mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-22 12:18:01 +00:00
Add void interpolation (#150)
* Update imports * Remove multiple ICs for void * Update submit * Add void support * All the void support * Little update * Update nb * Update script
This commit is contained in:
parent
5336c0296c
commit
0bec52dd36
8 changed files with 229 additions and 58 deletions
|
@ -18,3 +18,4 @@ from .flow_model import (PV_LogLikelihood, PV_validation_model, dist2redshift,
|
|||
Observed2CosmologicalRedshift, predict_zobs, # noqa
|
||||
project_Vext, stack_pzosmo_over_realizations) # noqa
|
||||
from .selection import ToyMagnitudeSelection # noqa
|
||||
from .void_model import load_void_data, interpolate_void # noqa
|
||||
|
|
|
@ -25,6 +25,7 @@ from abc import ABC, abstractmethod
|
|||
|
||||
import numpy as np
|
||||
from astropy import units as u
|
||||
from astropy.coordinates import SkyCoord, angular_separation
|
||||
from astropy.cosmology import FlatLambdaCDM, z_at_value
|
||||
from jax import jit
|
||||
from jax import numpy as jnp
|
||||
|
@ -37,6 +38,7 @@ from tqdm import trange
|
|||
from ..params import SPEED_OF_LIGHT
|
||||
from ..utils import fprint
|
||||
from .selection import toy_log_magnitude_selection
|
||||
from .void_model import interpolate_void, load_void_data
|
||||
|
||||
H0 = 100 # km / s / Mpc
|
||||
|
||||
|
@ -193,6 +195,33 @@ class BaseFlowValidationModel(ABC):
|
|||
self.z_xrange = jnp.asarray(z_xrange)
|
||||
self.mu_xrange = jnp.asarray(mu_xrange)
|
||||
|
||||
def _set_void_data(self, RA, dec, kind, h, order):
|
||||
"""Create the void interpolator."""
|
||||
# h is the MOND model value of local H0 to convert the radial grid to
|
||||
# Mpc / h
|
||||
rLG_grid, void_grid = load_void_data(kind)
|
||||
void_grid = jnp.asarray(void_grid, dtype=jnp.float32)
|
||||
rLG_grid = jnp.asarray(rLG_grid, dtype=jnp.float32)
|
||||
|
||||
rLG_grid *= h
|
||||
rLG_min, rLG_max = rLG_grid.min(), rLG_grid.max()
|
||||
rgrid_min, rgrid_max = 0, 250
|
||||
fprint(f"setting radial grid from {rLG_min} to {rLG_max} Mpc.")
|
||||
rgrid_max *= h
|
||||
|
||||
# Get angular separation (in degrees) of each object from the model
|
||||
# axis.
|
||||
model_axis = SkyCoord(l=117, b=4, frame='galactic', unit='deg').icrs
|
||||
coords = SkyCoord(ra=RA, dec=dec, unit='deg').icrs
|
||||
|
||||
phi = angular_separation(coords.ra.rad, coords.dec.rad,
|
||||
model_axis.ra.rad, model_axis.dec.rad)
|
||||
phi = jnp.asarray(phi * 180 / np.pi, dtype=jnp.float32)
|
||||
|
||||
self.void_interpolator = lambda rLG: interpolate_void(
|
||||
rLG, self.r_xrange, phi, void_grid, rgrid_min, rgrid_max,
|
||||
rLG_min, rLG_max, order)
|
||||
|
||||
@property
|
||||
def ndata(self):
|
||||
"""Number of PV objects in the catalogue."""
|
||||
|
@ -201,7 +230,24 @@ class BaseFlowValidationModel(ABC):
|
|||
@property
|
||||
def num_sims(self):
|
||||
"""Number of simulations."""
|
||||
return len(self.log_los_density)
|
||||
if self.is_void_data:
|
||||
return 1.
|
||||
|
||||
return len(self.log_los_density())
|
||||
|
||||
def log_los_density(self, **kwargs):
|
||||
if self.is_void_data:
|
||||
# Currently we have no densities for the void.
|
||||
return jnp.zeros((1, self.ndata, len(self.r_xrange)))
|
||||
|
||||
return self._log_los_density
|
||||
|
||||
def los_velocity(self, **kwargs):
|
||||
if self.is_void_data:
|
||||
# We want the shape to be `(1, n_objects, n_radial_steps)``.
|
||||
return self.void_interpolator(kwargs["rLG"])[None, ...]
