mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-22 11:58:02 +00:00
Update initial matching & overlaps (#47)
* pep8 * fix convention * Update script * enforce optimisation boundaries to be finite * Update TODO * Remove sky matching * FIx a small bug * fix bug * Remove import * Add halo fitted quantities * Update nbs * update README * Add load_initial comments * Rename nbs * Delete nb * Update imports * Rename function * Update matcher * Add overlap paths * Update the matching script * Update verbosity * Add verbosity flags * Simplify make_bckg_delta * bug fix * fix bug
This commit is contained in:
parent
39b3498621
commit
04119a5314
14 changed files with 527 additions and 2836 deletions
|
@ -4,12 +4,13 @@
|
|||
## Project Overlap
|
||||
- [x] Clean up the kNN paths in the summary.
|
||||
- [x] Clean up the 2PCF paths in the summary.
|
||||
- [x] Update the clustering scripts to work with clumps instead.
|
||||
- [x] Sort out the splitting of individual clumps.
|
||||
- [x] Update the fitting scripts to work for clumps and parent halos.
|
||||
|
||||
- [ ] Sort out the splitting of individual clumps.
|
||||
- [ ] Update the fitting scripts to work for clumps and parent halos.
|
||||
- [ ] When calculating the overlap now check whether the halos have any particles, but that should already be the case otherwise its initial CM will not be defined.
|
||||
- [ ] Calculated fitted quantities for clumps and parent halos and add them to the catalogues.
|
||||
- [ ] Update overlap scripts to work with summed parent halos.
|
||||
- [ ] Update the clustering scripts to work with clumps instead.
|
||||
|
||||
- [ ] Calculate the overlap between all 101 IC realisations on DiRAC.
|
||||
|
||||
|
|
|
@ -349,24 +349,31 @@ class NFWPosterior(NFWProfile):
|
|||
"""
|
||||
assert isinstance(clump, Clump)
|
||||
r = clump.r()
|
||||
rmin = numpy.min(r)
|
||||
rmin = numpy.min(r[r > 0]) # First particle that is not at r = 0
|
||||
rmax, mtot = clump.spherical_overdensity_mass(200)
|
||||
mask = (rmin <= r) & (r <= rmax)
|
||||
npart = numpy.sum(mask)
|
||||
r = r[mask]
|
||||
|
||||
# Loss function to optimize
|
||||
def loss(logRs):
|
||||
return -self(logRs, r, rmin, rmax, npart)
|
||||
|
||||
# Define optimisation boundaries. Check whether they are finite and
|
||||
# that rmax > rmin. If not, then return NaN.
|
||||
bounds = (numpy.log10(rmin), numpy.log10(rmax))
|
||||
if not (numpy.all(numpy.isfinite(bounds)) and bounds[0] < bounds[1]):
|
||||
return numpy.nan, numpy.nan
|
||||
|
||||
res = minimize_scalar(
|
||||
loss, bounds=(numpy.log10(rmin), numpy.log10(rmax)), method="bounded"
|
||||
)
|
||||
|
||||
# Check whether the fit converged to radius sufficienly far from `rmax`
|
||||
# and that its a success. Otherwise return NaNs.
|
||||
if numpy.log10(rmax) - res.x < eps:
|
||||
res.success = False
|
||||
if not res.success:
|
||||
return numpy.nan, numpy.nan
|
||||
|
||||
# Additionally we also wish to calculate the central density from the
|
||||
# mass (integral) constraint.
|
||||
rho0 = self.rho0_from_Rs(10**res.x, rmin, rmax, mtot)
|
||||
return 10**res.x, rho0
|
||||
|
|
|
@ -20,9 +20,6 @@ from .match import ( # noqa
|
|||
cosine_similarity,
|
||||
dist_centmass,
|
||||
dist_percentile,
|
||||
fill_delta,
|
||||
fill_delta_indxs,
|
||||
get_clumplims,
|
||||
)
|
||||
from .num_density import binned_counts, number_density # noqa
|
||||
from .utils import concatenate_clumps # noqa
|
||||
from .utils import concatenate_parts # noqa
|
||||
|
|
|
@ -16,15 +16,12 @@
|
|||
Support for matching halos between CSiBORG IC realisations.
|
||||
"""
|
||||
from datetime import datetime
|
||||
from gc import collect
|
||||
|
||||
import numpy
|
||||
from numba import jit
|
||||
from scipy.ndimage import gaussian_filter
|
||||
from tqdm import tqdm, trange
|
||||
|
||||
from .utils import concatenate_clumps
|
||||
|
||||
###############################################################################
|
||||
# Realisations matcher for calculating overlaps #
|
||||
###############################################################################
|
||||
|
@ -32,9 +29,7 @@ from .utils import concatenate_clumps
|
|||
|
||||
class RealisationsMatcher:
|
||||
"""
|
||||
A tool to match halos between IC realisations. Looks for halos 3D space
|
||||
neighbours in all remaining IC realisations that are within some mass
|
||||
range of it.
|
||||
A tool to match halos between IC realisations.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
@ -49,12 +44,13 @@ class RealisationsMatcher:
|
|||
catalogue key. By default `totpartmass`, i.e. the total particle
|
||||
mass associated with a halo.
|
||||
"""
|
||||
|
||||
_nmult = None
|
||||
_dlogmass = None
|
||||
_mass_kind = None
|
||||
_overlapper = None
|
||||
|
||||
def __init__(self, nmult=1., dlogmass=2., mass_kind="totpartmass"):
|
||||
def __init__(self, nmult=1.0, dlogmass=2.0, mass_kind="totpartmass"):
|
||||
assert nmult > 0
|
||||
assert dlogmass > 0
|
||||
assert isinstance(mass_kind, str)
|
||||
|
@ -109,12 +105,13 @@ class RealisationsMatcher:
|
|||
"""
|
||||
return self._overlapper
|
||||
|
||||
def cross(self, cat0, catx, clumps0, clumpsx, delta_bckg, verbose=True):
|
||||
def cross(
|
||||
self, cat0, catx, halos0_archive, halosx_archive, delta_bckg, verbose=True
|
||||
):
|
||||
r"""
|
||||
Find all neighbours whose CM separation is less than `nmult` times the
|
||||
sum of their initial Lagrangian patch sizes and optionally calculate
|
||||
their overlap. Enforces that the neighbours' are similar in mass up to
|
||||
`dlogmass` dex.
