mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-22 12:18:01 +00:00
X-ray data (#9)
* add xray reading * add import * add more comments * add data * add nb * add MCXC shortcut * add match indxs to Planck of MCXC * add import * update TODO * update readme * add famous clusters * add 2mpp_groups * shorten paths * add 2M++ groups * add import * Update TODO
This commit is contained in:
parent
f69def9878
commit
17badf2652
6 changed files with 3350 additions and 21 deletions
|
@ -1,9 +1,10 @@
|
|||
# CSiBORG tools
|
||||
|
||||
## :scroll: Short-term TODO
|
||||
- [ ] Add half-mass radius and its corresponding concentration.
|
||||
- [ ] Model the Planck SZ selection function.
|
||||
- [x] Add the X-ray clusters
|
||||
- [x] Match the X-ray clusters to Planck
|
||||
- [ ] Calculate catalogues for all realisations.
|
||||
- [ ] Implement Max's halo matching
|
||||
|
||||
|
||||
## :hourglass: Long-term TODO
|
||||
|
@ -12,4 +13,5 @@
|
|||
- [ ] Calculate DM environmental properties.
|
||||
|
||||
|
||||
## :bulb: Open questions
|
||||
## :bulb: Open questions
|
||||
- Completeness of clusters. Optical clusters catalogues are a bit of a mess..
|
|
@ -19,5 +19,5 @@ from .readsim import (get_csiborg_ids, get_sim_path, get_snapshots, # noqa
|
|||
drop_zero_indx, # noqa
|
||||
read_clumpid, read_clumps, read_mmain, # noqa
|
||||
merge_mmain_to_clumps) # noqa
|
||||
from .readobs import (read_planck2015, read_2mpp) # noqa
|
||||
from .readobs import (read_planck2015, read_mcxc, read_2mpp, read_2mpp_groups, match_planck_to_mcxc) # noqa
|
||||
from .outsim import (dump_split, combine_splits) # noqa
|
||||
|
|
|
@ -18,11 +18,14 @@ Scripts to read in observation.
|
|||
|
||||
import numpy
|
||||
from astropy.io import fits
|
||||
|
||||
from astropy.coordinates import SkyCoord
|
||||
from astropy import units as u
|
||||
from ..utils import (add_columns, cols_to_structured)
|
||||
|
||||
F64 = numpy.float64
|
||||
|
||||
def read_planck2015(fpath, dist_cosmo, max_comdist=None):
|
||||
|
||||
def read_planck2015(fpath, cosmo, max_comdist=None):
|
||||
r"""
|
||||
Read the Planck 2nd Sunyaev-Zeldovich source catalogue [1]. The following
|
||||
is performed:
|
||||
|
@ -34,22 +37,24 @@ def read_planck2015(fpath, dist_cosmo, max_comdist=None):
|
|||
----------
|
||||
fpath : str
|
||||
Path to the source catalogue.
|
||||
dist_cosmo : `astropy.cosmology` object
|
||||
The cosmology to calculate cluster comoving distance from redshift.
|
||||
cosmo : `astropy.cosmology` object
|
||||
The cosmology to calculate cluster comoving distance from redshift and
|
||||
convert their mass.
|
||||
max_comdist : float, optional
|
||||
Maximum comoving distance threshold in units of :math:`\mathrm{MPc}`.
|
||||
Maximum comoving distance threshold in units of :math:`\mathrm{Mpc}`.
|
||||
By default `None` and no threshold is applied.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : structured array
|
||||
The catalogue structured array.
|
||||
|
||||
References
|
||||
----------
|
||||
[1] https://heasarc.gsfc.nasa.gov/W3Browse/all/plancksz2.html
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : `astropy.io.fits.FITS_rec`
|
||||
The catalogue structured array.