|
||||
|
||||
return self._los_velocity
|
||||
|
||||
@abstractmethod
|
||||
def __call__(self, **kwargs):
|
||||
|
@ -331,7 +377,8 @@ def sample_simple(e_mu_min, e_mu_max, dmu_min, dmu_max, alpha_min, alpha_max,
|
|||
|
||||
def sample_calibration(Vext_min, Vext_max, Vmono_min, Vmono_max, beta_min,
|
||||
beta_max, sigma_v_min, sigma_v_max, h_min, h_max,
|
||||
no_Vext, sample_Vmono, sample_beta, sample_h):
|
||||
rLG_min, rLG_max, no_Vext, sample_Vmono, sample_beta,
|
||||
sample_h, sample_rLG):
|
||||
"""Sample the flow calibration."""
|
||||
sigma_v = sample("sigma_v", Uniform(sigma_v_min, sigma_v_max))
|
||||
|
||||
|
@ -357,12 +404,18 @@ def sample_calibration(Vext_min, Vext_max, Vmono_min, Vmono_max, beta_min,
|
|||
else:
|
||||
h = 1.0
|
||||
|
||||
if sample_rLG:
|
||||
rLG = sample("rLG", Uniform(rLG_min, rLG_max))
|
||||
else:
|
||||
rLG = None
|
||||
|
||||
return {"Vext": Vext,
|
||||
"Vmono": Vmono,
|
||||
"sigma_v": sigma_v,
|
||||
"beta": beta,
|
||||
"h": h,
|
||||
"sample_h": sample_h,
|
||||
"rLG": rLG,
|
||||
}
|
||||
|
||||
|
||||
|
@ -386,9 +439,9 @@ class PV_LogLikelihood(BaseFlowValidationModel):
|
|||
Parameters
|
||||
----------
|
||||
los_density : 3-dimensional array of shape (n_sims, n_objects, n_steps)
|
||||
LOS density field.
|
||||
LOS density field. Set to `None` if the data is void data.
|
||||
los_velocity : 3-dimensional array of shape (n_sims, n_objects, n_steps)
|
||||
LOS radial velocity field.
|
||||
LOS radial velocity field. Set to `None` if the data is void data.
|
||||
RA, dec : 1-dimensional arrays of shape (n_objects)
|
||||
Right ascension and declination in degrees.
|
||||
z_obs : 1-dimensional array of shape (n_objects)
|
||||
|
@ -409,6 +462,8 @@ class PV_LogLikelihood(BaseFlowValidationModel):
|
|||
Catalogue kind, either "TFR", "SN", or "simple".
|
||||
name : str
|
||||
Name of the catalogue.
|
||||
void_kwargs : dict, optional
|
||||
Void data parameters. If `None` the data is not void data.
|
||||
with_num_dist_marginalisation : bool, optional
|
||||
Whether to use numerical distance marginalisation, in which case
|
||||
the tracers cannot be coupled by a covariance matrix. By default
|
||||
|
@ -417,19 +472,31 @@ class PV_LogLikelihood(BaseFlowValidationModel):
|
|||
|
||||
def __init__(self, los_density, los_velocity, RA, dec, z_obs, e_zobs,
|
||||
calibration_params, abs_calibration_params, mag_selection,
|
||||
r_xrange, Omega_m, kind, name, with_num_dist_marginalisation):
|
||||
r_xrange, Omega_m, kind, name, void_kwargs=None,
|
||||
with_num_dist_marginalisation=True):
|
||||
if e_zobs is not None:
|
||||
e2_cz_obs = jnp.asarray((SPEED_OF_LIGHT * e_zobs)**2)
|
||||
else:
|
||||
e2_cz_obs = jnp.zeros_like(z_obs)
|
||||
|
||||
self.is_void_data = void_kwargs is not None
|
||||
|
||||
# This must be done before we convert to radians.
|
||||
if void_kwargs is not None:
|
||||
self._set_void_data(RA=RA, dec=dec, **void_kwargs)