|
||||
sum of their initial Lagrangian patch sizes and calculate their overlap.
|
||||
Enforces that the neighbours' are similar in mass up to `dlogmass` dex.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
@ -122,14 +119,14 @@ class RealisationsMatcher:
|
|||
Halo catalogue of the reference simulation.
|
||||
catx : :py:class:`csiborgtools.read.ClumpsCatalogue`
|
||||
Halo catalogue of the cross simulation.
|
||||
clumps0 : list of structured arrays
|
||||
List of clump structured arrays of the reference simulation, keys
|
||||
must include `x`, `y`, `z` and `M`. The positions must already be
|
||||
converted to cell numbers.
|
||||
clumpsx : list of structured arrays
|
||||
List of clump structured arrays of the cross simulation, keys must
|
||||
include `x`, `y`, `z` and `M`. The positions must already be
|
||||
converted to cell numbers.
|
||||
halos0_archive : `NpzFile` object
|
||||
Archive of halos' particles of the reference simulation, keys must
|
||||
include `x`, `y`, `z` and `M`. The positions must already be converted
|
||||
to cell numbers.
|
||||
halosx_archive : `NpzFile` object
|
||||
Archive of halos' particles of the cross simulation, keys must
|
||||
include `x`, `y`, `z` and `M`. The positions must already be converted
|
||||
to cell numbers.
|
||||
delta_bckg : 3-dimensional array
|
||||
Summed background density field of the reference and cross
|
||||
simulations calculated with particles assigned to halos at the
|
||||
|
@ -140,24 +137,27 @@ class RealisationsMatcher:
|
|||
|
||||
Returns
|
||||
-------
|
||||
ref_indxs : 1-dimensional array
|
||||
Halo IDs in the reference catalogue.
|
||||
cross_indxs : 1-dimensional array
|
||||
Halo IDs in the cross catalogue.
|
||||
match_indxs : 1-dimensional array of arrays
|
||||
Indices of halo counterparts in the cross catalogue.
|
||||
The outer array corresponds to halos in the reference catalogue, the
|
||||
inner array corresponds to the array positions of matches in the cross
|
||||
catalogue.
|
||||
overlaps : 1-dimensional array of arrays
|
||||
Overlaps with the cross catalogue.
|
||||
Overlaps with the cross catalogue. Follows similar pattern as `match_indxs`.
|
||||
"""
|
||||
# Query the KNN
|
||||
verbose and print("{}: querying the KNN."
|
||||
.format(datetime.now()), flush=True)
|
||||
# We begin by querying the kNN for the nearest neighbours of each halo
|
||||
# in the reference simulation from the cross simulation in the initial
|
||||
# snapshot.
|
||||
verbose and print("{}: querying the KNN.".format(datetime.now()), flush=True)
|
||||
match_indxs = radius_neighbours(
|
||||
catx.knn(select_initial=True), cat0.positions(in_initial=True),
|
||||
radiusX=cat0["lagpatch"], radiusKNN=catx["lagpatch"],
|
||||
nmult=self.nmult, enforce_in32=True, verbose=verbose)
|
||||
|
||||
# Remove neighbours whose mass is too large/small
|
||||
catx.knn(select_initial=True),
|
||||
cat0.positions(in_initial=True),
|
||||
radiusX=cat0["lagpatch"],
|
||||
radiusKNN=catx["lagpatch"],
|
||||
nmult=self.nmult,
|
||||
enforce_int32=True,
|
||||
verbose=verbose,
|
||||
)
|
||||
# We next remove neighbours whose mass is too large/small.
|
||||
if self.dlogmass is not None:
|
||||
for i, indx in enumerate(match_indxs):
|
||||
# |log(M1 / M2)|
|
||||
|
@ -165,68 +165,103 @@ class RealisationsMatcher:
|
|||
aratio = numpy.abs(numpy.log10(catx[p][indx] / cat0[p][i]))
|
||||
match_indxs[i] = match_indxs[i][aratio < self.dlogmass]
|
||||
|
||||
# Min and max cells along each axis for each halo
|
||||
limkwargs = {"ncells": self.overlapper.inv_clength,
|
||||
"nshift": self.overlapper.nshift}
|
||||
mins0, maxs0 = get_clumplims(clumps0, **limkwargs)
|
||||
minsx, maxsx = get_clumplims(clumpsx, **limkwargs)
