Merge branch 'master' of github.com:Richard-Sti/csiborgtools

This commit is contained in:
rstiskalek 2024-03-16 17:14:03 +00:00
commit 0d1c262df0
11 changed files with 1806 additions and 307 deletions

View file

@ -17,7 +17,7 @@ from .density import (DensityField, PotentialField, TidalTensorField,
overdensity_field) # noqa overdensity_field) # noqa
from .enclosed_mass import (particles_enclosed_mass, # noqa from .enclosed_mass import (particles_enclosed_mass, # noqa
particles_enclosed_momentum, field_enclosed_mass) # noqa particles_enclosed_momentum, field_enclosed_mass) # noqa
from .interp import (evaluate_cartesian, evaluate_sky, evaluate_los, # noqa from .interp import (evaluate_cartesian_cic, evaluate_sky, evaluate_los, # noqa
field2rsp, fill_outside, make_sky, # noqa field2rsp, fill_outside, make_sky, # noqa
observer_peculiar_velocity, smoothen_field, # noqa observer_peculiar_velocity, smoothen_field, # noqa
field_at_distance) # noqa field_at_distance) # noqa

View file

@ -18,6 +18,7 @@ Tools for interpolating 3D fields at arbitrary positions.
import MAS_library as MASL import MAS_library as MASL
import numpy import numpy
import smoothing_library as SL import smoothing_library as SL
from scipy.interpolate import RegularGridInterpolator
from numba import jit from numba import jit
from tqdm import tqdm, trange from tqdm import tqdm, trange
@ -30,9 +31,10 @@ from .utils import divide_nonzero, force_single_precision, nside2radec
############################################################################### ###############################################################################
def evaluate_cartesian(*fields, pos, smooth_scales=None, verbose=False): def evaluate_cartesian_cic(*fields, pos, smooth_scales=None, verbose=False):
""" """
Evaluate a scalar field(s) at Cartesian coordinates `pos`. Evaluate a scalar field(s) at Cartesian coordinates `pos` using CIC
interpolation.
Parameters Parameters
---------- ----------
@ -82,6 +84,75 @@ def evaluate_cartesian(*fields, pos, smooth_scales=None, verbose=False):
return interp_fields return interp_fields
def evaluate_cartesian_regular(*fields, pos, smooth_scales=None,
method="linear", verbose=False):
"""
Evaluate a scalar field(s) at Cartesian coordinates `pos` using linear
interpolation on a regular grid.
Parameters
----------
*fields : (list of) 3-dimensional array of shape `(grid, grid, grid)`
Fields to be interpolated.
pos : 2-dimensional array of shape `(n_samples, 3)`
Query positions in box units.
smooth_scales : (list of) float, optional
Smoothing scales in box units. If `None`, no smoothing is performed.
method : str, optional
Interpolation method, must be one of the methods of
`scipy.interpolate.RegularGridInterpolator`.
verbose : bool, optional
Smoothing verbosity flag.
Returns
-------
(list of) 2-dimensional array of shape `(n_samples, len(smooth_scales))`
"""
pos = force_single_precision(pos)
if isinstance(smooth_scales, (int, float)):
smooth_scales = [smooth_scales]
if smooth_scales is None:
shape = (pos.shape[0],)
else:
shape = (pos.shape[0], len(smooth_scales))
ngrid = fields[0].shape[0]
cellsize = 1. / ngrid
X = numpy.linspace(0.5 * cellsize, 1 - 0.5 * cellsize, ngrid)
Y, Z = numpy.copy(X), numpy.copy(X)
interp_fields = [numpy.full(shape, numpy.nan, dtype=numpy.float32)
for __ in range(len(fields))]
for i, field in enumerate(fields):
if smooth_scales is None:
field_interp = RegularGridInterpolator(
(X, Y, Z), field, fill_value=None, bounds_error=False,
method=method)
interp_fields[i] = field_interp(pos)
else:
desc = f"Smoothing and interpolating field {i + 1}/{len(fields)}"
iterator = tqdm(smooth_scales, desc=desc, disable=not verbose)
for j, scale in enumerate(iterator):
if not scale > 0:
fsmooth = numpy.copy(field)
else:
fsmooth = smoothen_field(field, scale, 1., make_copy=True)
field_interp = RegularGridInterpolator(
(X, Y, Z), fsmooth, fill_value=None, bounds_error=False,
method=method)
interp_fields[i][:, j] = field_interp(pos)
if len(fields) == 1:
return interp_fields[0]
return interp_fields
def observer_peculiar_velocity(velocity_field, smooth_scales=None, def observer_peculiar_velocity(velocity_field, smooth_scales=None,
observer=None, verbose=True): observer=None, verbose=True):
""" """
@ -108,7 +179,7 @@ def observer_peculiar_velocity(velocity_field, smooth_scales=None,
else: else:
pos = numpy.asanyarray(observer).reshape(1, 3) pos = numpy.asanyarray(observer).reshape(1, 3)
vx, vy, vz = evaluate_cartesian( vx, vy, vz = evaluate_cartesian_cic(
*velocity_field, pos=pos, smooth_scales=smooth_scales, verbose=verbose) *velocity_field, pos=pos, smooth_scales=smooth_scales, verbose=verbose)
# Reshape since we evaluated only one point # Reshape since we evaluated only one point
@ -127,7 +198,7 @@ def observer_peculiar_velocity(velocity_field, smooth_scales=None,
def evaluate_los(*fields, sky_pos, boxsize, rmax, dr, smooth_scales=None, def evaluate_los(*fields, sky_pos, boxsize, rmax, dr, smooth_scales=None,
verbose=False): interpolation_method="cic", verbose=False):
""" """
Interpolate the fields for a set of lines of sights from the observer Interpolate the fields for a set of lines of sights from the observer
in the centre of the box. in the centre of the box.
@ -146,6 +217,9 @@ def evaluate_los(*fields, sky_pos, boxsize, rmax, dr, smooth_scales=None,
Radial distance step in `Mpc / h`. Radial distance step in `Mpc / h`.
smooth_scales : (list of) float, optional smooth_scales : (list of) float, optional
Smoothing scales in `Mpc / h`. Smoothing scales in `Mpc / h`.
interpolation_method : str, optional
Interpolation method. Must be one of `cic` or one of the methods of
`scipy.interpolate.RegularGridInterpolator`.
verbose : bool, optional verbose : bool, optional
Smoothing verbosity flag. Smoothing verbosity flag.
@ -191,9 +265,15 @@ def evaluate_los(*fields, sky_pos, boxsize, rmax, dr, smooth_scales=None,
smooth_scales *= mpc2box smooth_scales *= mpc2box
field_interp = evaluate_cartesian(*fields, pos=pos, if interpolation_method == "cic":
smooth_scales=smooth_scales, field_interp = evaluate_cartesian_cic(
*fields, pos=pos, smooth_scales=smooth_scales,
verbose=verbose) verbose=verbose)
else:
field_interp = evaluate_cartesian_regular(
*fields, pos=pos, smooth_scales=smooth_scales,
method=interpolation_method, verbose=verbose)
if len(fields) == 1: if len(fields) == 1:
field_interp = [field_interp] field_interp = [field_interp]
@ -228,7 +308,7 @@ def evaluate_los(*fields, sky_pos, boxsize, rmax, dr, smooth_scales=None,
def evaluate_sky(*fields, pos, mpc2box, smooth_scales=None, verbose=False): def evaluate_sky(*fields, pos, mpc2box, smooth_scales=None, verbose=False):
""" """
Evaluate a scalar field(s) at radial distance `Mpc / h`, right ascensions Evaluate a scalar field(s) at radial distance `Mpc / h`, right ascensions
[0, 360) deg and declinations [-90, 90] deg. [0, 360) deg and declinations [-90, 90] deg. Uses CIC interpolation.
Parameters Parameters
---------- ----------
@ -264,8 +344,9 @@ def evaluate_sky(*fields, pos, mpc2box, smooth_scales=None, verbose=False):
smooth_scales *= mpc2box smooth_scales *= mpc2box
return evaluate_cartesian(*fields, pos=cart_pos, return evaluate_cartesian_cic(*fields, pos=cart_pos,
smooth_scales=smooth_scales, verbose=verbose) smooth_scales=smooth_scales,
verbose=verbose)
def make_sky(field, angpos, dist, boxsize, verbose=True): def make_sky(field, angpos, dist, boxsize, verbose=True):
@ -355,7 +436,7 @@ def field_at_distance(field, distance, boxsize, smooth_scales=None, nside=128,
angpos]) angpos])
X = radec_to_cartesian(X) / boxsize + 0.5 X = radec_to_cartesian(X) / boxsize + 0.5
return evaluate_cartesian(field, pos=X, smooth_scales=smooth_scales, return evaluate_cartesian_cic(field, pos=X, smooth_scales=smooth_scales,
verbose=verbose) verbose=verbose)

