mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-22 17:08:03 +00:00
Overlap reader thresholds (#31)
* Improve data * Add comment * Update how KNN is called * Bring back indices * New function output * return catx["index"] * Remove unnecessary arguments * Remove useless arguments * Rename output * thin up catalogues * Add thresholding * Update README
This commit is contained in:
parent
6e290ccfb4
commit
153f1c0002
5 changed files with 183 additions and 202 deletions
|
@ -1,21 +1,14 @@
|
|||
# CSiBORG tools
|
||||
# CSiBORGTools
|
||||
|
||||
## CSiBORG Matching
|
||||
|
||||
### TODO
|
||||
- [ ] Modify the call to tN
|
||||
|
||||
### Questions
|
||||
- What scaling of the search region? No reason for it to be a multiple of $R_{200c}$.
|
||||
- How well can observed clusters be matched to CSiBORG? Do their masses agree?
|
||||
- Is the number of clusters in CSiBORG consistent?
|
||||
|
||||
|
||||
## CSiBORG Galaxy Environmental Dependence
|
||||
|
||||
### TODO
|
||||
- [ ] Add gradient and Hessian of the overdensity field.
|
||||
- [x] Write a script to smoothen an overdensity field, calculate the derived fields and evaluate them at the galaxy positions.
|
||||
|
||||
|
||||
### Questions
|
||||
|
|
|
@ -215,7 +215,7 @@ class RealisationsMatcher:
|
|||
mapping[ind2] = ind1
|
||||
return mapping
|
||||
|
||||
def cross(self, nsim0, nsimx, cat0, catx, overlap=False, verbose=True):
|
||||
def cross(self, cat0, catx, overlap=False, verbose=True):
|
||||
r"""
|
||||
Find all neighbours whose CM separation is less than `nmult` times the
|
||||
sum of their initial Lagrangian patch sizes. Enforces that the
|
||||
|
@ -223,10 +223,9 @@ class RealisationsMatcher:
|
|||
|
||||
Parameters
|
||||
----------
|
||||
nsim0, nsimx : int
|
||||
The reference and cross simulation IDs.
|
||||
cat0, catx: :py:class:`csiborgtools.read.HaloCatalogue`
|
||||
Halo catalogues corresponding to `nsim0` and `nsimx`, respectively.
|
||||
Halo catalogues corresponding to the reference and cross
|
||||
simulations.
|
||||
overlap : bool, optional
|
||||
whether to calculate overlap between clumps in the initial
|
||||
snapshot. by default `false`. this operation is slow.
|
||||
|
@ -235,22 +234,22 @@ class RealisationsMatcher:
|
|||
|
||||
Returns
|
||||
-------
|
||||
indxs : 1-dimensional array of shape `(nhalos, )`
|
||||
ref_indxs : 1-dimensional array
|
||||
Indices of halos in the reference catalogue.
|
||||
cross_indxs : 1-dimensional array
|
||||
Indices of halos in the cross catalogue.
|
||||
match_indxs : 1-dimensional array of arrays
|
||||
Indices of halo counterparts in the cross catalogue.
|
||||
overlaps : 1-dimensional array of arrays
|
||||
Overlaps with the cross catalogue.