|
||||
|
||||
# Mapping from a halo index to the list of clumps
|
||||
hid2clumps0 = {hid: n for n, hid in enumerate(clumps0["ID"])}
|
||||
hid2clumpsx = {hid: n for n, hid in enumerate(clumpsx["ID"])}
|
||||
|
||||
# We will make a dictionary to keep in memory the halos' particles from the
|
||||
# cross simulations so that they are not loaded in several times and we only
|
||||
# convert their positions to cells once. Possibly make an option to not do
|
||||
# this to lower memory requirements?
|
||||
cross_halos = {}
|
||||
cross_lims = {}
|
||||
cross = [numpy.asanyarray([], dtype=numpy.float32)] * match_indxs.size
|
||||
# Loop only over halos that have neighbours
|
||||
iters = numpy.arange(len(cat0))[[x.size > 0 for x in match_indxs]]
|
||||
for i in tqdm(iters) if verbose else iters:
|
||||
match0 = hid2clumps0[cat0["index"][i]]
|
||||
# The clump, its mass and mins & maxs
|
||||
cl0 = clumps0["clump"][match0]
|
||||
mass0 = numpy.sum(cl0['M'])
|
||||
mins0_current, maxs0_current = mins0[match0], maxs0[match0]
|
||||
|
||||
# Preallocate arrays to store overlap information
|
||||
_cross = numpy.full(match_indxs[i].size, numpy.nan,
|
||||
dtype=numpy.float32)
|
||||
# Loop over matches of this halo from the other simulation
|
||||
for j, ind in enumerate(match_indxs[i]):
|
||||
matchx = hid2clumpsx[catx["index"][ind]]
|
||||
clx = clumpsx["clump"][matchx]
|
||||
for i, k0 in enumerate(tqdm(cat0["index"]) if verbose else cat0["index"]):
|
||||
# If we have no matches continue to the next halo.
|
||||
matches = match_indxs[i]
|
||||
if matches.size == 0:
|
||||
continue
|
||||
# Next, we find this halo's particles, total mass and minimum/maximum cells
|
||||
# and convert positions to cells.
|
||||
halo0 = halos0_archive[str(k0)]
|
||||
mass0 = numpy.sum(halo0["M"])
|
||||
mins0, maxs0 = get_halolims(
|
||||
halo0, ncells=self.overlapper.inv_clength, nshift=self.overlapper.nshift
|
||||
)
|
||||
for p in ("x", "y", "z"):
|
||||
halo0[p] = self.overlapper.pos2cell(halo0[p])
|
||||
# We now loop over matches of this halo and calculate their overlap,
|
||||
# storing them in `_cross`.
|
||||
_cross = numpy.full(matches.size, numpy.nan, dtype=numpy.float32)
|
||||
for j, kf in enumerate(catx["index"][matches]):
|
||||
# Attempt to load this cross halo from memory, if it fails get it from
|
||||
# from the halo archive (and similarly for the limits) and convert the
|
||||
# particle positions to cells.
|
||||
try:
|
||||
halox = cross_halos[kf]
|
||||
minsx, maxsx = cross_lims[kf]
|
||||
except KeyError:
|
||||
halox = halosx_archive[str(kf)]
|
||||
minsx, maxsx = get_halolims(
|
||||
halox,
|
||||
ncells=self.overlapper.inv_clength,
|
||||
nshift=self.overlapper.nshift,
|
||||
)
|
||||
for p in ("x", "y", "z"):
|
||||
halox[p] = self.overlapper.pos2cell(halox[p])
|
||||
cross_halos[kf] = halox
|
||||
cross_lims[kf] = (minsx, maxsx)
|
||||
massx = numpy.sum(halox["M"])
|
||||
_cross[j] = self.overlapper(
|
||||
cl0, clx, delta_bckg, mins0_current, maxs0_current,
|
||||
minsx[matchx], maxsx[matchx], mass1=mass0,
|
||||
mass2=numpy.sum(clx['M']))
|
||||
halo0,
|
||||
halox,
|
||||
delta_bckg,
|
||||
mins0,
|
||||
maxs0,
|
||||
minsx,
|
||||
maxsx,
|
||||
mass1=mass0,
|
||||
mass2=massx,
|
||||
)
|
||||
cross[i] = _cross
|
||||
|
||||
# Remove matches with exactly 0 overlap
|
||||
# We remove all matches that have zero overlap to save space.
|
||||
mask = cross[i] > 0
|
||||
match_indxs[i] = match_indxs[i][mask]
|
||||
cross[i] = cross[i][mask]
|
||||
|
||||
# Sort the matches by overlap
|
||||
# And finally we sort the matches by their overlap.
|
||||
ordering = numpy.argsort(cross[i])[::-1]
|
||||
match_indxs[i] = match_indxs[i][ordering]
|
||||
cross[i] = cross[i][ordering]
|
||||
|
||||
cross = numpy.asanyarray(cross, dtype=object)
|
||||
return cat0["index"], catx["index"], match_indxs, cross
|
||||
return match_indxs, cross
|
||||
|
||||
def smoothed_cross(self, clumps0, clumpsx, delta_bckg, ref_indxs,
|
||||
cross_indxs, match_indxs, smooth_kwargs, verbose=True):
|
||||
def smoothed_cross(
|
||||
self,
|
||||
cat0,
|
||||
catx,
|
||||
halos0_archive,
|
||||
halosx_archive,
|
||||
delta_bckg,
|
||||
match_indxs,
|
||||
smooth_kwargs,
|
||||
verbose=True,
|
||||
):
|
||||
r"""
|
||||
Calculate the smoothed overlaps for pair previously identified via
|
||||
`self.cross(...)` to have a non-zero overlap.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
clumps0 : list of structured arrays
|
||||
List of clump structured arrays of the reference simulation, keys
|
||||
must include `x`, `y`, `z` and `M`. The positions must already be
|
||||
converted to cell numbers.
|
||||
clumpsx : list of structured arrays
|
||||
List of clump structured arrays of the cross simulation, keys must
|
||||
include `x`, `y`, `z` and `M`. The positions must already be
|
||||
converted to cell numbers.
|
||||
cat0 : :py:class:`csiborgtools.read.ClumpsCatalogue`
|
||||
Halo catalogue of the reference simulation.
|
||||
catx : :py:class:`csiborgtools.read.ClumpsCatalogue`
|
||||
Halo catalogue of the cross simulation.
|
||||
halos0_archive : `NpzFile` object
|
||||
Archive of halos' particles of the reference simulation, keys must
|
||||
include `x`, `y`, `z` and `M`. The positions must already be converted
|
||||
to cell numbers.
