add readclumps func

This commit is contained in:
rstiskalek 2022-10-11 16:00:04 +01:00
parent 07a7e41078
commit 0876716719
2 changed files with 36 additions and 19 deletions

View file

@ -14,4 +14,4 @@
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
from .readsim import (get_sim_path, open_particle, open_unbinding, from .readsim import (get_sim_path, open_particle, open_unbinding,
read_particle, read_clumpid) read_particle, read_clumpid, read_clumps)

View file

@ -9,8 +9,8 @@ from tqdm import tqdm
F16 = numpy.float16 F16 = numpy.float16
F32 = numpy.float32 F32 = numpy.float32
F64 = numpy.float64 F64 = numpy.float64
I32 = numpy.I32 I32 = numpy.int32
I64 = numpy.I64 I64 = numpy.int64
def get_sim_path(n, fname="ramses_out_{}", srcdir="/mnt/extraspace/hdesmond"): def get_sim_path(n, fname="ramses_out_{}", srcdir="/mnt/extraspace/hdesmond"):
@ -261,22 +261,39 @@ def read_clumpid(n, simpath, verbose=True):
return clumpid return clumpid
def read_clumps(n, simpath): def read_clumps(n, simpath):
pass """
# n = str(n).zfill(5) Read in a precomputed clump file `clump_N.dat`.
# fname = join(simpath, "output_{}".format(n), "clump_{}.dat".format(n))
#
# if not isfile(fname):
# raise FileExistsError("Clump file `{}` does not exist.".format(fname))
#
# arr = numpy.genfromtxt(fname)
#
# cols = [("index", I64)]
#
#
#
# return arr
Parameters
----------
n : int
The index of a redshift snapshot.
simpath : str
The complete path to the CSiBORG simulation.
#index lev parent(2) ncell peak_x peak_y(5) peak_z rho- rho+(8) rho_av mass_cl relevance(11) Returns
#clumparr = numpy.genfromtxt(srcdir1+"/clump_"+outnr1+".dat") -------
out : structured array
Structured array of the clumps.
"""
n = str(n).zfill(5)
fname = join(simpath, "output_{}".format(n), "clump_{}.dat".format(n))
# Check the file exists.
if not isfile(fname):
raise FileExistsError("Clump file `{}` does not exist.".format(fname))
# Read in the clump array. This is how the columns must be written!
arr = numpy.genfromtxt(fname)
cols = [("index", I64), ("level", I64), ("parent", I64), ("ncell", F64),
("peak_x", F64), ("peak_y", F64), ("peak_z", F64),
("rho-", F64), ("rho+", F64), ("rho_av", F64),
("mass_cl", F64), ("relevance", F64)]
# Write to a structured array
dtype = {"names": [col[0] for col in cols],
"formats": [col[1] for col in cols]}
out = numpy.full(arr.shape[0], numpy.nan, dtype=dtype)
for i, name in enumerate(dtype["names"]):
out[name] = arr[:, i]
return out