|
||||
"""
|
||||
assert (nsim0 == cat0.paths.n_sim) & (nsimx == catx.paths.n_sim)
|
||||
|
||||
# Query the KNN
|
||||
if verbose:
|
||||
print("{}: querying the KNN.".format(datetime.now()), flush=True)
|
||||
match_indxs = radius_neighbours(
|
||||
catx.knn0, cat0.positions0, radiusX=cat0["lagpatch"],
|
||||
radiusKNN=catx["lagpatch"], nmult=self.nmult, enforce_in32=True,
|
||||
verbose=verbose)
|
||||
catx.knn(select_initial=True), cat0.positions0,
|
||||
radiusX=cat0["lagpatch"], radiusKNN=catx["lagpatch"],
|
||||
nmult=self.nmult, enforce_in32=True, verbose=verbose)
|
||||
|
||||
# Remove neighbours whose mass is too large/small
|
||||
if self.dlogmass is not None:
|
||||
|
@ -265,9 +264,9 @@ class RealisationsMatcher:
|
|||
if overlap:
|
||||
if verbose:
|
||||
print("Loading the clump particles", flush=True)
|
||||
with open(cat0.paths.clump0_path(nsim0), "rb") as f:
|
||||
with open(cat0.paths.clump0_path(cat0.n_sim), "rb") as f:
|
||||
clumps0 = numpy.load(f, allow_pickle=True)
|
||||
with open(catx.paths.clump0_path(nsimx), 'rb') as f:
|
||||
with open(catx.paths.clump0_path(catx.n_sim), 'rb') as f:
|
||||
clumpsx = numpy.load(f, allow_pickle=True)
|
||||
|
||||
# Convert 3D positions to particle IDs
|
||||
|
@ -320,7 +319,7 @@ class RealisationsMatcher:
|
|||
match_indxs[k] = match_indxs[k][mask]
|
||||
cross[k] = cross[k][mask]
|
||||
|
||||
return cat0["index"], match_indxs, cross
|
||||
return cat0["index"], catx["index"], match_indxs, cross
|
||||
|
||||
|
||||
###############################################################################
|
||||
|
|
|
@ -31,38 +31,24 @@ class HaloCatalogue:
|
|||
----------
|
||||
paths : py:class:`csiborgtools.read.CSiBORGPaths`
|
||||
CSiBORG paths-handling object with set `n_sim` and `n_snap`.
|
||||
min_m500 : float, optional
|
||||
The minimum :math:`M_{rm 500c} / M_\odot` mass. By default no
|
||||
threshold.
|
||||
min_mass : float, optional
|
||||
The minimum :math:`M_{rm tot} / M_\odot` mass. By default no threshold.
|
||||
max_dist : float, optional
|
||||
The maximum comoving distance of a halo. By default no upper limit.
|
||||
"""
|
||||
_box = None
|
||||
_paths = None
|
||||
_data = None
|
||||
_knn = None
|
||||
_knn0 = None
|
||||
_positions = None
|
||||
_positions0 = None
|
||||
_selmask = None
|
||||
|
||||
def __init__(self, nsim, min_m500=None, max_dist=None):
|
||||
def __init__(self, nsim, min_mass=None, max_dist=None):
|
||||
# Set up paths
|
||||
paths = CSiBORGPaths(n_sim=nsim)
|
||||
paths.n_snap = paths.get_maximum_snapshot()
|
||||
self._paths = paths
|
||||
self._box = BoxUnits(paths)
|
||||
min_m500 = 0 if min_m500 is None else min_m500
|
||||
max_dist = numpy.infty if max_dist is None else max_dist
|
||||
self._paths = paths
|
||||
self._set_data(min_m500, max_dist)
|
||||
# Initialise the KNN at z = 0 and at z = 70
|
||||
knn = NearestNeighbors()
|
||||
knn.fit(self.positions)
|
||||
self._knn = knn
|
||||
|
||||
knn0 = NearestNeighbors()
|
||||
knn0.fit(self.positions0)
|
||||
self._knn0 = knn0
|
||||
self._set_data(min_mass, max_dist)
|
||||
|
||||
@property
|
||||
def data(self):
|
||||
|
@ -88,17 +74,6 @@ class HaloCatalogue:
|
|||
"""
|
||||
return self._box
|
||||
|
||||
@property
|
||||
def cosmo(self):
|
||||
"""
|
||||
The box cosmology.
|
||||
|
||||
Returns
|
||||
-------
|
||||
cosmo : `astropy` cosmology object
|
||||
"""
|
||||
return self.box.cosmo
|
||||
|
||||
@property
|
||||
def paths(self):
|
||||
"""
|
||||
|
@ -132,29 +107,23 @@ class HaloCatalogue:
|
|||
"""
|
||||
return self.paths.n_sim
|
||||
|
||||
@property
|
||||
def knn(self):
|
||||
def knn(self, select_initial):
|
||||
"""
|
||||
The final snapshot k-nearest neighbour object.