View file

@ -15,4 +15,6 @@
from .flow_model import (DataLoader, radial_velocity_los, dist2redshift, # noqa from .flow_model import (DataLoader, radial_velocity_los, dist2redshift, # noqa
dist2distmodulus, predict_zobs, project_Vext, # noqa dist2distmodulus, predict_zobs, project_Vext, # noqa
SD_PV_validation_model, SN_PV_validation_model, # noqa SD_PV_validation_model, SN_PV_validation_model, # noqa
radec_to_galactic) # noqa TF_PV_validation_model, radec_to_galactic, # noqa
sample_prior, make_loss, get_model, # noqa
optimize_model_with_jackknife) # noqa

View file

@ -20,7 +20,7 @@ References
[1] https://arxiv.org/abs/1912.09383. [1] https://arxiv.org/abs/1912.09383.
""" """
from datetime import datetime from datetime import datetime
from warnings import warn from warnings import catch_warnings, simplefilter, warn
import numpy as np import numpy as np
import numpyro import numpyro
@ -29,12 +29,18 @@ from astropy import units as u
from astropy.coordinates import SkyCoord from astropy.coordinates import SkyCoord
from astropy.cosmology import FlatLambdaCDM from astropy.cosmology import FlatLambdaCDM
from h5py import File from h5py import File
from jax import jit
from jax import numpy as jnp from jax import numpy as jnp
from jax import vmap from jax import vmap
from jax.lax import cond, scan
from jax.random import PRNGKey
from numpyro.infer import Predictive, util
from scipy.optimize import fmin_powell
from sklearn.model_selection import KFold
from tqdm import tqdm, trange from tqdm import tqdm, trange
from numdifftools import Hessian
from ..params import simname2Omega_m from ..params import simname2Omega_m
from ..read import CSiBORG1Catalogue
SPEED_OF_LIGHT = 299792.458 # km / s SPEED_OF_LIGHT = 299792.458 # km / s
@ -130,19 +136,22 @@ class DataLoader:
if not store_full_velocity: if not store_full_velocity:
self._los_velocity = None self._los_velocity = None
Omega_m = simname2Omega_m(simname) self._Omega_m = simname2Omega_m(simname)
# Normalize the CSiBORG density by the mean matter density # Normalize the CSiBORG density by the mean matter density
if "csiborg" in simname: if "csiborg" in simname:
cosmo = FlatLambdaCDM(H0=100, Om0=Omega_m) cosmo = FlatLambdaCDM(H0=100, Om0=self._Omega_m)
mean_rho_matter = cosmo.critical_density0.to("Msun/kpc^3").value mean_rho_matter = cosmo.critical_density0.to("Msun/kpc^3").value
mean_rho_matter *= Omega_m mean_rho_matter *= self._Omega_m
self._los_density /= mean_rho_matter self._los_density /= mean_rho_matter
# Since Carrick+2015 provide `rho / <rho> - 1` # Since Carrick+2015 provide `rho / <rho> - 1`
if simname == "Carrick2015": if simname == "Carrick2015":
self._los_density += 1 self._los_density += 1
self._mask = np.ones(len(self._cat), dtype=bool)
self._catname = catalogue
@property @property
def cat(self): def cat(self):
""" """
@ -152,7 +161,7 @@ class DataLoader:
------- -------
structured array structured array
""" """
return self._cat return self._cat[self._mask]
@property @property
def catname(self): def catname(self):
@ -185,7 +194,7 @@ class DataLoader:
---------- ----------
3-dimensional array of shape (n_objects, n_simulations, n_steps) 3-dimensional array of shape (n_objects, n_simulations, n_steps)
""" """
return self._los_density return self._los_density[self._mask]
@property @property
def los_velocity(self): def los_velocity(self):
@ -198,7 +207,7 @@ class DataLoader:
""" """
if self._los_velocity is None: if self._los_velocity is None:
raise ValueError("The 3D velocities were not stored.") raise ValueError("The 3D velocities were not stored.")
return self._los_velocity return self._los_velocity[self._mask]
@property @property
def los_radial_velocity(self): def los_radial_velocity(self):
@ -209,7 +218,7 @@ class DataLoader:
------- -------
3-dimensional array of shape (n_objects, n_simulations, n_steps) 3-dimensional array of shape (n_objects, n_simulations, n_steps)
""" """
return self._los_radial_velocity return self._los_radial_velocity[self._mask]
def _read_field(self, simname, catalogue, k, paths): def _read_field(self, simname, catalogue, k, paths):
"""Read in the interpolated field.""" """Read in the interpolated field."""
@ -250,7 +259,8 @@ class DataLoader:
arr = np.empty(len(f["RA"]), dtype=dtype) arr = np.empty(len(f["RA"]), dtype=dtype)
for key in f.keys(): for key in f.keys():
arr[key] = f[key][:] arr[key] = f[key][:]
elif catalogue == "LOSS" or catalogue == "Foundation": elif catalogue in ["LOSS", "Foundation", "SFI_gals", "2MTF",
"Pantheon+"]:
with File(catalogue_fpath, 'r') as f: with File(catalogue_fpath, 'r') as f:
grp = f[catalogue] grp = f[catalogue]
@ -258,28 +268,46 @@ class DataLoader:
arr = np.empty(len(grp["RA"]), dtype=dtype) arr = np.empty(len(grp["RA"]), dtype=dtype)
for key in grp.keys(): for key in grp.keys():
arr[key] = grp[key][:] arr[key] = grp[key][:]
elif "csiborg1" in catalogue:
nsim = int(catalogue.split("_")[-1])
cat = CSiBORG1Catalogue(nsim, bounds={"totmass": (1e13, None)})
seed = 42
gen = np.random.default_rng(seed)
mask = gen.choice(len(cat), size=100, replace=False)
keys = ["r_hMpc", "RA", "DEC"]
dtype = [(key, np.float32) for key in keys]
arr = np.empty(len(mask), dtype=dtype)
sph_pos = cat["spherical_pos"]
arr["r_hMpc"] = sph_pos[mask, 0]
arr["RA"] = sph_pos[mask, 1]
arr["DEC"] = sph_pos[mask, 2]
# TODO: add peculiar velocit
else: else:
raise ValueError(f"Unknown catalogue: `{catalogue}`.") raise ValueError(f"Unknown catalogue: `{catalogue}`.")
return arr return arr
def make_jackknife_mask(self, i, n_splits, seed=42):
"""
Set the jackknife mask to exclude the `i`-th split.
Parameters
----------
i : int
Index of the split to exclude.
n_splits : int
Number of splits.
seed : int, optional
Random seed.
Returns
-------
None, sets `mask` internally.
"""
cv = KFold(n_splits=n_splits, shuffle=True, random_state=seed)
n = len(self._cat)
indxs = np.arange(n)
gen = np.random.default_rng(seed)