|
||||
halosx_archive : `NpzFile` object
|
||||
Archive of halos' particles of the cross simulation, keys must
|
||||
include `x`, `y`, `z` and `M`. The positions must already be converted
|
||||
to cell numbers.
|
||||
delta_bckg : 3-dimensional array
|
||||
Smoothed summed background density field of the reference and cross
|
||||
simulations calculated with particles assigned to halos at the
|
||||
|
@ -247,33 +282,45 @@ class RealisationsMatcher:
|
|||
-------
|
||||
overlaps : 1-dimensional array of arrays
|
||||
"""
|
||||
# Min and max cells along each axis for each halo
|
||||
limkwargs = {"ncells": self.overlapper.inv_clength,
|
||||
"nshift": self.overlapper.nshift}
|
||||
mins0, maxs0 = get_clumplims(clumps0, **limkwargs)
|
||||
minsx, maxsx = get_clumplims(clumpsx, **limkwargs)
|
||||
|
||||
hid2clumps0 = {hid: n for n, hid in enumerate(clumps0["ID"])}
|
||||
hid2clumpsx = {hid: n for n, hid in enumerate(clumpsx["ID"])}
|
||||
|
||||
# Preallocate arrays to store the overlap information
|
||||
cross_halos = {}
|
||||
cross_lims = {}
|
||||
cross = [numpy.asanyarray([], dtype=numpy.float32)] * match_indxs.size
|
||||
for i, ref_ind in enumerate(tqdm(ref_indxs) if verbose else ref_indxs):
|
||||
match0 = hid2clumps0[ref_ind]
|
||||
# The reference clump, its mass and mins & maxs
|
||||
cl0 = clumps0["clump"][match0]
|
||||
mins0_current, maxs0_current = mins0[match0], maxs0[match0]
|
||||
|
||||
# Preallocate
|
||||
nmatches = match_indxs[i].size
|
||||
_cross = numpy.full(nmatches, numpy.nan, numpy.float32)
|
||||
for j, match_ind in enumerate(match_indxs[i]):
|
||||
matchx = hid2clumpsx[cross_indxs[match_ind]]
|
||||
clx = clumpsx["clump"][matchx]
|
||||
for i, k0 in enumerate(tqdm(cat0["index"]) if verbose else cat0["index"]):
|
||||
halo0 = halos0_archive[str(k0)]
|
||||
mins0, maxs0 = get_halolims(
|
||||
halo0, ncells=self.overlapper.inv_clength, nshift=self.overlapper.nshift
|
||||
)
|
||||
|
||||
# Now loop over the matches and calculate the smoothed overlap.
|
||||
_cross = numpy.full(match_indxs[i].size, numpy.nan, numpy.float32)
|
||||
for j, kf in enumerate(catx["index"][match_indxs[i]]):
|
||||
# Attempt to load this cross halo from memory, if it fails get it from
|
||||
# from the halo archive (and similarly for the limits).
|
||||
try:
|
||||
halox = cross_halos[kf]
|
||||
minsx, maxsx = cross_lims[kf]
|
||||
except KeyError:
|
||||
halox = halosx_archive[str(kf)]
|
||||
minsx, maxsx = get_halolims(
|
||||
halox,
|
||||
ncells=self.overlapper.inv_clength,
|
||||
nshift=self.overlapper.nshift,
|
||||
)
|
||||
cross_halos[kf] = halox
|
||||
cross_lims[kf] = (minsx, maxsx)
|
||||
|
||||
_cross[j] = self.overlapper(
|
||||
cl0, clx, delta_bckg, mins0_current,
|
||||
maxs0_current, minsx[matchx], maxsx[matchx],
|
||||
smooth_kwargs=smooth_kwargs)
|
||||
halo0,
|
||||
halox,
|
||||
delta_bckg,
|
||||
mins0,
|
||||
maxs0,
|
||||
minsx,
|
||||
maxsx,
|
||||
smooth_kwargs=smooth_kwargs,
|
||||
)
|
||||
cross[i] = _cross
|
||||
|
||||
return numpy.asanyarray(cross, dtype=object)
|
||||
|
@ -321,6 +368,7 @@ class ParticleOverlap:
|
|||
the nearest grid position particle assignment scheme, with optional
|
||||
Gaussian smoothing.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
# Inverse cell length in box units. By default :math:`2^11`, which
|
||||
# matches the initial RAMSES grid resolution.
|
||||
|
@ -346,92 +394,63 @@ class ParticleOverlap:
|
|||
# Check whether this is already the cell
|
||||
if pos.dtype.char in numpy.typecodes["AllInteger"]:
|
||||
return pos
|
||||
return numpy.floor(pos * self.inv_clength).astype(int)
|
||||
return numpy.floor(pos * self.inv_clength).astype(numpy.int32)
|
||||
|
||||
def clumps_pos2cell(self, clumps):
|
||||
def make_bckg_delta(self, halo_archive, delta=None, verbose=False):
|
||||
"""
|
||||
Convert clump positions directly to cell IDs. Useful to speed up
|
||||
subsequent calculations. Overwrites the passed in arrays.
|
||||
Calculate a NGP density field of particles belonging to halos within the
|
||||
central :math:`1/2^3` high-resolution region of the simulation. Smoothing
|
||||
must be applied separately.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
clumps : array of arrays
|
||||
Array of clump structured arrays whose `x`, `y`, `z` keys will be
|
||||
converted.
|
||||
|
||||
Returns
|
||||
-------
|
||||
None
|
||||
"""
|
||||
# Check if clumps are probably already in cells
|
||||
if any(clumps[0][0].dtype[p].char in numpy.typecodes["AllInteger"]
|
||||
for p in ('x', 'y', 'z')):
|
||||
raise ValueError("Positions appear to already be converted cells.")