|
||||
|
||||
Returns
|
||||
-------
|
||||
knn : :py:class:`sklearn.neighbors.NearestNeighbors`
|
||||
"""
|
||||
return self._knn
|
||||
|
||||
@property
|
||||
def knn0(self):
|
||||
"""
|
||||
The initial snapshot k-nearest neighbour object.
|
||||
Parameters
|
||||
----------
|
||||
select_initial : bool
|
||||
Whether to define the KNN on the initial or final snapshot.
|
||||
|
||||
Returns
|
||||
-------
|
||||
knn : :py:class:`sklearn.neighbors.NearestNeighbors`
|
||||
"""
|
||||
return self._knn0
|
||||
knn = NearestNeighbors()
|
||||
return knn.fit(self.positions0 if select_initial else self.positions)
|
||||
|
||||
def _set_data(self, min_m500, max_dist):
|
||||
def _set_data(self, min_mass, max_dist):
|
||||
"""
|
||||
Loads the data, merges with mmain, does various coordinate transforms.
|
||||
"""
|
||||
|
@ -168,7 +137,7 @@ class HaloCatalogue:
|
|||
data = self.merge_mmain_to_clumps(data, mmain)
|
||||
flip_cols(data, "peak_x", "peak_z")
|
||||
|
||||
# Cut on number of particles and finite m200
|
||||
# Cut on number of particles and finite m200. Do not change! Hardcoded
|
||||
data = data[(data["npart"] > 100) & numpy.isfinite(data["m200"])]
|
||||
|
||||
# Now also load the initial positions
|
||||
|
@ -177,16 +146,15 @@ class HaloCatalogue:
|
|||
data = self.merge_initmatch_to_clumps(data, initcm)
|
||||
flip_cols(data, "x0", "z0")
|
||||
|
||||
# Calculate redshift
|
||||
pos = [data["peak_{}".format(p)] - 0.5 for p in ("x", "y", "z")]
|
||||
vel = [data["v{}".format(p)] for p in ("x", "y", "z")]
|
||||
zpec = self.box.box2pecredshift(*vel, *pos)
|
||||
zobs = self.box.box2obsredshift(*vel, *pos)
|
||||
zcosmo = self.box.box2cosmoredshift(
|
||||
sum(pos[i]**2 for i in range(3))**0.5)
|
||||
|
||||
data = add_columns(data, [zpec, zobs, zcosmo],
|
||||
["zpec", "zobs", "zcosmo"])
|
||||
# # Calculate redshift
|
||||
# pos = [data["peak_{}".format(p)] - 0.5 for p in ("x", "y", "z")]
|
||||
# vel = [data["v{}".format(p)] for p in ("x", "y", "z")]
|
||||
# zpec = self.box.box2pecredshift(*vel, *pos)
|
||||
# zobs = self.box.box2obsredshift(*vel, *pos)
|
||||
# zcosmo = self.box.box2cosmoredshift(
|
||||
# sum(pos[i]**2 for i in range(3))**0.5)
|
||||
# data = add_columns(data, [zpec, zobs, zcosmo],
|
||||
# ["zpec", "zobs", "zcosmo"])
|
||||
|
||||
# Unit conversion
|
||||
convert_cols = ["m200", "m500", "totpartmass", "mass_mmain",
|
||||
|
@ -194,29 +162,15 @@ class HaloCatalogue:
|
|||
"peak_x", "peak_y", "peak_z"]
|
||||
data = self.box.convert_from_boxunits(data, convert_cols)
|
||||
|
||||
# Cut on mass. Note that this is in Msun
|
||||
data = data[data["m500"] > min_m500]
|
||||
|
||||
# Now calculate spherical coordinates
|
||||
d, ra, dec = cartesian_to_radec(
|
||||
data["peak_x"], data["peak_y"], data["peak_z"])
|
||||
|
||||
data = add_columns(data, [d, ra, dec], ["dist", "ra", "dec"])
|
||||
|
||||
# Cut on separation
|
||||
data = data[data["dist"] < max_dist]
|
||||