gen.shuffle(indxs)
for j, (train_index, __) in enumerate(cv.split(np.arange(n))):
if i == j:
self._mask = indxs[train_index]
return
raise ValueError("The index `i` must be in the range of `n_splits`.")
def reset_mask(self):
"""Reset the jackknife mask."""
self._mask = np.ones(len(self._cat), dtype=bool)
############################################################################### ###############################################################################
# Supplementary flow functions # # Supplementary flow functions #
@ -405,6 +433,19 @@ def dist2distmodulus(dist, Omega_m):
return 5 * jnp.log10(luminosity_distance) + 25 return 5 * jnp.log10(luminosity_distance) + 25
# def distmodulus2dist(distmodulus, Omega_m):
# """
# Copied from Supranta. Make sure this actually works.
#
#
# """
# dL = 10 ** ((distmodulus - 25.) / 5.)
# r_hMpc = dL
# for i in range(4):
# r_hMpc = dL / (1.0 + dist2redshift(r_hMpc, Omega_m))
# return r_hMpc
def project_Vext(Vext_x, Vext_y, Vext_z, RA, dec): def project_Vext(Vext_x, Vext_y, Vext_z, RA, dec):
""" """
Project the external velocity onto the line of sight along direction Project the external velocity onto the line of sight along direction
@ -459,8 +500,8 @@ def predict_zobs(dist, beta, Vext_radial, vpec_radial, Omega_m):
# Flow validation models # # Flow validation models #
############################################################################### ###############################################################################
def calculate_ptilde_wo_bias(xrange, mu, err, r_squared_xrange=None,
def calculate_ptilde_wo_bias(xrange, mu, err, r_squared_xrange=None): is_err_squared=False):
""" """
Calculate `ptilde(r)` without any bias. Calculate `ptilde(r)` without any bias.
@ -475,11 +516,16 @@ def calculate_ptilde_wo_bias(xrange, mu, err, r_squared_xrange=None):
r_squared_xrange : 1-dimensional array, optional r_squared_xrange : 1-dimensional array, optional
Radial distances squared where the field was interpolated for each Radial distances squared where the field was interpolated for each
object. If not provided, the `r^2` correction is not applied. object. If not provided, the `r^2` correction is not applied.
is_err_squared : bool, optional
Whether the error is already squared.
Returns Returns
------- -------
1-dimensional array 1-dimensional array
""" """
if is_err_squared:
ptilde = jnp.exp(-0.5 * (xrange - mu)**2 / err)
else:
ptilde = jnp.exp(-0.5 * ((xrange - mu) / err)**2) ptilde = jnp.exp(-0.5 * ((xrange - mu) / err)**2)
if r_squared_xrange is not None: if r_squared_xrange is not None:
@ -548,7 +594,7 @@ class SD_PV_validation_model:
self._z_obs = jnp.asarray(z_obs, dtype=dt) self._z_obs = jnp.asarray(z_obs, dtype=dt)
self._r_hMpc = jnp.asarray(r_hMpc, dtype=dt) self._r_hMpc = jnp.asarray(r_hMpc, dtype=dt)
self._e_rhMpc = jnp.asarray(e_r_hMpc, dtype=dt) self._e2_rhMpc = jnp.asarray(e_r_hMpc**2, dtype=dt)
# Get radius squared # Get radius squared
r2_xrange = r_xrange**2 r2_xrange = r_xrange**2
@ -560,22 +606,23 @@ class SD_PV_validation_model:
raise ValueError("The radial step size must be constant.") raise ValueError("The radial step size must be constant.")
dr = dr[0] dr = dr[0]
self._r_xrange = r_xrange
# Get the various vmapped functions # Get the various vmapped functions
self._vmap_ptilde_wo_bias = vmap(lambda mu, err: calculate_ptilde_wo_bias(r_xrange, mu, err, r2_xrange)) # noqa self._vmap_ptilde_wo_bias = vmap(lambda mu, err: calculate_ptilde_wo_bias(r_xrange, mu, err, r2_xrange, True)) # noqa
self._vmap_simps = vmap(lambda y: simps(y, dr)) self._vmap_simps = vmap(lambda y: simps(y, dr))
self._vmap_zobs = vmap(lambda beta, Vr, vpec_rad: predict_zobs(r_xrange, beta, Vr, vpec_rad, Omega_m), in_axes=(None, 0, 0)) # noqa self._vmap_zobs = vmap(lambda beta, Vr, vpec_rad: predict_zobs(r_xrange, beta, Vr, vpec_rad, Omega_m), in_axes=(None, 0, 0)) # noqa
self._vmap_ll_zobs = vmap(lambda zobs, zobs_pred, sigma_v: calculate_ll_zobs(zobs, zobs_pred, sigma_v), in_axes=(0, 0, None)) # noqa self._vmap_ll_zobs = vmap(lambda zobs, zobs_pred, sigma_v: calculate_ll_zobs(zobs, zobs_pred, sigma_v), in_axes=(0, 0, None)) # noqa
# Distribution of external velocity components # Distribution of external velocity components
self._Vext = dist.Uniform(-1000, 1000) self._Vext = dist.Uniform(-500, 500)
# Distribution of density, velocity and location bias parameters # Distribution of density, velocity and location bias parameters
self._alpha = dist.LogNormal(*lognorm_mean_std_to_loc_scale(1.0, 0.5)) # noqa self._alpha = dist.LogNormal(*lognorm_mean_std_to_loc_scale(1.0, 0.5)) # noqa
self._beta = dist.Normal(1., 0.5) self._beta = dist.Normal(1., 0.5)
self._h = dist.LogNormal(*lognorm_mean_std_to_loc_scale(1.0, 0.5))
# Distribution of velocity uncertainty sigma_v # Distribution of velocity uncertainty sigma_v
self._sv = dist.LogNormal(*lognorm_mean_std_to_loc_scale(150, 100)) self._sv = dist.LogNormal(*lognorm_mean_std_to_loc_scale(150, 100))
def __call__(self, sample_alpha=False, scale_distance=False): def __call__(self, sample_alpha=False):
""" """
The simple distance NumPyro PV validation model. The simple distance NumPyro PV validation model.
@ -584,21 +631,19 @@ class SD_PV_validation_model:
sample_alpha : bool, optional sample_alpha : bool, optional
Whether to sample the density bias parameter `alpha`, otherwise Whether to sample the density bias parameter `alpha`, otherwise
it is fixed to 1. it is fixed to 1.
scale_distance : bool, optional
Whether to scale the distance by `h`, otherwise it is fixed to 1.
""" """
Vx = numpyro.sample("Vext_x", self._Vext) Vx = numpyro.sample("Vext_x", self._Vext)
Vy = numpyro.sample("Vext_y", self._Vext) Vy = numpyro.sample("Vext_y", self._Vext)
Vz = numpyro.sample("Vext_z", self._Vext) Vz = numpyro.sample("Vext_z", self._Vext)
alpha = numpyro.sample("alpha", self._alpha) if sample_alpha else 1.0 alpha = numpyro.sample("alpha", self._alpha) if sample_alpha else 1.0