|
||||
"""
|
||||
data = fits.open(fpath)[1].data
|
||||
hdata = 0.7
|
||||
# Convert FITS to a structured array
|
||||
out = numpy.full(data.size, numpy.nan, dtype=data.dtype.descr)
|
||||
for name in out.dtype.names:
|
||||
|
@ -57,11 +62,12 @@ def read_planck2015(fpath, dist_cosmo, max_comdist=None):
|
|||
# Take only clusters with redshifts
|
||||
out = out[out["REDSHIFT"] >= 0]
|
||||
# Add comoving distance
|
||||
dist = dist_cosmo.comoving_distance(out["REDSHIFT"]).value
|
||||
dist = cosmo.comoving_distance(out["REDSHIFT"]).value
|
||||
out = add_columns(out, dist, "COMDIST")
|
||||
# Convert masses
|
||||
for par in ("MSZ", "MSZ_ERR_UP", "MSZ_ERR_LOW"):
|
||||
out[par] *= 1e14
|
||||
out[par] *= (hdata / cosmo.h)**2
|
||||
# Distance threshold
|
||||
if max_comdist is not None:
|
||||
out = out[out["COMDIST"] < max_comdist]
|
||||
|
@ -69,15 +75,81 @@ def read_planck2015(fpath, dist_cosmo, max_comdist=None):
|
|||
return out
|
||||
|
||||
|
||||
def read_mcxc(fpath, cosmo, max_comdist=None):
|
||||
r"""
|
||||
Read the MCXC Meta-Catalog of X-Ray Detected Clusters of Galaxies
|
||||
catalogue [1], with data description at [2] and download at [3].
|
||||
|
||||
Note
|
||||
----
|
||||
The exact mass conversion has non-trivial dependence on :math:`H(z)`, see
|
||||
[1] for more details. However, this should be negligible.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
fpath : str
|
||||
Path to the source catalogue obtained from [3]. Expected to be the fits
|
||||
file.
|
||||
cosmo : `astropy.cosmology` object
|
||||
The cosmology to calculate cluster comoving distance from redshift and
|
||||
convert their mass.
|
||||
max_comdist : float, optional
|
||||
Maximum comoving distance threshold in units of :math:`\mathrm{Mpc}`.
|
||||
By default `None` and no threshold is applied.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : structured array
|
||||
The catalogue structured array.
|
||||
|
||||
References
|
||||
----------
|
||||
[1] The MCXC: a meta-catalogue of x-ray detected clusters of galaxies
|
||||
(2011); Piffaretti, R. ; Arnaud, M. ; Pratt, G. W. ; Pointecouteau,
|
||||
E. ; Melin, J. -B.
|
||||
[2] https://heasarc.gsfc.nasa.gov/W3Browse/rosat/mcxc.html
|
||||
[3] https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/534/A109#/article
|
||||
"""
|
||||
data = fits.open(fpath)[1].data
|
||||
hdata = 0.7 # Little h of the catalogue
|
||||
|
||||
cols = [("RAdeg", F64), ("DEdeg", F64), ("z", F64),
|
||||
("L500", F64), ("M500", F64), ("R500", F64)]
|
||||
out = cols_to_structured(data.size, cols)
|
||||
for col in cols:
|
||||
par = col[0]
|
||||
out[par] = data[par]
|
||||
# Get little h units to match the cosmology
|
||||
out["L500"] *= (hdata / cosmo.h)**2
|
||||
out["M500"] *= (hdata / cosmo.h)**2
|
||||
# Get the 10s back in
|
||||
out["L500"] *= 1e44 # ergs/s
|
||||
out["M500"] *= 1e14 # Msun
|
||||
|
||||
dist = cosmo.comoving_distance(data["z"]).value
|
||||
out = add_columns(out, dist, "COMDIST")
|
||||
out = add_columns(out, data["MCXC"], "name")
|
||||
|
||||
if max_comdist is not None:
|
||||
out = out[out["COMDIST"] < max_comdist]
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def read_2mpp(fpath, dist_cosmo):
|
||||
"""
|
||||
Read in the 2M++ galaxy redshift catalogue [1], with the catalogue at [2].
|
||||
Removes fake galaxies used to fill the zone of avoidance.
|
||||
Removes fake galaxies used to fill the zone of avoidance. Note that in
|
||||
principle additional care should be taken for calculating the distance
|
||||
to objects [3]. Currently calculated from the CMB redshift, so some
|
||||
distance estimates may be negative..