|
||||
# Pre-allocate the positions arrays
|
||||
self._positions = numpy.vstack(
|
||||
[data["peak_{}".format(p)] for p in ("x", "y", "z")]).T
|
||||
self._positions = self._positions.astype(numpy.float32)
|
||||
# And do the unit transform
|
||||
if initcm is not None:
|
||||
data = self.box.convert_from_boxunits(
|
||||
data, ["x0", "y0", "z0", "lagpatch"])
|
||||
self._positions0 = numpy.vstack(
|
||||
[data["{}0".format(p)] for p in ("x", "y", "z")]).T
|
||||
self._positions0 = self._positions0.astype(numpy.float32)
|
||||
|
||||
# Convert all that is not an integer to float32
|
||||
names = list(data.dtype.names)
|
||||
|
@ -227,9 +181,13 @@ class HaloCatalogue:
|
|||
else:
|
||||
formats.append(numpy.float32)
|
||||
dtype = numpy.dtype({"names": names, "formats": formats})
|
||||
data = data.astype(dtype)
|
||||
|
||||
self._data = data
|
||||
# Apply cuts on distance and min500 if any
|
||||
data = data[data["dist"] < max_dist] if max_dist is not None else data
|
||||
data = (data[data["totpartmass"] > min_mass]
|
||||
if min_mass is not None else data)
|
||||
|
||||
self._data = data.astype(dtype)
|
||||
|
||||
def merge_mmain_to_clumps(self, clumps, mmain):
|
||||
"""
|
||||
|
@ -288,8 +246,8 @@ class HaloCatalogue:
|
|||
|
||||
@property
|
||||
def positions(self):
|
||||
"""
|
||||
3D positions of halos in comoving units of Mpc.
|
||||
r"""
|
||||
3D positions of halos in :math:`\mathrm{cMpc}`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
|
@ -297,12 +255,13 @@ class HaloCatalogue:
|
|||
Array of shape `(n_halos, 3)`, where the latter axis represents
|
||||
`x`, `y` and `z`.
|
||||
"""
|
||||
return self._positions
|
||||
return numpy.vstack(
|
||||
[self._data["peak_{}".format(p)] for p in ("x", "y", "z")]).T
|
||||
|
||||
@property
|
||||
def positions0(self):
|
||||
r"""
|
||||
3D positions of halos in the initial snapshot in comoving units of Mpc.
|
||||
3D positions of halos in the initial snapshot in :math:`\mathrm{cMpc}`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
|
@ -310,9 +269,11 @@ class HaloCatalogue:
|
|||
Array of shape `(n_halos, 3)`, where the latter axis represents
|
||||
`x`, `y` and `z`.
|
||||
"""
|
||||
if self._positions0 is None:
|
||||
try:
|
||||
return numpy.vstack(
|
||||
[self._data["{}".format(p)] for p in ("x0", "y0", "z0")]).T
|
||||
except KeyError:
|
||||
raise RuntimeError("Initial positions are not set!")
|
||||
return self._positions0
|
||||
|
||||
@property
|
||||
def velocities(self):
|
||||
|
@ -365,7 +326,7 @@ class HaloCatalogue:
|
|||
"""
|
||||
if not (X.ndim == 2 and X.shape[1] == 3):
|
||||
raise TypeError("`X` must be an array of shape `(n_samples, 3)`.")
|
||||
knn = self.knn0 if select_initial else self.knn # Pick the right KNN
|
||||
knn = self.knn(select_initial)
|
||||
return knn.radius_neighbors(X, radius, sort_results=True)
|
||||
|
||||
@property
|
||||
|
|
|
@ -17,9 +17,8 @@ Tools for summarising various results.