beta = numpyro.sample("beta", self._beta) beta = numpyro.sample("beta", self._beta)
h = numpyro.sample("h", self._h) if scale_distance else 1.0
sigma_v = numpyro.sample("sigma_v", self._sv) sigma_v = numpyro.sample("sigma_v", self._sv)
Vext_rad = project_Vext(Vx, Vy, Vz, self._RA, self._dec) Vext_rad = project_Vext(Vx, Vy, Vz, self._RA, self._dec)
# Calculate p(r) and multiply it by the galaxy bias # Calculate p(r) and multiply it by the galaxy bias
ptilde = self._vmap_ptilde_wo_bias(h * self._r_hMpc, h * self._e_rhMpc) ptilde = self._vmap_ptilde_wo_bias(self._r_hMpc, self._e2_rhMpc)
ptilde *= self._los_density**alpha ptilde *= self._los_density**alpha
# Normalization of p(r) # Normalization of p(r)
@ -667,26 +712,25 @@ class SN_PV_validation_model:
dr = dr[0] dr = dr[0]
# Get the various vmapped functions # Get the various vmapped functions
self._vmap_ptilde_wo_bias = vmap(lambda mu, err: calculate_ptilde_wo_bias(mu_xrange, mu, err, r2_xrange)) # noqa self._f_ptilde_wo_bias = lambda mu, err: calculate_ptilde_wo_bias(mu_xrange, mu, err, r2_xrange, True) # noqa
self._vmap_simps = vmap(lambda y: simps(y, dr)) self._f_simps = lambda y: simps(y, dr) # noqa
self._vmap_zobs = vmap(lambda beta, Vr, vpec_rad: predict_zobs(r_xrange, beta, Vr, vpec_rad, Omega_m), in_axes=(None, 0, 0)) # noqa self._f_zobs = lambda beta, Vr, vpec_rad: predict_zobs(r_xrange, beta, Vr, vpec_rad, Omega_m) # noqa
self._vmap_ll_zobs = vmap(lambda zobs, zobs_pred, sigma_v: calculate_ll_zobs(zobs, zobs_pred, sigma_v), in_axes=(0, 0, None)) # noqa
# Distribution of external velocity components # Distribution of external velocity components
self._dist_Vext = dist.Uniform(-1000, 1000) self._Vext = dist.Uniform(-500, 500)
# Distribution of velocity and density bias parameters # Distribution of velocity and density bias parameters
self._dist_alpha = dist.LogNormal(*lognorm_mean_std_to_loc_scale(1.0, 0.5)) # noqa self._alpha = dist.LogNormal(*lognorm_mean_std_to_loc_scale(1.0, 0.5))
self._dist_beta = dist.Normal(1., 0.5) self._beta = dist.Normal(1., 0.5)
# Distribution of velocity uncertainty # Distribution of velocity uncertainty
self._dist_sigma_v = dist.LogNormal(*lognorm_mean_std_to_loc_scale(150, 100)) # noqa self._sigma_v = dist.LogNormal(*lognorm_mean_std_to_loc_scale(150, 100)) # noqa
# Distribution of light curve calibration parameters # Distribution of light curve calibration parameters
self._dist_mag_cal = dist.Normal(-18.25, 1.0) self._mag_cal = dist.Normal(-18.25, 0.5)
self._dist_alpha_cal = dist.Normal(0.1, 0.5) self._alpha_cal = dist.Normal(0.148, 0.05)
self._dist_beta_cal = dist.Normal(3.0, 1.0) self._beta_cal = dist.Normal(3.112, 1.0)
self._dist_e_mu = dist.LogNormal(*lognorm_mean_std_to_loc_scale(0.1, 0.05)) # noqa self._e_mu = dist.LogNormal(*lognorm_mean_std_to_loc_scale(0.1, 0.05))
def __call__(self, sample_alpha=False, fix_calibration=False): def __call__(self, sample_alpha=True, fix_calibration=False):
""" """
The supernova NumPyro PV validation model with SALT2 calibration. The supernova NumPyro PV validation model with SALT2 calibration.
@ -695,23 +739,25 @@ class SN_PV_validation_model:
sample_alpha : bool, optional sample_alpha : bool, optional
Whether to sample the density bias parameter `alpha`, otherwise Whether to sample the density bias parameter `alpha`, otherwise
it is fixed to 1. it is fixed to 1.
fix_calibration : str, optional
Whether to fix the calibration parameters. If not provided, they
are sampled. If "Foundation" or "LOSS" is provided, the parameters
are fixed to the best inverse parameters for the Foundation or LOSS
catalogues.
""" """
Vx = numpyro.sample("Vext_x", self._dist_Vext) Vx = numpyro.sample("Vext_x", self._Vext)
Vy = numpyro.sample("Vext_y", self._dist_Vext) Vy = numpyro.sample("Vext_y", self._Vext)
Vz = numpyro.sample("Vext_z", self._dist_Vext) Vz = numpyro.sample("Vext_z", self._Vext)
if sample_alpha: alpha = numpyro.sample("alpha", self._alpha) if sample_alpha else 1.0
alpha = numpyro.sample("alpha", self._dist_alpha) beta = numpyro.sample("beta", self._beta)
else: sigma_v = numpyro.sample("sigma_v", self._sigma_v)
alpha = 1.0
beta = numpyro.sample("beta", self._dist_beta)
sigma_v = numpyro.sample("sigma_v", self._dist_sigma_v)
if fix_calibration == "Foundation": if fix_calibration == "Foundation":
# Foundation inverse best parameters # Foundation inverse best parameters
e_mu_intrinsic = 0.064 e_mu_intrinsic = 0.064
alpha_cal = 0.135 alpha_cal = 0.135
beta_cal = 2.9 beta_cal = 2.9
sigma_v = 140 sigma_v = 149
mag_cal = -18.555 mag_cal = -18.555
elif fix_calibration == "LOSS": elif fix_calibration == "LOSS":
# LOSS inverse best parameters # LOSS inverse best parameters
@ -719,31 +765,399 @@ class SN_PV_validation_model:
alpha_cal = 0.123 alpha_cal = 0.123
beta_cal = 3.52 beta_cal = 3.52
mag_cal = -18.195 mag_cal = -18.195
sigma_v = 140 sigma_v = 149
else: else:
e_mu_intrinsic = numpyro.sample("e_mu_intrinsic", self._dist_e_mu) e_mu_intrinsic = numpyro.sample("e_mu_intrinsic", self._e_mu)
mag_cal = numpyro.sample("mag_cal", self._dist_mag_cal) mag_cal = numpyro.sample("mag_cal", self._mag_cal)
alpha_cal = numpyro.sample("alpha_cal", self._dist_alpha_cal) alpha_cal = numpyro.sample("alpha_cal", self._alpha_cal)
beta_cal = numpyro.sample("beta_cal", self._dist_beta_cal) beta_cal = numpyro.sample("beta_cal", self._beta_cal)
Vext_rad = project_Vext(Vx, Vy, Vz, self._RA, self._dec) Vext_rad = project_Vext(Vx, Vy, Vz, self._RA, self._dec)
mu = self._mB - mag_cal + alpha_cal * self._x1 - beta_cal * self._c mu = self._mB - mag_cal + alpha_cal * self._x1 - beta_cal * self._c
squared_e_mu = (self._e2_mB squared_e_mu = (self._e2_mB + alpha_cal**2 * self._e2_x1
+ alpha_cal**2 * self._e2_x1 + beta_cal**2 * self._e2_c + e_mu_intrinsic**2)
+ beta_cal**2 * self._e2_c)
squared_e_mu += e_mu_intrinsic**2
def scan_body(ll, i):
