mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-22 12:48:02 +00:00
Add 2PCF calculation (#42)
* Add 2PCF calculation * Add 2PCF reader * Add tpcf scripts * Add random state * Fix marked typo * Fix marks and more randoms * Stop calculating projected * Add mean 2PCF * Remove pimax * Edit submit script * Update nb * Add corrfunc check
This commit is contained in:
parent
0b743756ef
commit
1344fa40b6
9 changed files with 635 additions and 2179 deletions
|
@ -1,87 +0,0 @@
|
|||
# Copyright (C) 2023 Richard Stiskalek
|
||||
# This program is free software; you can redistribute it and/or modify it
|
||||
# under the terms of the GNU General Public License as published by the
|
||||
# Free Software Foundation; either version 3 of the License, or (at your
|
||||
# option) any later version.
|
||||
#
|
||||
# This program is distributed in the hope that it will be useful, but
|
||||
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
||||
# Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along
|
||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
"""
|
||||
2PCF calculation.
|
||||
|
||||
NOTE: This is an old script that needs to be updated.
|
||||
"""
|
||||
import numpy
|
||||
from Corrfunc.mocks import DDtheta_mocks
|
||||
from Corrfunc.utils import convert_3d_counts_to_cf
|
||||
from .utils import (rvs_on_sphere, wrapRA)
|
||||
|
||||
|
||||
def sphere_angular_tpcf(bins, RA1, DEC1, RA2=None, DEC2=None, nthreads=1,
|
||||
Nmult=5, seed1=42, seed2=666):
|
||||
"""
|
||||
Calculate the angular two-point correlation function. The coordinates must
|
||||
be provided in degrees. With the right ascension and degrees being
|
||||
in range of :math:`[-180, 180]` and :math:`[-90, 90]` degrees.
|
||||
If `RA2` and `DEC2` are provided cross-correlates the first data set with
|
||||
the second. Creates a uniformly sampled randoms on the surface of a sphere
|
||||
of size `Nmult` times the corresponding number of data points. Uses the
|
||||
Landy-Szalay estimator.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
bins : 1-dimensional array
|
||||
Angular bins to calculate the angular twop-point correlation function.
|
||||
RA1 : 1-dimensional array
|
||||
Right ascension of the 1st data set, in degrees.
|
||||
DEC1 : 1-dimensional array
|
||||
Declination of the 1st data set, in degrees.
|
||||
RA2 : 1-dimensional array, optional
|
||||
Right ascension of the 2nd data set, in degrees.
|
||||
DEC2 : 1-dimensional array, optional
|
||||
Declination of the 2nd data set, in degrees.
|
||||
nthreads : int, optional
|
||||
Number of threads, by default 1.
|
||||
Nmult : int, optional
|
||||
Relative randoms size with respect to the data set. By default 5.
|
||||
seed1 : int, optional
|
||||
Seed to generate the first set of randoms.
|
||||
seed2 : int, optional
|
||||
Seed to generate the second set of randoms.
|
||||
|
||||
Returns
|
||||
-------
|
||||
cf : 1-dimensional array
|
||||
The angular 2-point correlation function.
|
||||
"""
|
||||
# If not provided calculate autocorrelation
|
||||
if RA2 is None:
|
||||
RA2 = RA1
|
||||
DEC2 = DEC1
|
||||
# Get the array sizes
|
||||
ND1 = RA1.size
|
||||
ND2 = RA2.size
|
||||
NR1 = ND1 * Nmult
|
||||
NR2 = ND2 * Nmult
|
||||
# Generate randoms. Note that these are over the sphere!
|
||||
randRA1, randDEC1 = rvs_on_sphere(NR1, indeg=True, random_state=seed1)
|
||||
randRA2, randDEC2 = rvs_on_sphere(NR2, indeg=True, random_state=seed2)
|
||||
# Wrap RA
|
||||
RA1 = wrapRA(numpy.copy(RA1), indeg=True)
|
||||
RA2 = wrapRA(numpy.copy(RA2), indeg=True)
|
||||
# Calculate pairs
|
||||
D1D2 = DDtheta_mocks(0, nthreads, bins, RA1, DEC1, RA2=RA2, DEC2=DEC2)
|
||||
D1R2 = DDtheta_mocks(0, nthreads, bins, RA1, DEC1,
|
||||
RA2=randRA2, DEC2=randDEC2)
|
||||
D2R1 = DDtheta_mocks(0, nthreads, bins, RA2, DEC2,
|
||||
RA2=randRA1, DEC2=randDEC1)
|
||||
R1R2 = DDtheta_mocks(0, nthreads, bins, randRA1, randDEC1,
|
||||
RA2=randRA2, DEC2=randDEC2)
|
||||
# Convert to the CF
|
||||
return convert_3d_counts_to_cf(ND1, ND2, NR1, NR2, D1D2, D1R2, D2R1, R1R2)
|
|
@ -12,5 +12,11 @@
|
|||
# You should have received a copy of the GNU General Public License along
|
||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
from warnings import warn
|
||||
from .knn import kNN_CDF # noqa
|
||||
from .utils import (RVSinsphere, RVSinbox, RVSonsphere, BaseRVS, normalised_marks) # noqa
|
||||
try:
|
||||
import Corrfunc
|
||||
from .tpcf import Mock2PCF # noqa
|
||||
except ImportError:
|
||||
warn("`Corrfunc` not installed. 2PCF modules will not be available (`Mock2PCF`).") # noqa
|
||||
|
|
68
csiborgtools/clustering/tpcf.py
Normal file
68
csiborgtools/clustering/tpcf.py
Normal file
|
@ -0,0 +1,68 @@
|
|||
# Copyright (C) 2023 Richard Stiskalek
|
||||
# This program is free software; you can redistribute it and/or modify it
|
||||
# under the terms of the GNU General Public License as published by the
|
||||
# Free Software Foundation; either version 3 of the License, or (at your
|
||||
# option) any later version.
|
||||
#
|
||||
# This program is distributed in the hope that it will be useful, but
|
||||
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
||||
# Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along
|
||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
"""2PCF calculation."""
|
||||
import numpy
|
||||
from Corrfunc.theory.DD import DD
|
||||
from Corrfunc.utils import convert_3d_counts_to_cf
|
||||
from .utils import BaseRVS
|
||||
|
||||
|
||||
class Mock2PCF:
|
||||
"""
|
||||
Tool to calculate the 2PCF of a catalogue.
|
||||
"""
|
||||
def __call__(self, pos, rvs_gen, nrandom, bins, random_state=42):
|
||||
"""
|
||||
Calculate the 2PCF from 3D pair counts.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
pos : 2-dimensional array of shape `(ndata, 3)`
|
||||
Positions of the data.
|
||||
rvs_gen : :py:class:`csiborgtools.clustering.BaseRVS`
|
||||
Uniform RVS generator.
|
||||
nrandom : int
|
||||
Number of random points to generate.
|
||||
bins : 1-dimensional array of shape `(nbins,)`
|
||||
Separation bins.
|
||||
random_state : int, optional
|
||||
Random state for the RVS generator.
|
||||
|
||||
Returns
|
||||
-------
|
||||
rp : 1-dimensional array of shape `(nbins - 1,)`
|
||||
Projected separation where the auto-2PCF is evaluated.
|
||||
xi : 1-dimensional array of shape `(nbins - 1,)`
|
||||
The auto-2PCF.