|
|||
"""
|
||||
import numpy
|
||||
import joblib
|
||||
from os.path import isfile
|
||||
from os.path import (join, isfile)
|
||||
from tqdm import tqdm
|
||||
from .make_cat import HaloCatalogue
|
||||
|
||||
|
||||
class PKReader:
|
||||
|
@ -171,73 +170,64 @@ class PKReader:
|
|||
|
||||
|
||||
class OverlapReader:
|
||||
"""
|
||||
r"""
|
||||
A shortcut object for reading in the results of matching two simulations.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsim0 : int
|
||||
The reference simulation ID.
|
||||
nsimx : int
|
||||
The cross simulation ID.
|
||||
cat0, catx: :py:class:`csiborgtools.read.HaloCatalogue`
|
||||
Halo catalogues corresponding to the reference and cross
|
||||
simulations.
|
||||
fskel : str, optional
|
||||
Path to the overlap. By default `None`, i.e.
|
||||
`/mnt/extraspace/rstiskalek/csiborg/overlap/cross_{}_{}.npz`.
|
||||
min_mass : float, optional
|
||||
The minimum :math:`M_{\rm tot} / M_\odot` mass. By default no
|
||||
threshold.
|
||||
max_dist : float, optional
|
||||
The maximum comoving distance of a halo. By default no upper limit.
|
||||
"""
|
||||
def __init__(self, nsim0, nsimx, fskel=None):
|
||||
if fskel is None:
|
||||
fskel = "/mnt/extraspace/rstiskalek/csiborg/overlap/"
|
||||
fskel += "cross_{}_{}.npz"
|
||||
_cat0 = None
|
||||
_catx = None
|
||||
_refmask = None
|
||||
|
||||
fpath = fskel.format(nsim0, nsimx)
|
||||
fpath_inv = fskel.format(nsimx, nsim0)
|
||||
is_inverted = False
|
||||
def __init__(self, cat0, catx, fskel=None, min_mass=None, max_dist=None):
|
||||
self._cat0 = cat0
|
||||
self._catx = catx
|
||||
|
||||
if fskel is None:
|
||||
fskel = join("/mnt/extraspace/rstiskalek/csiborg/overlap",
|
||||
"cross_{}_{}.npz")
|
||||
|
||||
fpath = fskel.format(cat0.n_sim, catx.n_sim)
|
||||
fpath_inv = fskel.format(catx.n_sim, cat0.n_sim)
|
||||
if isfile(fpath):
|
||||
pass
|
||||
is_inverted = False
|
||||
elif isfile(fpath_inv):
|
||||
fpath = fpath_inv
|
||||
is_inverted = True
|
||||
nsim0, nsimx = nsimx, nsim0
|
||||
else:
|
||||
raise FileNotFoundError(
|
||||
"No overlap file found for combination `{}` and `{}`."
|
||||
.format(nsim0, nsimx))
|
||||
.format(cat0.n_sim, catx.n_sim))
|
||||
|
||||
# We can set catalogues already now even if inverted
|
||||
self._set_cats(nsim0, nsimx)
|
||||
print(is_inverted)
|
||||
data = numpy.load(fpath, allow_pickle=True)
|
||||
if is_inverted:
|
||||
inv_match_indxs, inv_overlap = self._invert_match(
|
||||
data["match_indxs"], data["cross"], self.cat0["index"].size,)
|
||||
# Overwrite the original file and store as a dictionary
|
||||
data = {"indxs": self.cat0["index"],
|
||||
"match_indxs": inv_match_indxs,
|
||||
"cross": inv_overlap,
|
||||
}
|
||||
self._data = data
|
||||
data["match_indxs"], data["overlap"],
|
||||
data["cross_indxs"].size,)
|
||||
self._data = {
|
||||
"index": data["cross_indxs"],
|
||||
"match_indxs": inv_match_indxs,
|
||||
"overlap": inv_overlap}
|
||||
else:
|
||||
self._data = {
|
||||
"index": data["ref_indxs"],
|
||||
"match_indxs": data["match_indxs"],
|
||||
"overlap": data["overlap"]}
|
||||
|
||||
@property
|
||||
def nsim0(self):
|
||||
"""
|
||||
The reference simulation ID.