# Calculate p(r) and multiply it by the galaxy bias # Calculate p(r) and multiply it by the galaxy bias
ptilde = self._vmap_ptilde_wo_bias(mu, squared_e_mu**0.5) ptilde = self._f_ptilde_wo_bias(mu[i], squared_e_mu[i])
ptilde *= self._los_density**alpha ptilde *= self._los_density[i]**alpha
# Normalization of p(r) # Normalization of p(r)
pnorm = self._vmap_simps(ptilde) pnorm = self._f_simps(ptilde)
# Calculate p(z_obs) and multiply it by p(r) # Calculate p(z_obs) and multiply it by p(r)
zobs_pred = self._vmap_zobs(beta, Vext_rad, self._los_velocity) zobs_pred = self._f_zobs(beta, Vext_rad[i], self._los_velocity[i])
ptilde *= self._vmap_ll_zobs(self._z_obs, zobs_pred, sigma_v) ptilde *= calculate_ll_zobs(self._z_obs[i], zobs_pred, sigma_v)
ll = jnp.sum(jnp.log(self._vmap_simps(ptilde) / pnorm)) return ll + jnp.log(self._f_simps(ptilde) / pnorm), None
ll = 0.
ll, __ = scan(scan_body, ll, jnp.arange(len(self._RA)))
numpyro.factor("ll", ll) numpyro.factor("ll", ll)
class TF_PV_validation_model:
"""
Tully-Fisher peculiar velocity (PV) validation model that includes the
calibration of the Tully-Fisher distance `mu = m - (a + b * eta)`.
Parameters
----------
los_density : 2-dimensional array of shape (n_objects, n_steps)
LOS density field.
los_velocity : 3-dimensional array of shape (n_objects, n_steps)
LOS radial velocity field.
RA, dec : 1-dimensional arrays of shape (n_objects)
Right ascension and declination in degrees.
z_obs : 1-dimensional array of shape (n_objects)
Observed redshifts.
mag, eta : 1-dimensional arrays of shape (n_objects)
Apparent magnitude and `eta` parameter.
e_mag, e_eta : 1-dimensional arrays of shape (n_objects)
Errors on the apparent magnitude and `eta` parameter.
r_xrange : 1-dimensional array
Radial distances where the field was interpolated for each object.
Omega_m : float
Matter density parameter.
"""
def __init__(self, los_density, los_velocity, RA, dec, z_obs,
mag, eta, e_mag, e_eta, r_xrange, Omega_m):
dt = jnp.float32
# Convert everything to JAX arrays.
self._los_density = jnp.asarray(los_density, dtype=dt)
self._los_velocity = jnp.asarray(los_velocity, dtype=dt)
self._RA = jnp.asarray(np.deg2rad(RA), dtype=dt)
self._dec = jnp.asarray(np.deg2rad(dec), dtype=dt)
self._z_obs = jnp.asarray(z_obs, dtype=dt)
self._mag = jnp.asarray(mag, dtype=dt)
self._eta = jnp.asarray(eta, dtype=dt)
self._e2_mag = jnp.asarray(e_mag**2, dtype=dt)
self._e2_eta = jnp.asarray(e_eta**2, dtype=dt)
# Get radius squared
r2_xrange = r_xrange**2
r2_xrange /= r2_xrange.mean()
mu_xrange = dist2distmodulus(r_xrange, Omega_m)
# Get the stepsize, we need it to be constant for Simpson's rule.
dr = np.diff(r_xrange)
if not np.all(np.isclose(dr, dr[0], atol=1e-5)):
raise ValueError("The radial step size must be constant.")
dr = dr[0]
# Get the various vmapped functions
self._f_ptilde_wo_bias = lambda mu, err: calculate_ptilde_wo_bias(mu_xrange, mu, err, r2_xrange, True) # noqa
self._f_simps = lambda y: simps(y, dr) # noqa
self._f_zobs = lambda beta, Vr, vpec_rad: predict_zobs(r_xrange, beta, Vr, vpec_rad, Omega_m) # noqa
# Distribution of external velocity components
self._Vext = dist.Uniform(-1000, 1000)
# Distribution of velocity and density bias parameters
self._alpha = dist.LogNormal(*lognorm_mean_std_to_loc_scale(1.0, 0.5)) # noqa
self._beta = dist.Normal(1., 0.5)
# Distribution of velocity uncertainty
self._sigma_v = dist.LogNormal(*lognorm_mean_std_to_loc_scale(150, 100)) # noqa
# Distribution of Tully-Fisher calibration parameters
self._a = dist.Normal(-21., 0.5)
self._b = dist.Normal(-5.95, 0.1)
self._e_mu = dist.LogNormal(*lognorm_mean_std_to_loc_scale(0.3, 0.1)) # noqa
def __call__(self, sample_alpha=True):
"""
The Tully-Fisher NumPyro PV validation model.
Parameters
----------
sample_alpha : bool, optional
Whether to sample the density bias parameter `alpha`, otherwise
it is fixed to 1.
"""
Vx = numpyro.sample("Vext_x", self._Vext)
Vy = numpyro.sample("Vext_y", self._Vext)
Vz = numpyro.sample("Vext_z", self._Vext)
alpha = numpyro.sample("alpha", self._alpha) if sample_alpha else 1.0
beta = numpyro.sample("beta", self._beta)
sigma_v = numpyro.sample("sigma_v", self._sigma_v)
e_mu_intrinsic = numpyro.sample("e_mu_intrinsic", self._e_mu)
a = numpyro.sample("a", self._a)
b = numpyro.sample("b", self._b)
Vext_rad = project_Vext(Vx, Vy, Vz, self._RA, self._dec)
mu = self._mag - (a + b * self._eta)
squared_e_mu = (self._e2_mag + b**2 * self._e2_eta
+ e_mu_intrinsic**2)
def scan_body(ll, i):
# Calculate p(r) and multiply it by the galaxy bias
ptilde = self._f_ptilde_wo_bias(mu[i], squared_e_mu[i])
ptilde *= self._los_density[i]**alpha
# Normalization of p(r)
pnorm = self._f_simps(ptilde)
# Calculate p(z_obs) and multiply it by p(r)
zobs_pred = self._f_zobs(beta, Vext_rad[i], self._los_velocity[i])
ptilde *= calculate_ll_zobs(self._z_obs[i], zobs_pred, sigma_v)
return ll + jnp.log(self._f_simps(ptilde) / pnorm), None
ll = 0.
ll, __ = scan(scan_body, ll, jnp.arange(len(self._RA)))
numpyro.factor("ll", ll)
###############################################################################
# Shortcut to create a model #
###############################################################################
def get_model(loader, k, zcmb_max=None, verbose=True):
"""
Get a model and extract the relevant data from the loader.
Parameters
----------
loader : DataLoader
DataLoader instance.
k : int
Simulation index.
zcmb_max : float, optional
Maximum observed redshift in the CMB frame to include.
verbose : bool, optional
Verbosity flag.
Returns
-------
model : NumPyro model
"""
zcmb_max = np.infty if zcmb_max is None else zcmb_max
if k > loader.los_density.shape[1]:
raise ValueError(f"Simulation index `{k}` out of range.")
los_overdensity = loader.los_density[:, k, :]
los_velocity = loader.los_radial_velocity[:, k, :]
kind = loader._catname
if kind in ["LOSS", "Foundation"]:
keys = ["RA", "DEC", "z_CMB", "mB", "x1", "c", "e_mB", "e_x1", "e_c"]
RA, dec, zCMB, mB, x1, c, e_mB, e_x1, e_c = (loader.cat[k] for k in keys) # noqa
mask = (zCMB < zcmb_max)
model = SN_PV_validation_model(
los_overdensity[mask], los_velocity[mask], RA[mask], dec[mask],
zCMB[mask], mB[mask], x1[mask], c[mask], e_mB[mask], e_x1[mask],
e_c[mask], loader.rdist, loader._Omega_m)
elif kind == "Pantheon+":
keys = ["RA", "DEC", "zCMB", "mB", "x1", "c", "biasCor_m_b", "mBERR",
"x1ERR", "cERR", "biasCorErr_m_b"]
RA, dec, zCMB, mB, x1, c, bias_corr_mB, e_mB, e_x1, e_c, e_bias_corr_mB = (loader.cat[k] for k in keys) # noqa
mB -= bias_corr_mB
e_mB = np.sqrt(e_mB**2 + e_bias_corr_mB**2)
mask = (zCMB < zcmb_max)
model = SN_PV_validation_model(
los_overdensity[mask], los_velocity[mask], RA[mask], dec[mask],
zCMB[mask], mB[mask], x1[mask], c[mask], e_mB[mask], e_x1[mask],
e_c[mask], loader.rdist, loader._Omega_m)
elif kind in ["SFI_gals", "2MTF"]:
keys = ["RA", "DEC", "z_CMB", "mag", "eta", "e_mag", "e_eta"]
RA, dec, zCMB, mag, eta, e_mag, e_eta = (loader.cat[k] for k in keys)
mask = (zCMB < zcmb_max)
if kind == "SFI_gals":
mask &= (eta > -0.15) & (eta < 0.2)
if verbose:
print("Emplyed eta cut for SFI galaxies.", flush=True)
model = TF_PV_validation_model(
los_overdensity[mask], los_velocity[mask], RA[mask], dec[mask],
zCMB[mask], mag[mask], eta[mask], e_mag[mask], e_eta[mask],
loader.rdist, loader._Omega_m)
else:
raise ValueError(f"Catalogue `{kind}` not recognized.")
if verbose:
print(f"Selected {np.sum(mask)}/{len(mask)} galaxies.", flush=True)
return model
###############################################################################
# Maximizing likelihood of a NumPyro model #
###############################################################################
def sample_prior(model, seed, sample_alpha, as_dict=False):
"""
Sample a single set of parameters from the prior of the model.
Parameters
----------
model : NumPyro model
NumPyro model.
seed : int
Random seed.
sample_alpha : bool
Whether to sample the density bias parameter `alpha`.
as_dict : bool, optional
Whether to return the parameters as a dictionary or a list of
parameters.
Returns
-------
x, keys : tuple
Tuple of parameters and their names. If `as_dict` is True, returns
only a dictionary.
"""
predictive = Predictive(model, num_samples=1)
samples = predictive(PRNGKey(seed), sample_alpha=sample_alpha)
if as_dict:
return samples
keys = list(samples.keys())
if "ll" in keys:
keys.remove("ll")
x = np.asarray([samples[key][0] for key in keys])
return x, keys
def make_loss(model, keys, sample_alpha=True, to_jit=True):
"""
Generate a loss function for the NumPyro model, that is the negative
log-likelihood. Note that this loss function cannot be automatically
differentiated.
Parameters
----------
model : NumPyro model
NumPyro model.
keys : list
List of parameter names.
sample_alpha : bool, optional
Whether to sample the density bias parameter `alpha`.
to_jit : bool, optional
Whether to JIT the loss function.
Returns
-------
loss : function
Loss function `f(x)` where `x` is a list of parameters ordered
according to `keys`.
"""
def f(x):
samples = {key: x[i] for i, key in enumerate(keys)}
loss = -util.log_likelihood(
model, samples, sample_alpha=sample_alpha)["ll"]
loss += cond(samples["sigma_v"] > 0, lambda: 0., lambda: jnp.inf)
loss += cond(samples["e_mu_intrinsic"] > 0, lambda: 0., lambda: jnp.inf) # noqa
return cond(jnp.isfinite(loss), lambda: loss, lambda: jnp.inf)
if to_jit:
return jit(f)
return f
def optimize_model_with_jackknife(loader, k, n_splits=5, sample_alpha=True,
get_model_kwargs={}, seed=42):
"""
Optimize the log-likelihood of a model for `n_splits` jackknifes.
Parameters
----------
loader : DataLoader
DataLoader instance.
k : int
Simulation index.
n_splits : int, optional
Number of jackknife splits.
sample_alpha : bool, optional
Whether to sample the density bias parameter `alpha`.
get_model_kwargs : dict, optional
Additional keyword arguments to pass to the `get_model` function.
seed : int, optional
Random seed.
Returns
-------
samples : dict
Dictionary of optimized parameters for each jackknife split.
stats : dict
Dictionary of mean and standard deviation for each parameter.
fmin : 1-dimensional array
Minimum negative log-likelihood for each jackknife split.
logz : 1-dimensional array
Log-evidence for each jackknife split.
bic : 1-dimensional array
Bayesian information criterion for each jackknife split.
"""
mask = np.zeros(n_splits, dtype=bool)
x0 = None
# Loop over the CV splits.
for i in trange(n_splits):
loader.make_jackknife_mask(i, n_splits, seed=seed)
model = get_model(loader, k, verbose=False, **get_model_kwargs)
if x0 is None:
x0, keys = sample_prior(model, seed, sample_alpha)
x = np.full((n_splits, len(x0)), np.nan)
fmin = np.full(n_splits, np.nan)
logz = np.full(n_splits, np.nan)
bic = np.full(n_splits, np.nan)
loss = make_loss(model, keys, sample_alpha=sample_alpha,
to_jit=True)
for j in range(100):
if np.isfinite(loss(x0)):
break
x0, __ = sample_prior(model, seed + 1, sample_alpha)
else:
raise ValueError("Failed to find finite initial loss.")
else:
loss = make_loss(model, keys, sample_alpha=sample_alpha,
to_jit=True)
with catch_warnings():
simplefilter("ignore")
res = fmin_powell(loss, x0, disp=False)
if np.all(np.isfinite(res)):
x[i] = res
mask[i] = True
x0 = res
fmin[i] = loss(res)
f_hess = Hessian(loss, method="forward", richardson_terms=1)
hess = f_hess(res)
D = len(keys)
logz[i] = (
- fmin[i]
+ 0.5 * np.log(np.abs(np.linalg.det(np.linalg.inv(hess))))
+ D / 2 * np.log(2 * np.pi))
bic[i] = len(keys) * np.log(len(loader.cat["RA"])) + 2 * fmin[i]
samples = {key: x[:, i][mask] for i, key in enumerate(keys)}
mean = [np.mean(samples[key]) for key in keys]
std = [(len(samples[key] - 1) * np.var(samples[key], ddof=0))**0.5
for key in keys]
stats = {key: (mean[i], std[i]) for i, key in enumerate(keys)}
return samples, stats, fmin, logz, bic