|
||||
|
||||
# Get the new dtype that replaces float for int for positions
|
||||
names = clumps[0][0].dtype.names # Take the first one, doesn't matter
|
||||
formats = [descr[1] for descr in clumps[0][0].dtype.descr]
|
||||
|
||||
for i in range(len(names)):
|
||||
if names[i] in ('x', 'y', 'z'):
|
||||
formats[i] = numpy.int32
|
||||
dtype = numpy.dtype({"names": names, "formats": formats})
|
||||
|
||||
# Loop switch positions for cells IDs and change dtype
|
||||
for n in range(clumps.size):
|
||||
for p in ('x', 'y', 'z'):
|
||||
clumps[n][0][p] = self.pos2cell(clumps[n][0][p])
|
||||
clumps[n][0] = clumps[n][0].astype(dtype)
|
||||
|
||||
def make_bckg_delta(self, clumps, delta=None):
|
||||
"""
|
||||
Calculate a NGP density field of clumps within the central
|
||||
:math:`1/2^3` region of the simulation. Smoothing must be applied
|
||||
separately.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
clumps : list of structured arrays
|
||||
List of clump structured array, keys must include `x`, `y`, `z`
|
||||
and `M`.
|
||||
halo_archive : `NpzFile` object
|
||||
Archive of halos' particles of the reference simulation, keys must
|
||||
include `x`, `y`, `z` and `M`.
|
||||
delta : 3-dimensional array, optional
|
||||
Array to store the density field in. If `None` a new array is
|
||||
created.
|
||||
verbose : bool, optional
|
||||
Verbosity flag for loading the files.
|
||||
|
||||
Returns
|
||||
-------
|
||||
delta : 3-dimensional array
|
||||
"""
|
||||
conc_clumps = concatenate_clumps(clumps)
|
||||
cells = [self.pos2cell(conc_clumps[p]) for p in ('x', 'y', 'z')]
|
||||
mass = conc_clumps['M']
|
||||
|
||||
del conc_clumps
|
||||
collect() # This is a large array so force memory clean
|
||||
|
||||
cellmin = self.inv_clength // 4 # The minimum cell ID
|
||||
cellmax = 3 * self.inv_clength // 4 # The maximum cell ID
|
||||
# We obtain the minimum/maximum cell IDs and number of cells along each dim.
|
||||
cellmin = self.inv_clength // 4 # The minimum cell ID
|
||||
cellmax = 3 * self.inv_clength // 4 # The maximum cell ID
|
||||
ncells = cellmax - cellmin
|
||||
# Mask out particles outside the cubical high resolution region
|
||||
mask = ((cellmin <= cells[0]) & (cells[0] < cellmax)
|
||||
& (cellmin <= cells[1]) & (cells[1] < cellmax)
|
||||
& (cellmin <= cells[2]) & (cells[2] < cellmax)
|
||||
)
|
||||
cells = [c[mask] for c in cells]
|
||||
mass = mass[mask]
|
||||
|
||||
# Prepare the density field or check it is of the right shape
|
||||
# We then pre-allocate the density field or check it is of the right shape
|
||||
# if already given.
|
||||
if delta is None:
|
||||
delta = numpy.zeros((ncells,) * 3, dtype=numpy.float32)
|
||||
else:
|
||||
assert ((delta.shape == (ncells,) * 3)
|
||||
& (delta.dtype == numpy.float32))
|
||||
fill_delta(delta, *cells, *(cellmin,) * 3, mass)
|
||||
assert (delta.shape == (ncells,) * 3) & (delta.dtype == numpy.float32)
|
||||
|
||||
# We now loop one-by-one over the halos fill the density field.
|
||||
files = halo_archive.files
|
||||
for file in tqdm(files) if verbose else files:
|
||||
parts = halo_archive[file]
|
||||
cells = [self.pos2cell(parts[p]) for p in ("x", "y", "z")]
|
||||
mass = parts["M"]
|
||||
|
||||
# We mask out particles outside the cubical high-resolution region
|
||||
mask = (
|
||||
(cellmin <= cells[0])
|
||||
& (cells[0] < cellmax)
|
||||
& (cellmin <= cells[1])
|
||||
& (cells[1] < cellmax)
|
||||
& (cellmin <= cells[2])
|
||||
& (cells[2] < cellmax)
|
||||
)
|
||||
cells = [c[mask] for c in cells]
|
||||
mass = mass[mask]
|
||||
fill_delta(delta, *cells, *(cellmin,) * 3, mass)
|
||||
|
||||
return delta
|
||||
|
||||
def make_delta(self, clump, mins=None, maxs=None, subbox=False,
|
||||
smooth_kwargs=None):
|
||||
def make_delta(self, clump, mins=None, maxs=None, subbox=False, smooth_kwargs=None):
|
||||
"""
|
||||
Calculate a NGP density field of a halo on a cubic grid. Optionally can
|
||||
be smoothed with a Gaussian kernel.
