None` and no threshold is applied.
Returns
-------
out : structured array
The catalogue structured array.
References
----------
[1] The MCXC: a meta-catalogue of x-ray detected clusters of galaxies
(2011); Piffaretti, R. ; Arnaud, M. ; Pratt, G. W. ; Pointecouteau,
E. ; Melin, J. -B.
[2] https://heasarc.gsfc.nasa.gov/W3Browse/rosat/mcxc.html
[3] https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/534/A109#/article
"""
data = fits.open(fpath)[1].data
hdata = 0.7 # Little h of the catalogue
cols = [("RAdeg", F64), ("DEdeg", F64), ("z", F64),
("L500", F64), ("M500", F64), ("R500", F64)]
out = cols_to_structured(data.size, cols)
for col in cols:
par = col[0]
out[par] = data[par]
# Get little h units to match the cosmology
out["L500"] *= (hdata / cosmo.h)**2
out["M500"] *= (hdata / cosmo.h)**2
# Get the 10s back in
out["L500"] *= 1e44 # ergs/s
out["M500"] *= 1e14 # Msun
dist = cosmo.comoving_distance(data["z"]).value
out = add_columns(out, dist, "COMDIST")
out = add_columns(out, data["MCXC"], "name")
if max_comdist is not None:
out = out[out["COMDIST"] < max_comdist]
return out
def read_2mpp(fpath, dist_cosmo): def read_2mpp(fpath, dist_cosmo):
""" """
Read in the 2M++ galaxy redshift catalogue [1], with the catalogue at [2]. Read in the 2M++ galaxy redshift catalogue [1], with the catalogue at [2].
Removes fake galaxies used to fill the zone of avoidance. Removes fake galaxies used to fill the zone of avoidance. Note that in
principle additional care should be taken for calculating the distance
to objects [3]. Currently calculated from the CMB redshift, so some
distance estimates may be negative..
Parameters Parameters
---------- ----------
fpath : str fpath : str
File path to the catalogue. File path to the catalogue.
cosmo : `astropy.cosmology` object
The cosmology to calculate distance from redshift.
Returns Returns
------- -------
@ -88,19 +160,104 @@ def read_2mpp(fpath, dist_cosmo):
---------- ----------
[1] The 2M++ galaxy redshift catalogue; Lavaux, Guilhem, Hudson, Michael J. [1] The 2M++ galaxy redshift catalogue; Lavaux, Guilhem, Hudson, Michael J.
[2] https://cdsarc.cds.unistra.fr/viz-bin/cat/J/MNRAS/416/2840#/article [2] https://cdsarc.cds.unistra.fr/viz-bin/cat/J/MNRAS/416/2840#/article
[3] Improving NASA/IPAC Extragalactic Database Redshift Calculations
(2021); Anthony Carr and Tamara Davis
""" """
from scipy.constants import c from scipy.constants import c
# Read the catalogue and select non-fake galaxies # Read the catalogue and select non-fake galaxies
cat = numpy.genfromtxt(fpath, delimiter="|", ) cat = numpy.genfromtxt(fpath, delimiter="|", )
cat = cat[cat[:, 12] == 0, :] cat = cat[cat[:, 12] == 0, :]
F64 = numpy.float64
cols = [("RA", F64), ("DEC", F64), ("Ksmag", F64), ("ZCMB", F64), cols = [("RA", F64), ("DEC", F64), ("Ksmag", F64), ("ZCMB", F64),
("CDIST_CMB", F64)] ("DIST", F64)]
out = cols_to_structured(cat.shape[0], cols) out = cols_to_structured(cat.shape[0], cols)
out["RA"] = cat[:, 1] out["RA"] = cat[:, 1]
out["DEC"] = cat[:, 2] out["DEC"] = cat[:, 2]
out["Ksmag"] = cat[:, 5] out["Ksmag"] = cat[:, 5]
out["ZCMB"] = cat[:, 7] / (c * 1e-3) out["ZCMB"] = cat[:, 7] / (c * 1e-3)
out["CDIST_CMB"] = dist_cosmo.comoving_distance(out["ZCMB"]).value out["DIST"] = cat[:, 7] / dist_cosmo.H0
return out return out
def read_2mpp_groups(fpath, dist_cosmo):
"""
Read in the 2M++ galaxy group catalogue [1], with the catalogue at [2].
Note that the same caveats apply to the distance calculation as in
py:function:`read_2mpp`. See that function for more details.
Parameters
----------
fpath : str
File path to the catalogue.
cosmo : `astropy.cosmology` object
The cosmology to calculate distance from redshift.
Returns
-------
out : structured array
The catalogue.
References
----------
[1] The 2M++ galaxy redshift catalogue; Lavaux, Guilhem, Hudson, Michael J.
[2] https://cdsarc.cds.unistra.fr/viz-bin/cat/J/MNRAS/416/2840#/article
[3] Improving NASA/IPAC Extragalactic Database Redshift Calculations
(2021); Anthony Carr and Tamara Davis
"""
cat = numpy.genfromtxt(fpath, delimiter="|", )
cols = [("RA", F64), ("DEC", F64), ("K2mag", F64), ("Rich", numpy.int64),
("dist", F64), ("sigma", F64)]
out = cols_to_structured(cat.shape[0], cols)
out["K2mag"] = cat[:, 3]
out["Rich"] = cat[:, 4]
out["sigma"] = cat[:, 7]
out["dist"] = cat[:, 6] / dist_cosmo.H0
# Convert galactic coordinates to RA, dec
glon = cat[:, 1]
glat = cat[:, 2]
coords = SkyCoord(l=glon*u.degree, b=glat*u.degree, frame='galactic')
coords = coords.transform_to("icrs")
out["RA"] = coords.ra
out["DEC"] = coords.dec
return out
def match_planck_to_mcxc(planck, mcxc):
"""
Return the MCXC catalogue indices of the Planck catalogue detections. Finds
the index of the quoted Planck MCXC counterpart in the MCXC array. If not
found throws an error. For this reason it may be better to make sure the
MCXC catalogue reaches further.
Parameters
----------
planck : structured array
The Planck cluster array.
mcxc : structured array
The MCXC cluster array.
Returns
-------
indxs : 1-dimensional array
The array of MCXC indices to match the Planck array. If no counterpart
is found returns `numpy.nan`.
"""
# Planck MCXC need to be decoded to str
planck_names = [name.decode() for name in planck["MCXC"]]
mcxc_names = [name for name in mcxc["name"]]
indxs = [numpy.nan] * len(planck_names)
for i, name in enumerate(planck_names):
if name == "":
continue
if name in mcxc_names:
indxs[i] = mcxc_names.index(name)
else:
raise ValueError("Planck MCXC identifies `{}` not found in the "
"MCXC catalogue.".format(name))
return indxs