View file

@ -63,6 +63,8 @@ def simname2Omega_m(simname):
Omega_m: float Omega_m: float
""" """
d = {"csiborg1": 0.307, d = {"csiborg1": 0.307,
"csiborg2_main": 0.3111,
"csiborg2_random": 0.3111,
"borg1": 0.307, "borg1": 0.307,
"Carrick2015": 0.3, "Carrick2015": 0.3,
} }

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View file

@ -58,7 +58,8 @@ def get_los(catalogue_name, simname, comm):
if comm.Get_rank() == 0: if comm.Get_rank() == 0:
folder = "/mnt/extraspace/rstiskalek/catalogs" folder = "/mnt/extraspace/rstiskalek/catalogs"
if catalogue_name == "LOSS" or catalogue_name == "Foundation": if catalogue_name in ["LOSS", "Foundation", "SFI_gals", "2MTF",
"Pantheon+"]:
fpath = join(folder, "PV_compilation_Supranta2019.hdf5") fpath = join(folder, "PV_compilation_Supranta2019.hdf5")
with File(fpath, 'r') as f: with File(fpath, 'r') as f:
grp = f[catalogue_name] grp = f[catalogue_name]
@ -69,18 +70,6 @@ def get_los(catalogue_name, simname, comm):
with File(fpath, 'r') as f: with File(fpath, 'r') as f:
RA = f["RA"][:] RA = f["RA"][:]
dec = f["DEC"][:] dec = f["DEC"][:]
elif "csiborg1" in catalogue_name:
nsim = int(catalogue_name.split("_")[-1])
cat = csiborgtools.read.CSiBORG1Catalogue(
nsim, bounds={"totmass": (1e13, None)})
seed = 42
gen = np.random.default_rng(seed)
mask = gen.choice(len(cat), size=100, replace=False)
sph_pos = cat["spherical_pos"]
RA = sph_pos[mask, 1]
dec = sph_pos[mask, 2]
else: else:
raise ValueError(f"Unknown field name: `{catalogue_name}`.") raise ValueError(f"Unknown field name: `{catalogue_name}`.")
@ -122,6 +111,9 @@ def get_field(simname, nsim, kind, MAS, grid):
# Open the field reader. # Open the field reader.
if simname == "csiborg1": if simname == "csiborg1":
field_reader = csiborgtools.read.CSiBORG1Field(nsim) field_reader = csiborgtools.read.CSiBORG1Field(nsim)
elif "csiborg2" in simname:
simkind = simname.split("_")[-1]
field_reader = csiborgtools.read.CSiBORG2Field(nsim, simkind)
elif simname == "Carrick2015": elif simname == "Carrick2015":
folder = "/mnt/extraspace/rstiskalek/catalogs" folder = "/mnt/extraspace/rstiskalek/catalogs"
warn(f"Using local paths from `{folder}`.", RuntimeWarning) warn(f"Using local paths from `{folder}`.", RuntimeWarning)
@ -287,7 +279,7 @@ if __name__ == "__main__":
rmax = 200 rmax = 200
dr = 0.5 dr = 0.5
smooth_scales = [0, 2, 4, 6] smooth_scales = [0, 2]
comm = MPI.COMM_WORLD comm = MPI.COMM_WORLD
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring) paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)