|
||||
|
@ -453,7 +472,7 @@ class ParticleOverlap:
|
|||
-------
|
||||
delta : 3-dimensional array
|
||||
"""
|
||||
cells = [self.pos2cell(clump[p]) for p in ('x', 'y', 'z')]
|
||||
cells = [self.pos2cell(clump[p]) for p in ("x", "y", "z")]
|
||||
|
||||
# Check that minima and maxima are integers
|
||||
if not (mins is None and maxs is None):
|
||||
|
@ -464,26 +483,38 @@ class ParticleOverlap:
|
|||
# Minimum xcell, ycell and zcell of this clump
|
||||
if mins is None or maxs is None:
|
||||
mins = numpy.asanyarray(
|
||||
[max(numpy.min(cell) - self.nshift, 0) for cell in cells])
|
||||
[max(numpy.min(cell) - self.nshift, 0) for cell in cells]
|
||||
)
|
||||
maxs = numpy.asanyarray(
|
||||
[min(numpy.max(cell) + self.nshift, self.inv_clength)
|
||||
for cell in cells])
|
||||
[
|
||||
min(numpy.max(cell) + self.nshift, self.inv_clength)
|
||||
for cell in cells
|
||||
]
|
||||
)
|
||||
|
||||
ncells = numpy.max(maxs - mins) + 1 # To get the number of cells
|
||||
else:
|
||||
mins = (0, 0, 0,)
|
||||
mins = [0, 0, 0]
|
||||
ncells = self.inv_clength
|
||||
|
||||
# Preallocate and fill the array
|
||||
delta = numpy.zeros((ncells,) * 3, dtype=numpy.float32)
|
||||
fill_delta(delta, *cells, *mins, clump['M'])
|
||||
fill_delta(delta, *cells, *mins, clump["M"])
|
||||
|
||||
if smooth_kwargs is not None:
|
||||
gaussian_filter(delta, output=delta, **smooth_kwargs)
|
||||
return delta
|
||||
|
||||
def make_deltas(self, clump1, clump2, mins1=None, maxs1=None,
|
||||
mins2=None, maxs2=None, smooth_kwargs=None):
|
||||
def make_deltas(
|
||||
self,
|
||||
clump1,
|
||||
clump2,
|
||||
mins1=None,
|
||||
maxs1=None,
|
||||
mins2=None,
|
||||
maxs2=None,
|
||||
smooth_kwargs=None,
|
||||
):
|
||||
"""
|
||||
Calculate a NGP density fields of two halos on a grid that encloses
|
||||
them both. Optionally can be smoothed with a Gaussian kernel.
|
||||
|
@ -513,8 +544,8 @@ class ParticleOverlap:
|
|||
Indices where the lower mass clump has a non-zero density.
|
||||
Calculated only if no smoothing is applied, otherwise `None`.
|
||||
"""
|
||||
xc1, yc1, zc1 = (self.pos2cell(clump1[p]) for p in ('x', 'y', 'z'))
|
||||
xc2, yc2, zc2 = (self.pos2cell(clump2[p]) for p in ('x', 'y', 'z'))
|
||||
xc1, yc1, zc1 = (self.pos2cell(clump1[p]) for p in ("x", "y", "z"))
|
||||
xc2, yc2, zc2 = (self.pos2cell(clump2[p]) for p in ("x", "y", "z"))
|
||||
|
||||
if any(obj is None for obj in (mins1, maxs1, mins2, maxs2)):
|
||||
# Minimum cell number of the two halos along each dimension
|
||||
|
@ -529,32 +560,35 @@ class ParticleOverlap:
|
|||
ymax = max(numpy.max(yc1), numpy.max(yc2)) + self.nshift
|
||||
zmax = max(numpy.max(zc1), numpy.max(zc2)) + self.nshift
|
||||
# Make sure shifting does not go beyond boundaries
|
||||
xmax, ymax, zmax = [min(px, self.inv_clength - 1)
|
||||
for px in (xmax, ymax, zmax)]
|
||||
xmax, ymax, zmax = [
|
||||
min(px, self.inv_clength - 1) for px in (xmax, ymax, zmax)
|
||||
]
|
||||
else:
|
||||
xmin, ymin, zmin = [min(mins1[i], mins2[i]) for i in range(3)]
|
||||
xmax, ymax, zmax = [max(maxs1[i], maxs2[i]) for i in range(3)]
|
||||
|
||||
cellmins = (xmin, ymin, zmin, ) # Cell minima
|
||||
cellmins = (xmin, ymin, zmin) # Cell minima
|
||||
ncells = max(xmax - xmin, ymax - ymin, zmax - zmin) + 1 # Num cells
|
||||
|
||||
# Preallocate and fill the arrays
|
||||
delta1 = numpy.zeros((ncells,)*3, dtype=numpy.float32)
|
||||
delta2 = numpy.zeros((ncells,)*3, dtype=numpy.float32)
|
||||
delta1 = numpy.zeros((ncells,) * 3, dtype=numpy.float32)
|
||||
delta2 = numpy.zeros((ncells,) * 3, dtype=numpy.float32)
|
||||
|
||||
# If no smoothing figure out the nonzero indices of the smaller clump
|
||||
if smooth_kwargs is None:
|
||||
if clump1.size > clump2.size:
|
||||
fill_delta(delta1, xc1, yc1, zc1, *cellmins, clump1['M'])
|
||||
nonzero = fill_delta_indxs(delta2, xc2, yc2, zc2, *cellmins,
|
||||
clump2['M'])
|
||||
fill_delta(delta1, xc1, yc1, zc1, *cellmins, clump1["M"])
|
||||
nonzero = fill_delta_indxs(