|
||||
|
||||
# Convert RA/dec to radians.
|
||||
RA, dec = np.deg2rad(RA), np.deg2rad(dec)
|
||||
|
||||
names = ["log_los_density", "los_velocity", "RA", "dec", "z_obs",
|
||||
"e2_cz_obs"]
|
||||
values = [jnp.log(los_density), los_velocity, RA, dec, z_obs,
|
||||
e2_cz_obs]
|
||||
names = ["RA", "dec", "z_obs", "e2_cz_obs"]
|
||||
values = [RA, dec, z_obs, e2_cz_obs]
|
||||
|
||||
if not self.is_void_data:
|
||||
names += ["_log_los_density", "_los_velocity"]
|
||||
values += [jnp.log(los_density), los_velocity]
|
||||
|
||||
# Set the void data
|
||||
|
||||
self._setattr_as_jax(names, values)
|
||||
self._set_calibration_params(calibration_params)
|
||||
self._set_abs_calibration_params(abs_calibration_params)
|
||||
|
@ -660,17 +727,24 @@ class PV_LogLikelihood(BaseFlowValidationModel):
|
|||
mu_xrange[None, :], mu[:, None], e2_mu[:, None],
|
||||
self.log_r2_xrange[None, :])
|
||||
|
||||
if self.is_void_data:
|
||||
rLG = field_calibration_params["rLG"]
|
||||
log_los_density = self.log_los_density(rLG=rLG)
|
||||
los_velocity = self.los_velocity(rLG=rLG)
|
||||
else:
|
||||
log_los_density = self.log_los_density()
|
||||
los_velocity = self.los_velocity()
|
||||
|
||||
# Inhomogeneous Malmquist bias. Shape: (nsims, ndata, nxrange)
|
||||
alpha = distmod_params["alpha"]
|
||||
log_ptilde = log_ptilde[None, ...] + alpha * self.log_los_density
|
||||
log_ptilde = log_ptilde[None, ...] + alpha * log_los_density
|
||||
|
||||
ptilde = jnp.exp(log_ptilde)
|
||||
|
||||
# Normalization of p(r). Shape: (nsims, ndata)
|
||||
pnorm = simpson(ptilde, x=self.r_xrange, axis=-1)
|
||||
|
||||
# Calculate z_obs at each distance. Shape: (nsims, ndata, nxrange)
|
||||
vrad = field_calibration_params["beta"] * self.los_velocity
|
||||
vrad = field_calibration_params["beta"] * los_velocity
|
||||
vrad += (Vext_rad[None, :, None] + Vmono)
|
||||
zobs = 1 + self.z_xrange[None, None, :]
|
||||
zobs *= 1 + vrad / SPEED_OF_LIGHT
|
||||
|
|
|
@ -64,13 +64,16 @@ class DataLoader:
|
|||
self._field_rdist, self._los_density, self._los_velocity = self._read_field( # noqa
|
||||
simname, ksim, catalogue, ksmooth, paths)
|
||||
|
||||
if "IndranilVoid" not in simname:
|
||||
if len(self._cat) != self._los_density.shape[1]:
|
||||
raise ValueError("The number of objects in the catalogue does not "
|
||||
"match the number of objects in the field.")
|
||||
raise ValueError(
|
||||
"The number of objects in the catalogue does not match "
|
||||
"the number of objects in the field.")
|
||||
|
||||
fprint("calculating the radial velocity.", verbose)
|
||||
nobject = self._los_density.shape[1]
|
||||
dtype = self._los_density.dtype
|
||||
num_sims = len(self._los_density)
|
||||
|
||||
if simname in ["Carrick2015", "Lilow2024"]:
|
||||
# Carrick+2015 and Lilow+2024 are in galactic coordinates
|
||||
|
@ -81,9 +84,8 @@ class DataLoader:
|
|||
else:
|
||||
d1, d2 = self._cat["RA"], self._cat["DEC"]
|
||||
|
||||
num_sims = len(self._los_density)
|
||||
if "IndranilVoid" in simname:
|
||||
self._los_radial_velocity = self._los_velocity
|
||||
self._los_radial_velocity = None
|
||||
self._los_velocity = None
|
||||
else:
|
||||
radvel = np.empty(
|
||||
|
@ -165,6 +167,9 @@ class DataLoader:
|
|||
return self._los_radial_velocity[:, self._mask, ...]