|
||||
|
||||
Returns
|
||||
-------
|
||||
nsim0 : int
|
||||
"""
|
||||
return self._nsim0
|
||||
|
||||
@property
|
||||
def nsimx(self):
|
||||
"""
|
||||
The cross simulation ID.
|
||||
|
||||
Returns
|
||||
-------
|
||||
nsimx : int
|
||||
"""
|
||||
return self._nsimx
|
||||
self._make_refmask(min_mass, max_dist)
|
||||
|
||||
@property
|
||||
def cat0(self):
|
||||
|
@ -261,24 +251,6 @@ class OverlapReader:
|
|||
"""
|
||||
return self._catx
|
||||
|
||||
def _set_cats(self, nsim0, nsimx):
|
||||
"""
|
||||
Set the simulation IDs and catalogues.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsim0, nsimx : int
|
||||
The reference and cross simulation IDs.
|
||||
|
||||
Returns
|
||||
-------
|
||||
None
|
||||
"""
|
||||
self._nsim0 = nsim0
|
||||
self._nsimx = nsimx
|
||||
self._cat0 = HaloCatalogue(nsim0)
|
||||
self._catx = HaloCatalogue(nsimx)
|
||||
|
||||
@staticmethod
|
||||
def _invert_match(match_indxs, overlap, cross_size):
|
||||
"""
|
||||
|
@ -304,8 +276,8 @@ class OverlapReader:
|
|||
The corresponding overlaps to `inv_match_indxs`.
|
||||
"""
|
||||
# 1. Invert the match. Each reference halo has a list of counterparts
|
||||
# so loop over those to each counterpart assign a reference halo.
|
||||
# Add the same time also add the overlaps
|
||||
# so loop over those to each counterpart assign a reference halo
|
||||
# and at the same time also add the overlaps
|
||||
inv_match_indxs = [[] for __ in range(cross_size)]
|
||||
inv_overlap = [[] for __ in range(cross_size)]
|
||||
for ref_id in range(match_indxs.size):
|
||||
|
@ -330,6 +302,35 @@ class OverlapReader:
|
|||
|
||||
return inv_match_indxs, inv_overlap
|
||||
|
||||
def _make_refmask(self, min_mass, max_dist):
|
||||
r"""
|
||||
Create a mask for the reference catalogue that accounts for the mass
|
||||
and distance cuts. Note that *no* masking is applied to the cross
|
||||
catalogue.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
min_mass : float, optional
|
||||
The minimum :math:`M_{rm tot} / M_\odot` mass.
|
||||
max_dist : float, optional
|
||||
The maximum comoving distance of a halo.
|
||||
|
||||
Returns
|
||||
-------
|
||||
None
|
||||
"""
|
||||
# Enforce a cut on the reference catalogue
|
||||
min_mass = 0 if min_mass is None else min_mass
|
||||
max_dist = numpy.infty if max_dist is None else max_dist
|
||||
m = ((self.cat0["totpartmass"] > min_mass)
|
||||
& (self.cat0["dist"] < max_dist))
|
||||
# Now remove indices that are below this cut
|
||||
self._data["index"] = self._data["index"][m]
|
||||
self._data["match_indxs"] = self._data["match_indxs"][m]
|
||||
self._data["overlap"] = self._data["overlap"][m]
|
||||
|
||||
self._refmask = m
|
||||
|
||||
@property
|
||||
def indxs(self):
|
||||
"""
|
||||
|
@ -339,7 +340,7 @@ class OverlapReader:
|
|||
-------
|
||||
indxs : 1-dimensional array
|
||||
"""
|
||||
return self._data["indxs"]
|
||||
return self._data["index"]
|
||||
|
||||
@property
|
||||
def match_indxs(self):
|
||||
|
@ -361,47 +362,73 @@ class OverlapReader:
|
|||
-------
|
||||
overlap : array of 1-dimensional arrays of shape `(nhalos, )`
|
||||
"""
|
||||
return self._data["cross"]
|
||||
return self._data["overlap"]
|
||||
|
||||
def dist(self, in_initial, norm=None):
|
||||
@property
|
||||
def refmask(self):
|
||||
"""
|
||||
Final snapshot pair distances.