|
||||
delta2, xc2, yc2, zc2, *cellmins, clump2["M"]
|
||||
)
|
||||
else:
|
||||
nonzero = fill_delta_indxs(delta1, xc1, yc1, zc1, *cellmins,
|
||||
clump1['M'])
|
||||
fill_delta(delta2, xc2, yc2, zc2, *cellmins, clump2['M'])
|
||||
nonzero = fill_delta_indxs(
|
||||
delta1, xc1, yc1, zc1, *cellmins, clump1["M"]
|
||||
)
|
||||
fill_delta(delta2, xc2, yc2, zc2, *cellmins, clump2["M"])
|
||||
else:
|
||||
fill_delta(delta1, xc1, yc1, zc1, *cellmins, clump1['M'])
|
||||
fill_delta(delta2, xc2, yc2, zc2, *cellmins, clump2['M'])
|
||||
fill_delta(delta1, xc1, yc1, zc1, *cellmins, clump1["M"])
|
||||
fill_delta(delta2, xc2, yc2, zc2, *cellmins, clump2["M"])
|
||||
nonzero = None
|
||||
|
||||
if smooth_kwargs is not None:
|
||||
|
@ -562,9 +596,19 @@ class ParticleOverlap:
|
|||
gaussian_filter(delta2, output=delta2, **smooth_kwargs)
|
||||
return delta1, delta2, cellmins, nonzero
|
||||
|
||||
def __call__(self, clump1, clump2, delta_bckg, mins1=None, maxs1=None,
|
||||
mins2=None, maxs2=None, mass1=None, mass2=None,
|
||||
smooth_kwargs=None):
|
||||
def __call__(
|
||||
self,
|
||||
clump1,
|
||||
clump2,
|
||||
delta_bckg,
|
||||
mins1=None,
|
||||
maxs1=None,
|
||||
mins2=None,
|
||||
maxs2=None,
|
||||
mass1=None,
|
||||
mass2=None,
|
||||
smooth_kwargs=None,
|
||||
):
|
||||
"""
|
||||
Calculate overlap between `clump1` and `clump2`. See
|
||||
`calculate_overlap(...)` for further information. Be careful so that
|
||||
|
@ -603,16 +647,17 @@ class ParticleOverlap:
|
|||
overlap : float
|
||||
"""
|
||||
delta1, delta2, cellmins, nonzero = self.make_deltas(
|
||||
clump1, clump2, mins1, maxs1, mins2, maxs2,
|
||||
smooth_kwargs=smooth_kwargs)
|
||||
clump1, clump2, mins1, maxs1, mins2, maxs2, smooth_kwargs=smooth_kwargs
|
||||
)
|
||||
|
||||
if smooth_kwargs is not None:
|
||||
return calculate_overlap(delta1, delta2, cellmins, delta_bckg)
|
||||
# Calculate masses not given
|
||||
mass1 = numpy.sum(clump1['M']) if mass1 is None else mass1
|
||||
mass2 = numpy.sum(clump2['M']) if mass2 is None else mass2
|
||||
return calculate_overlap_indxs(delta1, delta2, cellmins, delta_bckg,
|
||||
nonzero, mass1, mass2)
|
||||
mass1 = numpy.sum(clump1["M"]) if mass1 is None else mass1
|
||||
mass2 = numpy.sum(clump2["M"]) if mass2 is None else mass2
|
||||
return calculate_overlap_indxs(
|
||||
delta1, delta2, cellmins, delta_bckg, nonzero, mass1, mass2
|
||||
)
|
||||
|
||||
|
||||
###############################################################################
|
||||
|
@ -682,14 +727,15 @@ def fill_delta_indxs(delta, xcell, ycell, zcell, xmin, ymin, zmin, weights):
|
|||
return cells[:count_nonzero, :] # Cutoff unassigned places
|
||||
|
||||
|
||||
def get_clumplims(clumps, ncells, nshift=None):
|
||||
def get_halolims(halo, ncells, nshift=None):
|
||||
"""
|
||||
Get the lower and upper limit of clumps' positions or cell numbers.
|
||||
Get the lower and upper limit of a halo's positions or cell numbers.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
clumps : array of arrays
|
||||
Array of clump structured arrays.
|
||||
halo : structured array
|
||||
Structured array containing the particles of a given halo. Keys must
|
||||
`x`, `y`, `z`.
|
||||
ncells : int
|
||||
Number of grid cells of the box along a single dimension.
|
||||
nshift : int, optional
|
||||
|
@ -697,23 +743,21 @@ def get_clumplims(clumps, ncells, nshift=None):
|
|||
|
||||
Returns
|
||||
-------
|
||||
mins, maxs : 2-dimensional arrays of shape `(n_samples, 3)`
|
||||
mins, maxs : 1-dimensional arrays of shape `(3, )`
|
||||
Minimum and maximum along each axis.
|
||||
"""
|
||||
dtype = clumps[0][0]['x'].dtype # dtype of the first clump's 'x'
|
||||
# Check that for real positions we cannot apply nshift
|
||||
# Check that in case of `nshift` we have integer positions.
|
||||
dtype = halo["x"].dtype
|
||||
if nshift is not None and dtype.char not in numpy.typecodes["AllInteger"]:
|
||||
raise TypeError("`nshift` supported only positions are cells.")