View file

@ -1,14 +1,13 @@
nthreads=11 nthreads=4
memory=64 memory=32
on_login=${1} on_login=${1}
queue="berg" queue="berg"
env="/mnt/users/rstiskalek/csiborgtools/venv_csiborg/bin/python" env="/mnt/users/rstiskalek/csiborgtools/venv_csiborg/bin/python"
file="field_los.py" file="field_los.py"
catalogue="LOSS" catalogue=${2}
# catalogue="csiborg1_9844"
nsims="-1" nsims="-1"
simname="csiborg1" simname="csiborg2_main"
MAS="SPH" MAS="SPH"
grid=1024 grid=1024

View file

@ -26,7 +26,7 @@ import jax
import numpy as np import numpy as np
from h5py import File from h5py import File
from mpi4py import MPI from mpi4py import MPI
from numpyro.infer import MCMC, NUTS from numpyro.infer import MCMC, NUTS, init_to_sample
from taskmaster import work_delegation # noqa from taskmaster import work_delegation # noqa
@ -49,7 +49,7 @@ def get_model(args, nsim_iterator):
if args.catalogue == "A2": if args.catalogue == "A2":
fpath = join(folder, "A2.h5") fpath = join(folder, "A2.h5")
elif args.catalogue == "LOSS" or args.catalogue == "Foundation": elif args.catalogue == "LOSS" or args.catalogue == "Foundation":
raise NotImplementedError("To be implemented..") fpath = join(folder, "PV_compilation_Supranta2019.hdf5")
else: else:
raise ValueError(f"Unknown catalogue: `{args.catalogue}`.") raise ValueError(f"Unknown catalogue: `{args.catalogue}`.")
@ -61,6 +61,7 @@ def get_model(args, nsim_iterator):
los_overdensity = loader.los_density[:, nsim_iterator, :] los_overdensity = loader.los_density[:, nsim_iterator, :]
los_velocity = loader.los_radial_velocity[:, nsim_iterator, :] los_velocity = loader.los_radial_velocity[:, nsim_iterator, :]
if args.catalogue == "A2":
RA = loader.cat["RA"] RA = loader.cat["RA"]
dec = loader.cat["DEC"] dec = loader.cat["DEC"]
z_obs = loader.cat["z_obs"] z_obs = loader.cat["z_obs"]
@ -71,6 +72,37 @@ def get_model(args, nsim_iterator):
return csiborgtools.flow.SD_PV_validation_model( return csiborgtools.flow.SD_PV_validation_model(
los_overdensity, los_velocity, RA, dec, z_obs, r_hMpc, e_r_hMpc, los_overdensity, los_velocity, RA, dec, z_obs, r_hMpc, e_r_hMpc,
loader.rdist, Omega_m) loader.rdist, Omega_m)
elif args.catalogue == "LOSS" or args.catalogue == "Foundation":
RA = loader.cat["RA"]
dec = loader.cat["DEC"]
zCMB = loader.cat["z_CMB"]
mB = loader.cat["mB"]
x1 = loader.cat["x1"]
c = loader.cat["c"]
e_mB = loader.cat["e_mB"]
e_x1 = loader.cat["e_x1"]
e_c = loader.cat["e_c"]
return csiborgtools.flow.SN_PV_validation_model(
los_overdensity, los_velocity, RA, dec, zCMB, mB, x1, c,
e_mB, e_x1, e_c, loader.rdist, Omega_m)
elif args.catalogue in ["SFI_gals", "2MTF"]:
RA = loader.cat["RA"]
dec = loader.cat["DEC"]
zCMB = loader.cat["z_CMB"]
mag = loader.cat["mag"]
eta = loader.cat["eta"]
e_mag = loader.cat["e_mag"]
e_eta = loader.cat["e_eta"]
return csiborgtools.flow.TF_PV_validation_model(
los_overdensity, los_velocity, RA, dec, zCMB, mag, eta,
e_mag, e_eta, loader.rdist, Omega_m)
else:
raise ValueError(f"Unknown catalogue: `{args.catalogue}`.")
def run_model(model, nsteps, nchains, nsim, dump_folder, show_progress=True): def run_model(model, nsteps, nchains, nsim, dump_folder, show_progress=True):
@ -96,8 +128,8 @@ def run_model(model, nsteps, nchains, nsim, dump_folder, show_progress=True):
------- -------
None None
""" """
nuts_kernel = NUTS(model) nuts_kernel = NUTS(model, init_strategy=init_to_sample)
mcmc = MCMC(nuts_kernel, num_warmup=nsteps // 2, num_samples=nsteps // 2, mcmc = MCMC(nuts_kernel, num_warmup=500, num_samples=nsteps,
chain_method="sequential", num_chains=nchains, chain_method="sequential", num_chains=nchains,
progress_bar=show_progress) progress_bar=show_progress)
rng_key = jax.random.PRNGKey(42) rng_key = jax.random.PRNGKey(42)
@ -185,8 +217,8 @@ if __name__ == "__main__":
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring) paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
nsims = paths.get_ics(args.simname) nsims = paths.get_ics(args.simname)
nsteps = 5000 nsteps = 2000
nchains = 4 nchains = 2
# Create the dumping folder. # Create the dumping folder.
if comm.Get_rank() == 0: if comm.Get_rank() == 0:

View file

@ -7,8 +7,8 @@ queue="berg"
env="/mnt/users/rstiskalek/csiborgtools/venv_csiborg/bin/python" env="/mnt/users/rstiskalek/csiborgtools/venv_csiborg/bin/python"
file="flow_validation.py" file="flow_validation.py"
catalogue="A2" catalogue="Foundation"
simname="Carrick2015" simname="csiborg2_random"
pythoncm="$env $file --catalogue $catalogue --simname $simname --ksmooth $ksmooth" pythoncm="$env $file --catalogue $catalogue --simname $simname --ksmooth $ksmooth"