|
||||
|
||||
def _read_field(self, simname, ksims, catalogue, ksmooth, paths):
|
||||
if "IndranilVoid" in simname:
|
||||
return None, None, None
|
||||
|
||||
nsims = paths.get_ics(simname)
|
||||
if isinstance(ksims, int):
|
||||
ksims = [ksims]
|
||||
|
@ -340,8 +345,17 @@ def read_absolute_calibration(kind, data_length, calibration_fpath):
|
|||
return out, with_calibration, length_calibration
|
||||
|
||||
|
||||
def mask_fields(density, velocity, mask, return_none):
|
||||
"""Shortcut to mask fields, unless they are `None`"""
|
||||
if return_none:
|
||||
return None, None
|
||||
|
||||
return density[:, mask], velocity[:, mask]
|
||||
|
||||
|
||||
def get_model(loader, zcmb_min=None, zcmb_max=None, mag_selection=None,
|
||||
absolute_calibration=None, calibration_fpath=None):
|
||||
absolute_calibration=None, calibration_fpath=None,
|
||||
void_kwargs=None):
|
||||
"""
|
||||
Get a model and extract the relevant data from the loader.
|
||||
|
||||
|
@ -366,10 +380,23 @@ def get_model(loader, zcmb_min=None, zcmb_max=None, mag_selection=None,
|
|||
zcmb_min = 0.0 if zcmb_min is None else zcmb_min
|
||||
zcmb_max = np.infty if zcmb_max is None else zcmb_max
|
||||
|
||||
if void_kwargs is None:
|
||||
los_overdensity = loader.los_density
|
||||
los_velocity = loader.los_radial_velocity
|
||||
else:
|
||||
los_overdensity = None
|
||||
los_velocity = None
|
||||
|
||||
kind = loader._catname
|
||||
|
||||
if void_kwargs is not None:
|
||||
rdist = void_kwargs.pop("rdist", None)
|
||||
if rdist is None:
|
||||
raise ValueError(
|
||||
"The radial distances must be provided for the void.")
|
||||
|
||||
loader._field_rdist = rdist
|
||||
|
||||
if absolute_calibration is not None and "CF4_TFR_" not in kind:
|
||||
raise ValueError("Absolute calibration supported only for the CF4 TFR sample.") # noqa
|
||||
|
||||
|
@ -384,11 +411,14 @@ def get_model(loader, zcmb_min=None, zcmb_max=None, mag_selection=None,
|
|||
"e_mag": e_mag[mask], "e_x1": e_x1[mask],
|
||||
"e_c": e_c[mask]}
|
||||
|
||||
los_overdensity, los_velocity = mask_fields(
|
||||
los_overdensity, los_velocity, mask, void_kwargs is not None)
|
||||
|
||||
model = PV_LogLikelihood(
|
||||
los_overdensity[:, mask], los_velocity[:, mask],
|
||||
los_overdensity, los_velocity,
|
||||
RA[mask], dec[mask], zCMB[mask], e_zCMB, calibration_params,
|
||||
None, mag_selection, loader.rdist, loader._Omega_m, "SN",
|
||||
name=kind)
|
||||
name=kind, void_kwargs=void_kwargs)
|
||||
elif "Pantheon+" in kind:
|
||||
keys = ["RA", "DEC", "zCMB", "mB", "x1", "c", "biasCor_m_b", "mBERR",
|
||||
"x1ERR", "cERR", "biasCorErr_m_b", "zCMB_SN", "zCMB_Group",
|
||||
|
@ -413,11 +443,15 @@ def get_model(loader, zcmb_min=None, zcmb_max=None, mag_selection=None,
|
|||
calibration_params = {"mag": mB[mask], "x1": x1[mask], "c": c[mask],
|
||||
"e_mag": e_mB[mask], "e_x1": e_x1[mask],
|
||||
"e_c": e_c[mask]}
|
||||
|
||||
los_overdensity, los_velocity = mask_fields(
|
||||
los_overdensity, los_velocity, mask, void_kwargs is not None)
|
||||
|
||||