|
||||
Mask of the reference catalogue to match the calculated overlaps.
|
||||
|
||||
Returns
|
||||
-------
|
||||
refmask : 1-dimensional boolean array
|
||||
"""
|
||||
return self._refmask
|
||||
|
||||
def dist(self, in_initial, norm_kind=None):
|
||||
"""
|
||||
Pair distances of matched halos between the reference and cross
|
||||
simulations.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
in_initial : bool
|
||||
Whether to calculate separation in the initial or final snapshot.
|
||||
norm_kind : str, optional
|
||||
The kind of normalisation to apply to the distances. Can be `r200`,
|
||||
`ref_patch` or `sum_patch`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
dist : array of 1-dimensional arrays of shape `(nhalos, )`
|
||||
"""
|
||||
assert norm is None or norm in ("r200", "ref_patch", "sum_patch")
|
||||
# Positions either in the initial or final snapshot
|
||||
assert (norm_kind is None
|
||||
or norm_kind in ("r200", "ref_patch", "sum_patch"))
|
||||
# Get positions either in the initial or final snapshot
|
||||
if in_initial:
|
||||
pos0 = self.cat0.positions0
|
||||
posx = self.catx.positions0
|
||||
pos0, posx = self.cat0.positions0, self.catx.positions0
|
||||
else:
|
||||
pos0 = self.cat0.positions
|
||||
posx = self.catx.positions
|
||||
pos0, posx = self.cat0.positions, self.catx.positions
|
||||
pos0 = pos0[self.refmask, :] # Apply the reference catalogue mask
|
||||
|
||||
# Get the normalisation array if applicable
|
||||
if norm_kind == "r200":
|
||||
norm = self.cat0["r200"][self.refmask]
|
||||
if norm_kind == "ref_patch":
|
||||
norm = self.cat0["lagpatch"][self.refmask]
|
||||
if norm_kind == "sum_patch":
|
||||
patch0 = self.cat0["lagpatch"][self.refmask]
|
||||
patchx = self.catx["lagpatch"]
|
||||
norm = [None] * self.indxs.size
|
||||
for i, ind in enumerate(self.match_indxs):
|
||||
norm[i] = patch0[i] + patchx[ind]
|
||||
norm = numpy.array(norm, dtype=object)
|
||||
|
||||
# Now calculate distances
|
||||
dist = [None] * self.indxs.size
|
||||
for n, ind in enumerate(self.match_indxs):
|
||||
dist[n] = numpy.linalg.norm(pos0[n, :] - posx[ind, :], axis=1)
|
||||
for i, ind in enumerate(self.match_indxs):
|
||||
# n refers to the reference halo catalogue position
|
||||
dist[i] = numpy.linalg.norm(pos0[i, :] - posx[ind, :], axis=1)
|
||||
|
||||
if norm_kind is not None:
|
||||
dist[i] /= norm[i]
|
||||
|
||||
# Normalisation
|
||||
if norm == "r200":
|
||||
dist[n] /= self.cat0["r200"][n]
|
||||
if norm == "ref_patch":
|
||||
dist[n] /= self.cat0["lagpatch"][n]
|
||||
if norm == "sum_patch":
|
||||
dist[n] /= (self.cat0["lagpatch"][n]
|
||||
+ self.catx["lagpatch"][ind])
|
||||
return numpy.array(dist, dtype=object)
|
||||
|
||||
def mass_ratio(self, mass_kind="totpartmass", in_log=True, in_abs=True):
|
||||
"""
|
||||
Pair mass ratio.