|
||||
"""
|
||||
assert isinstance(rvs_gen, BaseRVS)
|
||||
pos = pos.astype(numpy.float64)
|
||||
rand_pos = rvs_gen(nrandom, random_state=random_state,
|
||||
dtype=numpy.float64)
|
||||
|
||||
dd = DD(autocorr=1, nthreads=1, binfile=bins,
|
||||
X1=pos[:, 0], Y1=pos[:, 1], Z1=pos[:, 2], periodic=False)
|
||||
dr = DD(autocorr=0, nthreads=1, binfile=bins,
|
||||
X1=pos[:, 0], Y1=pos[:, 1], Z1=pos[:, 2],
|
||||
X2=rand_pos[:, 0], Y2=rand_pos[:, 1], Z2=rand_pos[:, 2],
|
||||
periodic=False)
|
||||
rr = DD(autocorr=1, nthreads=1, binfile=bins,
|
||||
X1=rand_pos[:, 0], Y1=rand_pos[:, 1], Z1=rand_pos[:, 2],
|
||||
periodic=False)
|
||||
|
||||
ndata = pos.shape[0]
|
||||
xi = convert_3d_counts_to_cf(ndata, ndata, nrandom, nrandom, dd, dr, dr, rr)
|
||||
rp = 0.5 * (bins[1:] + bins[:-1])
|
||||
return rp, xi
|
|
@ -21,3 +21,4 @@ from .outsim import (dump_split, combine_splits) # noqa
|
|||
from .overlap_summary import (PairOverlap, NPairsOverlap, binned_resample_mean) # noqa
|
||||
from .knn_summary import kNNCDFReader # noqa
|
||||
from .pk_summary import PKReader # noqa
|
||||
from .tpcf_summary import TPCFReader # noqa
|
||||
|
|
76
csiborgtools/read/tpcf_summary.py
Normal file
76
csiborgtools/read/tpcf_summary.py
Normal file
|
@ -0,0 +1,76 @@
|
|||
# Copyright (C) 2023 Richard Stiskalek
|
||||
# This program is free software; you can redistribute it and/or modify it
|
||||
# under the terms of the GNU General Public License as published by the
|
||||
# Free Software Foundation; either version 3 of the License, or (at your
|
||||
# option) any later version.
|
||||
#
|
||||
# This program is distributed in the hope that it will be useful, but
|
||||
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
||||
# Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along
|
||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
"""2PCF reader."""
|
||||
from os.path import join
|
||||
from glob import glob
|
||||
import numpy
|
||||
import joblib
|
||||
|
||||
|
||||
class TPCFReader:
|
||||
"""
|
||||
Shortcut object to read in the 2PCF data.
|
||||
"""
|
||||
def read(self, run, folder):
|
||||
"""
|
||||
Read the auto- or cross-correlation kNN-CDF data. Infers the type from
|
||||
the data files.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
run : str
|
||||
Run ID to read in.
|
||||
folder : str
|
||||
Path to the folder where the auto-2PCF is stored.
|
||||
|
||||
Returns
|
||||
-------
|
||||
rp : 1-dimensional array of shape `(neval, )`
|
||||
Projected separations where the 2PCF is evaluated.
|
||||
out : 2-dimensional array of shape `(len(files), len(rp))`
|
||||
Array of 2PCFs.
|
||||
"""
|
||||
run += ".p"
|
||||
files = [f for f in glob(join(folder, "*")) if run in f]
|
||||
if len(files) == 0:
|
||||
raise RuntimeError("No files found for run `{}`.".format(run[:-2]))
|
||||
|
||||
for i, file in enumerate(files):
|
||||
data = joblib.load(file)
|
||||
if i == 0: # Initialise the array
|
||||
rp = data["rp"]
|
||||
out = numpy.full((len(files), rp.size), numpy.nan,
|
||||
dtype=numpy.float32)
|
||||
out[i, ...] = data["wp"]
|
||||
|
||||
return rp, out
|
||||
|
||||
def mean_wp(self, wp):
|
||||
r"""
|
||||
Calculate the mean 2PCF and its standard deviation averaged over the
|
||||
IC realisations.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
wp : 2-dimensional array of shape `(len(files), len(rp))`
|
||||
Array of CDFs
|
||||
Returns
|
||||
-------
|
||||
out : 2-dimensional array of shape `(len(rp), 2)`
|
||||
Mean 2PCF and its standard deviation, stored along the last
|
||||
dimension, respectively.