model = PV_LogLikelihood(
|
||||
los_overdensity[:, mask], los_velocity[:, mask],
|
||||
los_overdensity, los_velocity,
|
||||
RA[mask], dec[mask], zCMB[mask], e_zCMB[mask], calibration_params,
|
||||
None, mag_selection, loader.rdist, loader._Omega_m, "SN",
|
||||
name=kind)
|
||||
name=kind, void_kwargs=void_kwargs)
|
||||
elif kind in ["SFI_gals", "2MTF", "SFI_gals_masked"]:
|
||||
keys = ["RA", "DEC", "z_CMB", "mag", "eta", "e_mag", "e_eta"]
|
||||
RA, dec, zCMB, mag, eta, e_mag, e_eta = (loader.cat[k] for k in keys)
|
||||
|
@ -425,10 +459,15 @@ def get_model(loader, zcmb_min=None, zcmb_max=None, mag_selection=None,
|
|||
mask = (zCMB < zcmb_max) & (zCMB > zcmb_min)
|
||||
calibration_params = {"mag": mag[mask], "eta": eta[mask],
|
||||
"e_mag": e_mag[mask], "e_eta": e_eta[mask]}
|
||||
|
||||
los_overdensity, los_velocity = mask_fields(
|
||||
los_overdensity, los_velocity, mask, void_kwargs is not None)
|
||||
|
||||
model = PV_LogLikelihood(
|
||||
los_overdensity[:, mask], los_velocity[:, mask],
|
||||
los_overdensity, los_velocity,
|
||||
RA[mask], dec[mask], zCMB[mask], None, calibration_params, None,
|
||||
mag_selection, loader.rdist, loader._Omega_m, "TFR", name=kind)
|
||||
mag_selection, loader.rdist, loader._Omega_m, "TFR", name=kind,
|
||||
void_kwargs=void_kwargs)
|
||||
elif "CF4_TFR_" in kind:
|
||||
# The full name can be e.g. "CF4_TFR_not2MTForSFI_i" or "CF4_TFR_i".
|
||||
band = kind.split("_")[-1]
|
||||
|
@ -488,11 +527,15 @@ def get_model(loader, zcmb_min=None, zcmb_max=None, mag_selection=None,
|
|||
|
||||
calibration_params = {"mag": mag[mask], "eta": eta[mask],
|
||||
"e_mag": e_mag[mask], "e_eta": e_eta[mask]}
|
||||
|
||||
los_overdensity, los_velocity = mask_fields(
|
||||
los_overdensity, los_velocity, mask, void_kwargs is not None)
|
||||
|
||||
model = PV_LogLikelihood(
|
||||
los_overdensity[:, mask], los_velocity[:, mask],
|
||||
los_overdensity, los_velocity,
|
||||
RA[mask], dec[mask], z_obs[mask], None, calibration_params,
|
||||
abs_calibration_params, mag_selection, loader.rdist,
|
||||
loader._Omega_m, "TFR", name=kind)
|
||||
loader._Omega_m, "TFR", name=kind, void_kwargs=void_kwargs)
|
||||
elif kind in ["CF4_GroupAll"]:
|
||||
# Note, this for some reason works terribly.
|
||||
keys = ["RA", "DE", "Vcmb", "DMzp", "eDM"]
|
||||
|
@ -505,11 +548,15 @@ def get_model(loader, zcmb_min=None, zcmb_max=None, mag_selection=None,
|
|||
mu += 5 * np.log10(0.75)
|
||||
|
||||
calibration_params = {"mu": mu[mask], "e_mu": e_mu[mask]}
|
||||
|
||||
los_overdensity, los_velocity = mask_fields(
|
||||
los_overdensity, los_velocity, mask, void_kwargs is not None)
|
||||
|
||||
model = PV_LogLikelihood(
|
||||
los_overdensity[:, mask], los_velocity[:, mask],
|
||||
los_overdensity, los_velocity,
|
||||
RA[mask], dec[mask], zCMB[mask], None, calibration_params, None,
|
||||
mag_selection, loader.rdist, loader._Omega_m, "simple",
|
||||
name=kind)
|
||||
name=kind, void_kwargs=void_kwargs)
|
||||
else:
|
||||
raise ValueError(f"Catalogue `{kind}` not recognized.")