|
||||
Pair mass ratio of matched halos between the reference and cross
|
||||
simulations.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
@ -418,16 +445,16 @@ class OverlapReader:
|
|||
-------
|
||||
ratio : array of 1-dimensional arrays of shape `(nhalos, )`
|
||||
"""
|
||||
mass0 = self.cat0[mass_kind]
|
||||
mass0 = self.cat0[mass_kind][self.refmask]
|
||||
massx = self.catx[mass_kind]
|
||||
|
||||
ratio = [None] * self.indxs.size
|
||||
for n, ind in enumerate(self.match_indxs):
|
||||
ratio[n] = mass0[n] / massx[ind]
|
||||
for i, ind in enumerate(self.match_indxs):
|
||||
ratio[i] = mass0[i] / massx[ind]
|
||||
if in_log:
|
||||
ratio[n] = numpy.log10(ratio[n])
|
||||
ratio[i] = numpy.log10(ratio[i])
|
||||
if in_abs:
|
||||
ratio[n] = numpy.abs(ratio[n])
|
||||
ratio[i] = numpy.abs(ratio[i])
|
||||
return numpy.array(ratio, dtype=object)
|
||||
|
||||
def summed_overlap(self):
|
||||
|
@ -456,9 +483,10 @@ class OverlapReader:
|
|||
-------
|
||||
out : 1-dimensional array of shape `(nhalos, )`
|
||||
"""
|
||||
vals = self.cat0[par][self.refmask]
|
||||
out = [None] * self.indxs.size
|
||||
for n, ind in enumerate(self.match_indxs):
|
||||
out[n] = numpy.ones(ind.size) * self.cat0[par][n]
|
||||
for i, ind in enumerate(self.match_indxs):
|
||||
out[i] = numpy.ones(ind.size) * vals[i]
|
||||
return numpy.array(out, dtype=object)
|
||||
|
||||
def prob_nomatch(self):
|
||||
|
@ -504,14 +532,13 @@ class OverlapReader:
|
|||
massx = self.catx[mass_kind] # Create references to the arrays here
|
||||
overlap = self.overlap # to speed up the loop below.
|
||||
|
||||
# Is the iterator verbose?
|
||||
for n, match_ind in enumerate((self.match_indxs)):
|
||||
for i, match_ind in enumerate(self.match_indxs):
|
||||
# Skip if no match
|
||||
if match_ind.size == 0:
|
||||
continue
|
||||
|
||||
massx_ = massx[match_ind] # Again just create references
|
||||
overlap_ = overlap[n] # to the appropriate elements
|
||||
overlap_ = overlap[i] # to the appropriate elements
|
||||
|
||||
# Optionally apply overlap threshold
|
||||
if overlap_threshold > 0.:
|
||||
|
@ -530,8 +557,8 @@ class OverlapReader:
|
|||
mean_ = 10**mean_ if in_log else mean_
|
||||
std_ = mean_ * std_ * numpy.log(10) if in_log else std_
|
||||
|
||||
mean[n] = mean_
|
||||
std[n] = std_
|
||||
mean[i] = mean_
|
||||
std[i] = std_
|
||||
|
||||
return mean, std
|
||||
|
||||
|
|
|
@ -46,12 +46,13 @@ catx = csiborgtools.read.HaloCatalogue(args.nsimx)
|
|||
|
||||
matcher = csiborgtools.match.RealisationsMatcher()
|
||||
print("{}: crossing the simulations.".format(datetime.now()), flush=True)
|
||||
indxs, match_indxs, cross = matcher.cross(
|
||||
args.nsim0, args.nsimx, cat0, catx, overlap=args.overlap)
|
||||
ref_indxs, cross_indxs, match_indxs, overlap = matcher.cross(
|
||||
cat0, catx, overlap=args.overlap)
|
||||
|
||||
# Dump the result
|
||||
print("Saving results to `{}`.".format(fout), flush=True)
|
||||
with open(fout, "wb") as f:
|
||||
numpy.savez(fout, indxs=indxs, match_indxs=match_indxs, cross=cross)
|
||||
numpy.savez(fout, ref_indxs=ref_indxs, cross_indxs=cross_indxs,
|
||||
match_indxs=match_indxs, overlap=overlap)
|
||||
|
||||
print("All finished.", flush=True)
|
||||
|
|
Loading…
Reference in a new issue