|
||||
"""
|
||||
return numpy.stack([numpy.mean(wp, axis=0), numpy.std(wp, axis=0)],
|
||||
axis=-1)
|
2288
notebooks/knn.ipynb
2288
notebooks/knn.ipynb
File diff suppressed because one or more lines are too long
|
@ -44,7 +44,7 @@ nbins_marks: 10
|
|||
secondary:
|
||||
name: lambda200c
|
||||
toperm: false
|
||||
marked: false
|
||||
marked: true
|
||||
max: 0.5
|
||||
|
||||
"mass001_spinhigh":
|
||||
|
@ -77,7 +77,7 @@ nbins_marks: 10
|
|||
secondary:
|
||||
name: lambda200c
|
||||
toperm: false
|
||||
marked: false
|
||||
marked: true
|
||||
max: 0.5
|
||||
|
||||
"mass002_spinhigh":
|
||||
|
@ -109,7 +109,7 @@ nbins_marks: 10
|
|||
secondary:
|
||||
name: lambda200c
|
||||
toperm: false
|
||||
marked: false
|
||||
marked: true
|
||||
max: 0.5
|
||||
|
||||
"mass003_spinhigh":
|
||||
|
|
146
scripts/tpcf_auto.py
Normal file
146
scripts/tpcf_auto.py
Normal file
|
@ -0,0 +1,146 @@
|
|||
# Copyright (C) 2022 Richard Stiskalek
|
||||
# This program is free software; you can redistribute it and/or modify it
|
||||
# under the terms of the GNU General Public License as published by the
|
||||
# Free Software Foundation; either version 3 of the License, or (at your
|
||||
# option) any later version.
|
||||
#
|
||||
# This program is distributed in the hope that it will be useful, but
|
||||
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
||||
# Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along
|
||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
"""A script to calculate the auto-2PCF of CSiBORG catalogues."""
|
||||
from os.path import join
|
||||
from warnings import warn
|
||||
from argparse import ArgumentParser
|
||||
from copy import deepcopy
|
||||
from datetime import datetime
|
||||
from mpi4py import MPI
|
||||
from TaskmasterMPI import master_process, worker_process
|
||||
import numpy
|
||||
import joblib
|
||||
import yaml
|
||||
try:
|
||||
import csiborgtools
|
||||
except ModuleNotFoundError:
|
||||
import sys
|
||||
sys.path.append("../")
|
||||
import csiborgtools
|
||||
|
||||
|
||||
###############################################################################
|
||||
# MPI and arguments #
|
||||
###############################################################################
|
||||
comm = MPI.COMM_WORLD
|
||||
rank = comm.Get_rank()
|
||||
nproc = comm.Get_size()
|
||||
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument("--runs", type=str, nargs="+")
|
||||
args = parser.parse_args()
|
||||
with open('../scripts/tpcf_auto.yml', 'r') as file:
|
||||
config = yaml.safe_load(file)
|
||||
|
||||
Rmax = 155 / 0.705 # Mpc (h = 0.705) high resolution region radius
|
||||
minmass = 1e12
|
||||
ics = [7444, 7468, 7492, 7516, 7540, 7564, 7588, 7612, 7636, 7660, 7684,
|
||||
7708, 7732, 7756, 7780, 7804, 7828, 7852, 7876, 7900, 7924, 7948,
|
||||
7972, 7996, 8020, 8044, 8068, 8092, 8116, 8140, 8164, 8188, 8212,
|
||||
8236, 8260, 8284, 8308, 8332, 8356, 8380, 8404, 8428, 8452, 8476,
|
||||
8500, 8524, 8548, 8572, 8596, 8620, 8644, 8668, 8692, 8716, 8740,
|
||||
8764, 8788, 8812, 8836, 8860, 8884, 8908, 8932, 8956, 8980, 9004,
|
||||
9028, 9052, 9076, 9100, 9124, 9148, 9172, 9196, 9220, 9244, 9268,
|
||||
9292, 9316, 9340, 9364, 9388, 9412, 9436, 9460, 9484, 9508, 9532,
|
||||
9556, 9580, 9604, 9628, 9652, 9676, 9700, 9724, 9748, 9772, 9796,
|
||||
9820, 9844]
|
||||
dumpdir = "/mnt/extraspace/rstiskalek/csiborg/tpcf"
|
||||
fout = join(dumpdir, "auto", "tpcf_{}_{}.p")
|
||||
paths = csiborgtools.read.CSiBORGPaths()
|
||||
tpcf = csiborgtools.clustering.Mock2PCF()
|
||||
|
||||
###############################################################################
|
||||
# Analysis #
|
||||
###############################################################################
|
||||
|
||||
def read_single(selection, cat):
|
||||
"""Positions for single catalogue auto-correlation."""