|
||||
|
||||
|
|
|
@ -56,7 +56,7 @@ def load_void_data(kind):
|
|||
for f in files]
|
||||
rLG = np.sort(rLG)
|
||||
|
||||
for i, ri in enumerate(tqdm(rLG, desc="Loading observer data")):
|
||||
for i, ri in enumerate(tqdm(rLG, desc="Loading void observer data")):
|
||||
f = join(fdir, f"v_pec_{kind}profile_rLG_{ri}.dat")
|
||||
data_i = np.genfromtxt(f).T
|
||||
|
||||
|
|
|
@ -135,23 +135,10 @@ class Paths:
|
|||
files = [search(r'realization(\d+)_delta\.fits', file).group(1)
|
||||
for file in files if search(r'realization(\d+)_delta\.fits', file)] # noqa
|
||||
files = [int(file) for file in files]
|
||||
# Downsample to only 20 realisations
|
||||
# files = files[::5]
|
||||
elif simname in ["Carrick2015", "Lilow2024", "no_field", "CLONES"]:
|
||||
files = [0]
|
||||
elif "IndranilVoid" in simname:
|
||||
kind = simname.split("_")[-1]
|
||||
if kind not in ["exp", "gauss", "mb"]:
|
||||
raise ValueError(f"Unknown void kind `{simname}`.")
|
||||
|
||||
kind = kind.upper()
|
||||
fdir = join(self.aux_cat_dir, "IndranilVoid", f"{kind}profile")
|
||||
files = glob(join(fdir, "v_pec_*.dat"))
|
||||
|
||||
files = [
|
||||
search(rf'v_pec_{kind}profile_rLG_(\d+)\.dat', file).group(1)
|
||||
for file in files]
|
||||
files = [int(file) for file in files]
|
||||
files = [0]
|
||||
else:
|
||||
raise ValueError(f"Unknown simulation name `{simname}`.")
|
||||
|
||||
|
|
|
@ -48,6 +48,47 @@
|
|||
"## Quick checks"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"File: /mnt/extraspace/rstiskalek/csiborg_postprocessing/peculiar_velocity/samples_Carrick2015_2MTF_mike_zcmb_max_0.05_sample_alpha.hdf5\n",
|
||||
"Last modified: 30/08/2024 15:27:56\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"9715.0205"
|
||||
]
|
||||
},
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"fname = paths.flow_validation(\n",
|
||||
" fdir, \"Carrick2015\", \"2MTF\", inference_method=\"mike\",\n",
|
||||
" sample_alpha=True, sample_beta=None,\n",
|
||||
" zcmb_max=0.05)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"get_gof(\"neg_lnZ_harmonic\", fname)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
|
|
|
@ -74,8 +74,9 @@ import sys
|
|||
from os.path import join # noqa
|
||||
|
||||
import csiborgtools # noqa
|
||||
from csiborgtools import fprint # noqa
|
||||
import jax # noqa
|
||||
import numpy as np # noqa
|
||||
from csiborgtools import fprint # noqa
|
||||
from h5py import File # noqa
|
||||
from numpyro.infer import MCMC, NUTS, init_to_median # noqa
|
||||
|
||||
|
@ -86,7 +87,8 @@ def print_variables(names, variables):
|
|||
print(flush=True)
|
||||
|
||||
|
||||
def get_models(ksim, get_model_kwargs, mag_selection, verbose=True):
|
||||
def get_models(ksim, get_model_kwargs, mag_selection, void_kwargs,
|
||||
verbose=True):
|
||||
"""Load the data and create the NumPyro models."""