|
||||
|
||||
Parameters
|
||||
----------
|
||||
fpath : str
|
||||
File path to the catalogue.
|
||||
cosmo : `astropy.cosmology` object
|
||||
The cosmology to calculate distance from redshift.
|
||||
|
||||
Returns
|
||||
-------
|
||||
|
@ -88,19 +160,104 @@ def read_2mpp(fpath, dist_cosmo):
|
|||
----------
|
||||
[1] The 2M++ galaxy redshift catalogue; Lavaux, Guilhem, Hudson, Michael J.
|
||||
[2] https://cdsarc.cds.unistra.fr/viz-bin/cat/J/MNRAS/416/2840#/article
|
||||
[3] Improving NASA/IPAC Extragalactic Database Redshift Calculations
|
||||
(2021); Anthony Carr and Tamara Davis
|
||||
"""
|
||||
from scipy.constants import c
|
||||
# Read the catalogue and select non-fake galaxies
|
||||
cat = numpy.genfromtxt(fpath, delimiter="|", )
|
||||
cat = cat[cat[:, 12] == 0, :]
|
||||
|
||||
F64 = numpy.float64
|
||||
cols = [("RA", F64), ("DEC", F64), ("Ksmag", F64), ("ZCMB", F64),
|
||||
("CDIST_CMB", F64)]
|
||||
("DIST", F64)]
|
||||
out = cols_to_structured(cat.shape[0], cols)
|
||||
out["RA"] = cat[:, 1]
|
||||
out["DEC"] = cat[:, 2]
|
||||
out["Ksmag"] = cat[:, 5]
|
||||
out["ZCMB"] = cat[:, 7] / (c * 1e-3)
|
||||
out["CDIST_CMB"] = dist_cosmo.comoving_distance(out["ZCMB"]).value
|
||||
out["DIST"] = cat[:, 7] / dist_cosmo.H0
|
||||
return out
|
||||
|
||||
|
||||
def read_2mpp_groups(fpath, dist_cosmo):
|
||||
"""
|
||||
Read in the 2M++ galaxy group catalogue [1], with the catalogue at [2].
|
||||
Note that the same caveats apply to the distance calculation as in
|
||||
py:function:`read_2mpp`. See that function for more details.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
fpath : str
|
||||
File path to the catalogue.
|
||||
cosmo : `astropy.cosmology` object
|
||||
The cosmology to calculate distance from redshift.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : structured array
|
||||
The catalogue.
|
||||
|
||||
References
|
||||
----------
|
||||
[1] The 2M++ galaxy redshift catalogue; Lavaux, Guilhem, Hudson, Michael J.
|
||||
[2] https://cdsarc.cds.unistra.fr/viz-bin/cat/J/MNRAS/416/2840#/article
|
||||
[3] Improving NASA/IPAC Extragalactic Database Redshift Calculations
|
||||
(2021); Anthony Carr and Tamara Davis
|
||||
"""
|
||||
cat = numpy.genfromtxt(fpath, delimiter="|", )
|
||||
|
||||
cols = [("RA", F64), ("DEC", F64), ("K2mag", F64), ("Rich", numpy.int64),
|
||||
("dist", F64), ("sigma", F64)]
|
||||
out = cols_to_structured(cat.shape[0], cols)
|
||||
|
||||
out["K2mag"] = cat[:, 3]
|
||||
out["Rich"] = cat[:, 4]
|
||||
out["sigma"] = cat[:, 7]
|
||||
out["dist"] = cat[:, 6] / dist_cosmo.H0
|
||||
|
||||
# Convert galactic coordinates to RA, dec
|
||||
glon = cat[:, 1]
|
||||
glat = cat[:, 2]
|
||||
coords = SkyCoord(l=glon*u.degree, b=glat*u.degree, frame='galactic')
|
||||
coords = coords.transform_to("icrs")
|
||||
out["RA"] = coords.ra
|
||||
out["DEC"] = coords.dec
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def match_planck_to_mcxc(planck, mcxc):
|
||||
"""
|
||||
Return the MCXC catalogue indices of the Planck catalogue detections. Finds
|
||||
the index of the quoted Planck MCXC counterpart in the MCXC array. If not
|
||||
found throws an error. For this reason it may be better to make sure the
|
||||
MCXC catalogue reaches further.