|
||||
mmask = numpy.ones(len(cat), dtype=bool)
|
||||
pos = cat.positions(False)
|
||||
# Primary selection
|
||||
psel = selection["primary"]
|
||||
pmin, pmax = psel.get("min", None), psel.get("max", None)
|
||||
if pmin is not None:
|
||||
mmask &= (cat[psel["name"]] >= pmin)
|
||||
if pmax is not None:
|
||||
mmask &= (cat[psel["name"]] < pmax)
|
||||
pos = pos[mmask, ...]
|
||||
|
||||
# Secondary selection
|
||||
if "secondary" not in selection:
|
||||
return pos
|
||||
smask = numpy.ones(pos.shape[0], dtype=bool)
|
||||
ssel = selection["secondary"]
|
||||
smin, smax = ssel.get("min", None), ssel.get("max", None)
|
||||
prop = cat[ssel["name"]][mmask]
|
||||
if ssel.get("toperm", False):
|
||||
prop = numpy.random.permutation(prop)
|
||||
if ssel.get("marked", True):
|
||||
x = cat[psel["name"]][mmask]
|
||||
prop = csiborgtools.clustering.normalised_marks(
|
||||
x, prop, nbins=config["nbins_marks"])
|
||||
|
||||
if smin is not None:
|
||||
smask &= (prop >= smin)
|
||||
if smax is not None:
|
||||
smask &= (prop < smax)
|
||||
|
||||
return pos[smask, ...]
|
||||
|
||||
def do_auto(run, cat, ic):
|
||||
_config = config.get(run, None)
|
||||
if _config is None:
|
||||
warn("No configuration for run {}.".format(run))
|
||||
return
|
||||
|
||||
rvs_gen = csiborgtools.clustering.RVSinsphere(Rmax)
|
||||
bins = numpy.logspace(numpy.log10(config["rpmin"]),
|
||||
numpy.log10(config["rpmax"]), config["nrpbins"] + 1)
|
||||
pos = read_single(_config, cat)
|
||||
nrandom = int(config["randmult"] * pos.shape[0])
|
||||
rp, wp = tpcf(pos, rvs_gen, nrandom, bins)
|
||||
|
||||
joblib.dump({"rp": rp, "wp": wp}, fout.format(str(ic).zfill(5), run))
|
||||
|
||||
|
||||
def do_runs(ic):
|
||||
cat = csiborgtools.read.HaloCatalogue(ic, paths, max_dist=Rmax,
|
||||
min_mass=minmass)
|
||||
for run in args.runs:
|
||||
do_auto(run, cat, ic)
|
||||
|
||||
|
||||
###############################################################################
|
||||
# MPI task delegation #
|
||||
###############################################################################
|
||||
|
||||
|
||||
if nproc > 1:
|
||||
if rank == 0:
|
||||
tasks = deepcopy(ics)
|
||||
master_process(tasks, comm, verbose=True)
|
||||
else:
|
||||
worker_process(do_runs, comm, verbose=False)
|
||||
else:
|
||||
tasks = deepcopy(ics)
|
||||
for task in tasks:
|
||||
print("{}: completing task `{}`.".format(datetime.now(), task))
|
||||
do_runs(task)
|
||||
comm.Barrier()
|
||||
|
||||
|
||||
if rank == 0:
|
||||
print("{}: all finished.".format(datetime.now()))
|
||||
quit() # Force quit the script
|
136
scripts/tpcf_auto.yml
Normal file
136
scripts/tpcf_auto.yml
Normal file
|
@ -0,0 +1,136 @@
|
|||
rpmin: 0.5
|
||||
rpmax: 40
|
||||
nrpbins: 20
|
||||
randmult: 100
|
||||
seed: 42
|
||||
nbins_marks: 10
|
||||
|
||||
|
||||