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
folder = "/mnt/extraspace/rstiskalek/catalogs/"
|
||||
|
@ -125,12 +127,21 @@ def get_models(ksim, get_model_kwargs, mag_selection, verbose=True):
|
|||
cat, fpath, paths,
|
||||
ksmooth=ARGS.ksmooth)
|
||||
models[i] = csiborgtools.flow.get_model(
|
||||
loader, mag_selection=mag_selection[i], **get_model_kwargs)
|
||||
loader, mag_selection=mag_selection[i], void_kwargs=void_kwargs,
|
||||
**get_model_kwargs)
|
||||
|
||||
fprint(f"num. radial steps is {len(loader.rdist)}")
|
||||
return models
|
||||
|
||||
|
||||
def select_void_h(kind):
|
||||
hs = {"mb": 0.7615, "gauss": 0.7724, "exp": 0.7725}
|
||||
try:
|
||||
return hs[kind]
|
||||
except KeyError:
|
||||
raise ValueError(f"Unknown void kind: `{kind}`.")
|
||||
|
||||
|
||||
def get_harmonic_evidence(samples, log_posterior, nchains_harmonic, epoch_num):
|
||||
"""Compute evidence using the `harmonic` package."""
|
||||
data, names = csiborgtools.dict_samples_to_array(samples)
|
||||
|
@ -339,8 +350,18 @@ if __name__ == "__main__":
|
|||
if mag_selection and inference_method != "bayes":
|
||||
raise ValueError("Magnitude selection is only supported with `bayes` inference.") # noqa
|
||||
|
||||
if "IndranilVoid" in ARGS.simname and ARGS.ksim is None:
|
||||
raise ValueError("`IndranilVoid` must be run only per specific realization.") # noqa
|
||||
if "IndranilVoid" in ARGS.simname:
|
||||
if ARGS.ksim is not None:
|
||||
raise ValueError(
|
||||
"`IndranilVoid` does not have multiple realisations.")
|
||||
|
||||
kind = ARGS.simname.split("_")[-1]
|
||||
h = select_void_h(kind)
|
||||
rdist = np.arange(0, 165, 0.5)
|
||||
void_kwargs = {"kind": kind, "h": h, "order": 1, "rdist": rdist}
|
||||
else:
|
||||
void_kwargs = None
|
||||
h = 1.
|
||||
|
||||
if inference_method != "bayes":
|
||||
mag_selection = [None] * len(ARGS.catalogue)
|
||||
|
@ -360,6 +381,8 @@ if __name__ == "__main__":
|
|||
"sample_Vmono": sample_Vmono,
|
||||
"sample_beta": sample_beta,
|
||||
"sample_h": sample_h,
|
||||
"sample_rLG": "IndranilVoid" in ARGS.simname,
|
||||
"rLG_min": 0.0, "rLG_max": 500 * h,
|
||||
}
|
||||
print_variables(
|
||||
calibration_hyperparams.keys(), calibration_hyperparams.values())
|
||||
|
@ -394,7 +417,7 @@ if __name__ == "__main__":
|
|||
print(f"{'Current simulation:':<20} {i + 1} ({ksim}) out of {len(ksim_iterator)}.") # noqa
|
||||
|
||||
fname_kwargs["nsim"] = ksim
|
||||
models = get_models(ksim, get_model_kwargs, mag_selection)
|
||||
models = get_models(ksim, get_model_kwargs, mag_selection, void_kwargs)
|
||||
model_kwargs = {
|
||||
"models": models,
|
||||
"field_calibration_hyperparams": calibration_hyperparams,
|
||||
|
|
|
@ -37,11 +37,9 @@ else
|
|||
fi
|
||||
|
||||
|
||||
# for simname in "IndranilVoid_exp" "IndranilVoid_gauss" "IndranilVoid_mb"; do
|
||||
for simname in "Carrick2015"; do
|
||||
for simname in "IndranilVoid_exp" "IndranilVoid_gauss" "IndranilVoid_mb"; do
|
||||
# for simname in "no_field"; do
|
||||
# for catalogue in "LOSS" "Foundation" "2MTF" "SFI_gals" "CF4_TFR_i" "CF4_TFR_w1"; do
|
||||
for catalogue in "LOSS"; do
|
||||
for catalogue in "LOSS" "Foundation" "2MTF" "SFI_gals" "CF4_TFR_i" "CF4_TFR_w1"; do
|
||||
# for catalogue in "CF4_TFR_i" "CF4_TFR_w1"; do
|
||||
# for catalogue in "2MTF" "SFI_gals" "CF4_TFR_i" "CF4_TFR_w1"; do
|
||||
for ksim in "none"; do
|
||||
|
|
Loading…
Reference in a new issue