|
||||
|
||||
|
||||
Parameters
|
||||
----------
|
||||
planck : structured array
|
||||
The Planck cluster array.
|
||||
mcxc : structured array
|
||||
The MCXC cluster array.
|
||||
|
||||
Returns
|
||||
-------
|
||||
indxs : 1-dimensional array
|
||||
The array of MCXC indices to match the Planck array. If no counterpart
|
||||
is found returns `numpy.nan`.
|
||||
"""
|
||||
# Planck MCXC need to be decoded to str
|
||||
planck_names = [name.decode() for name in planck["MCXC"]]
|
||||
mcxc_names = [name for name in mcxc["name"]]
|
||||
|
||||
indxs = [numpy.nan] * len(planck_names)
|
||||
for i, name in enumerate(planck_names):
|
||||
if name == "":
|
||||
continue
|
||||
if name in mcxc_names:
|
||||
indxs[i] = mcxc_names.index(name)
|
||||
else:
|
||||
raise ValueError("Planck MCXC identifies `{}` not found in the "
|
||||
"MCXC catalogue.".format(name))
|
||||
return indxs
|
||||
|
|
1
data/mcxc.fits
Normal file
1
data/mcxc.fits
Normal file
File diff suppressed because one or more lines are too long
3146
scripts/plot_221107.ipynb
Normal file
3146
scripts/plot_221107.ipynb
Normal file
File diff suppressed because one or more lines are too long
|
@ -32,6 +32,18 @@ Nsplits = 200
|
|||
dumpdir = "/mnt/extraspace/rstiskalek/csiborg/"
|
||||
|
||||
|
||||
# Some chosen clusters
|
||||
_coma = {"RA": (12 + 59/60 + 48.7 / 60**2) * 15,
|
||||
"DEC": 27 + 58 / 60 + 50 / 60**2,
|
||||
"COMDIST": 102.975}
|
||||
|
||||
_virgo = {"RA": (12 + 27 / 60) * 15,
|
||||
"DEC": 12 + 43/60,
|
||||
"COMDIST": 16.5}
|
||||
|
||||
specific_clusters = {"Coma": _coma, "Virgo": _virgo}
|
||||
|
||||
|
||||
def load_processed(Nsim, Nsnap):
|
||||
simpath = csiborgtools.io.get_sim_path(Nsim)
|
||||
outfname = join(
|
||||
|
@ -60,11 +72,22 @@ def load_processed(Nsim, Nsnap):
|
|||
|
||||
def load_planck2015(max_comdist=214):
|
||||
cosmo = FlatLambdaCDM(H0=70.5, Om0=0.307, Tcmb0=2.728)
|
||||
fpath = ("/mnt/zfsusers/rstiskalek/csiborgtools/"
|
||||
+ "data/HFI_PCCS_SZ-union_R2.08.fits")
|
||||
fpath = "../data/HFI_PCCS_SZ-union_R2.08.fits"
|
||||
return csiborgtools.io.read_planck2015(fpath, cosmo, max_comdist)
|
||||
|
||||
|
||||
def load_mcxc(max_comdist=214):
|
||||
cosmo = FlatLambdaCDM(H0=70.5, Om0=0.307, Tcmb0=2.728)
|
||||
fpath = ("../data/mcxc.fits")
|
||||
return csiborgtools.io.read_mcxc(fpath, cosmo, max_comdist)
|
||||
|
||||
|
||||
def load_2mpp():
|
||||
cosmo = FlatLambdaCDM(H0=70.5, Om0=0.307, Tcmb0=2.728)
|
||||
return csiborgtools.io.read_2mpp("../data/2M++_galaxy_catalog.dat", cosmo)
|
||||
|
||||
|
||||
def load_2mpp_groups():
|
||||
cosmo = FlatLambdaCDM(H0=70.5, Om0=0.307, Tcmb0=2.728)
|
||||
return csiborgtools.io.read_2mpp_groups(
|
||||
"../data/../data/2M++_group_catalog.dat", cosmo)
|
||||
|
|
Loading…
Reference in a new issue