################################################################################
|
||||
# totpartmass #
|
||||
################################################################################
|
||||
|
||||
|
||||
"mass001":
|
||||
primary:
|
||||
name: totpartmass
|
||||
min: 1.e+12
|
||||
max: 1.e+13
|
||||
|
||||
"mass002":
|
||||
primary:
|
||||
name: totpartmass
|
||||
min: 1.e+13
|
||||
max: 1.e+14
|
||||
|
||||
"mass003":
|
||||
primary:
|
||||
name: totpartmass
|
||||
min: 1.e+14
|
||||
|
||||
|
||||
################################################################################
|
||||
# totpartmass + lambda200c #
|
||||
################################################################################
|
||||
|
||||
|
||||
"mass001_spinlow":
|
||||
primary:
|
||||
name: totpartmass
|
||||
min: 1.e+12
|
||||
max: 1.e+13
|
||||
secondary:
|
||||
name: lambda200c
|
||||
marked: true
|
||||
max: 0.5
|
||||
|
||||
"mass001_spinhigh":
|
||||
primary:
|
||||
name: totpartmass
|
||||
min: 1.e+12
|
||||
max: 1.e+13
|
||||
secondary:
|
||||
name: lambda200c
|
||||
marked: true
|
||||
min: 0.5
|
||||
|
||||
"mass001_spinmedian_perm":
|
||||
primary:
|
||||
name: totpartmass
|
||||
min: 1.e+12
|
||||
max: 1.e+13
|
||||
secondary:
|
||||
name: lambda200c
|
||||
toperm: true
|
||||
marked : true
|
||||
min: 0.5
|
||||
|
||||
"mass002_spinlow":
|
||||
primary:
|
||||
name: totpartmass
|
||||
min: 1.e+13
|
||||
max: 1.e+14
|
||||
secondary:
|
||||
name: lambda200c
|
||||
marked: true
|
||||
max: 0.5
|
||||
|
||||
"mass002_spinhigh":
|
||||
primary:
|
||||
name: totpartmass
|
||||
min: 1.e+13
|
||||
max: 1.e+14
|
||||
secondary:
|
||||
name: lambda200c
|
||||
marked: true
|
||||
min: 0.5
|
||||
|
||||
"mass002_spinmedian_perm":
|
||||
primary:
|
||||
name: totpartmass
|
||||
min: 1.e+13
|
||||
max: 1.e+14
|
||||
secondary:
|
||||
name: lambda200c
|
||||
toperm: true
|
||||
marked : true
|
||||
min: 0.5
|
||||
|
||||
"mass003_spinlow":
|
||||
primary:
|
||||
name: totpartmass
|
||||
min: 1.e+14
|
||||
secondary:
|
||||
name: lambda200c
|
||||
marked: true
|
||||
max: 0.5
|
||||
|
||||
"mass003_spinhigh":
|
||||
primary:
|
||||
name: totpartmass
|
||||
min: 1.e+14
|
||||
secondary:
|
||||
name: lambda200c
|
||||
marked: true
|
||||
min: 0.5
|
||||
|
||||
"mass003_spinmedian_perm":
|
||||
primary:
|
||||
name: totpartmass
|
||||
min: 1.e+14
|
||||
secondary:
|
||||
name: lambda200c
|
||||
toperm: true
|
||||
marked : true
|
||||
min: 0.5
|
||||
|
||||
|
||||
################################################################################
|
||||
# Cross with random #
|
||||
################################################################################
|
||||
|
||||
"mass001_random":
|
||||
primary:
|
||||
name: totpartmass
|
||||
min: 1.e+12
|
||||
max: 1.e+13
|
Loading…
Reference in a new issue