1
data/mcxc.fits Normal file

File diff suppressed because one or more lines are too long

3146
scripts/plot_221107.ipynb Normal file

File diff suppressed because one or more lines are too long

View file

@ -32,6 +32,18 @@ Nsplits = 200
dumpdir = "/mnt/extraspace/rstiskalek/csiborg/" dumpdir = "/mnt/extraspace/rstiskalek/csiborg/"
# Some chosen clusters
_coma = {"RA": (12 + 59/60 + 48.7 / 60**2) * 15,
"DEC": 27 + 58 / 60 + 50 / 60**2,
"COMDIST": 102.975}
_virgo = {"RA": (12 + 27 / 60) * 15,
"DEC": 12 + 43/60,
"COMDIST": 16.5}
specific_clusters = {"Coma": _coma, "Virgo": _virgo}
def load_processed(Nsim, Nsnap): def load_processed(Nsim, Nsnap):
simpath = csiborgtools.io.get_sim_path(Nsim) simpath = csiborgtools.io.get_sim_path(Nsim)
outfname = join( outfname = join(
@ -60,11 +72,22 @@ def load_processed(Nsim, Nsnap):
def load_planck2015(max_comdist=214): def load_planck2015(max_comdist=214):
cosmo = FlatLambdaCDM(H0=70.5, Om0=0.307, Tcmb0=2.728) cosmo = FlatLambdaCDM(H0=70.5, Om0=0.307, Tcmb0=2.728)
fpath = ("/mnt/zfsusers/rstiskalek/csiborgtools/" fpath = "../data/HFI_PCCS_SZ-union_R2.08.fits"
+ "data/HFI_PCCS_SZ-union_R2.08.fits")
return csiborgtools.io.read_planck2015(fpath, cosmo, max_comdist) return csiborgtools.io.read_planck2015(fpath, cosmo, max_comdist)
def load_mcxc(max_comdist=214):
cosmo = FlatLambdaCDM(H0=70.5, Om0=0.307, Tcmb0=2.728)
fpath = ("../data/mcxc.fits")
return csiborgtools.io.read_mcxc(fpath, cosmo, max_comdist)
def load_2mpp(): def load_2mpp():
cosmo = FlatLambdaCDM(H0=70.5, Om0=0.307, Tcmb0=2.728) cosmo = FlatLambdaCDM(H0=70.5, Om0=0.307, Tcmb0=2.728)
return csiborgtools.io.read_2mpp("../data/2M++_galaxy_catalog.dat", cosmo) return csiborgtools.io.read_2mpp("../data/2M++_galaxy_catalog.dat", cosmo)
def load_2mpp_groups():
cosmo = FlatLambdaCDM(H0=70.5, Om0=0.307, Tcmb0=2.728)
return csiborgtools.io.read_2mpp_groups(
"../data/../data/2M++_group_catalog.dat", cosmo)