|
||||
nshift = 0 if nshift is None else nshift # To simplify code below
|
||||
|
||||
nclumps = clumps.size
|
||||
mins = numpy.full((nclumps, 3), numpy.nan, dtype=dtype)
|
||||
maxs = numpy.full((nclumps, 3), numpy.nan, dtype=dtype)
|
||||
mins = numpy.full(3, numpy.nan, dtype=dtype)
|
||||
maxs = numpy.full(3, numpy.nan, dtype=dtype)
|
||||
|
||||
for i, clump in enumerate(clumps):
|
||||
for j, p in enumerate(['x', 'y', 'z']):
|
||||
mins[i, j] = max(numpy.min(clump[0][p]) - nshift, 0)
|
||||
maxs[i, j] = min(numpy.max(clump[0][p]) + nshift, ncells - 1)
|
||||
for i, p in enumerate(["x", "y", "z"]):
|
||||
mins[i] = max(numpy.min(halo[p]) - nshift, 0)
|
||||
maxs[i] = min(numpy.max(halo[p]) + nshift, ncells - 1)
|
||||
|
||||
return mins, maxs
|
||||
|
||||
|
@ -742,10 +786,10 @@ def calculate_overlap(delta1, delta2, cellmins, delta_bckg):
|
|||
-------
|
||||
overlap : float
|
||||
"""
|
||||
totmass = 0. # Total mass of clump 1 and clump 2
|
||||
intersect = 0. # Weighted intersecting mass
|
||||
totmass = 0.0 # Total mass of clump 1 and clump 2
|
||||
intersect = 0.0 # Weighted intersecting mass
|
||||
i0, j0, k0 = cellmins # Unpack things
|
||||
bckg_offset = 512 # Offset of the background density field
|
||||
bckg_offset = 512 # Offset of the background density field
|
||||
bckg_size = 1024
|
||||
imax, jmax, kmax = delta1.shape
|
||||
|
||||
|
@ -770,8 +814,9 @@ def calculate_overlap(delta1, delta2, cellmins, delta_bckg):
|
|||
|
||||
|
||||
@jit(nopython=True)
|
||||
def calculate_overlap_indxs(delta1, delta2, cellmins, delta_bckg, nonzero,
|
||||
mass1, mass2):
|
||||
def calculate_overlap_indxs(
|
||||
delta1, delta2, cellmins, delta_bckg, nonzero, mass1, mass2
|
||||
):
|
||||
r"""
|
||||
Overlap between two clumps whose density fields are evaluated on the
|
||||
same grid and `nonzero1` enumerates the non-zero cells of `delta1. This is
|
||||
|
@ -800,10 +845,10 @@ def calculate_overlap_indxs(delta1, delta2, cellmins, delta_bckg, nonzero,
|
|||
-------
|
||||
overlap : float
|
||||
"""
|
||||
intersect = 0. # Weighted intersecting mass
|
||||
intersect = 0.0 # Weighted intersecting mass
|
||||
i0, j0, k0 = cellmins # Unpack cell minimas
|
||||
bckg_offset = 512 # Offset of the background density field
|
||||
bckg_size = 1024 # Size of the background density field array
|
||||
bckg_offset = 512 # Offset of the background density field
|
||||
bckg_size = 1024 # Size of the background density field array
|
||||
|
||||
for n in range(nonzero.shape[0]):
|
||||
i, j, k = nonzero[n, :]
|
||||
|
@ -811,11 +856,11 @@ def calculate_overlap_indxs(delta1, delta2, cellmins, delta_bckg, nonzero,
|
|||
prod = 2 * m1 * m2
|
||||
|
||||
if prod > 0:
|
||||
ii = i0 + i - bckg_offset # Indices of this cell in the
|
||||
jj = j0 + j - bckg_offset # background density field.
|
||||
ii = i0 + i - bckg_offset # Indices of this cell in the
|
||||
jj = j0 + j - bckg_offset # background density field.
|
||||
kk = k0 + k - bckg_offset
|
||||
|
||||
ishighres = 0 <= ii < bckg_size # Is this cell is in the high
|
||||
ishighres = 0 <= ii < bckg_size # Is this cell is in the high
|
||||
ishighres &= 0 <= jj < bckg_size # resolution region for which the
|
||||
ishighres &= 0 <= kk < bckg_size # background field is calculated.
|
||||
|
||||
|
@ -827,7 +872,7 @@ def calculate_overlap_indxs(delta1, delta2, cellmins, delta_bckg, nonzero,
|
|||
|
||||
def dist_centmass(clump):
|
||||
"""
|
||||
Calculate the clump particles' distance from the centre of mass.
|
||||
Calculate the clump (or halo) particles' distance from the centre of mass.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
@ -842,12 +887,15 @@ def dist_centmass(clump):
|
|||
Center of mass coordinates.
|
||||
"""
|
||||
# CM along each dimension
|
||||
cmx, cmy, cmz = [numpy.average(clump[p], weights=clump['M'])
|
||||
for p in ('x', 'y', 'z')]
|
||||
cmx, cmy, cmz = [
|
||||
numpy.average(clump[p], weights=clump["M"]) for p in ("x", "y", "z")
|
||||
]
|
||||
# Particle distance from the CM
|
||||
dist = numpy.sqrt(numpy.square(clump['x'] - cmx)
|
||||
+ numpy.square(clump['y'] - cmy)
|
||||
+ numpy.square(clump['z'] - cmz))
|
||||
dist = numpy.sqrt(
|
||||
numpy.square(clump["x"] - cmx)
|
||||
+ numpy.square(clump["y"] - cmy)
|
||||
+ numpy.square(clump["z"] - cmz)
|
||||
)
|
||||
|
||||
return dist, numpy.asarray([cmx, cmy, cmz])
|
||||
|
||||
|
@ -874,8 +922,9 @@ def dist_percentile(dist, qs, distmax=0.075):
|
|||
return x
|
||||
|
||||
|
||||
def radius_neighbours(knn, X, radiusX, radiusKNN, nmult=1.,
|
||||
enforce_int32=False, verbose=True):
|
||||
def radius_neighbours(
|
||||
knn, X, radiusX, radiusKNN, nmult=1.0, enforce_int32=False, verbose=True
|
||||
):
|
||||
"""
|
||||
Find all neigbours of a trained KNN model whose center of mass separation
|
||||
is less than `nmult` times the sum of their respective radii.
|
||||
|
@ -904,8 +953,8 @@ def radius_neighbours(knn, X, radiusX, radiusKNN, nmult=1.,
|
|||
indxs : 1-dimensional array `(n_samples,)` of arrays
|
||||
Matches to `X` from `knn`.
|
||||
"""
|
||||
assert X.ndim == 2 and X.shape[1] == 3 # shape of X ok?
|
||||
assert X.shape[0] == radiusX.size # patchX matches X?
|
||||
assert X.ndim == 2 and X.shape[1] == 3 # shape of X ok?
|
||||
assert X.shape[0] == radiusX.size # patchX matches X?
|
||||
assert radiusKNN.size == knn.n_samples_fit_ # patchknn matches the knn?
|
||||
|
||||
nsamples = X.shape[0]
|
||||
|
@ -913,9 +962,9 @@ def radius_neighbours(knn, X, radiusX, radiusKNN, nmult=1.,
|
|||
patchknn_max = numpy.max(radiusKNN) # Maximum for completeness
|
||||
|
||||
for i in trange(nsamples) if verbose else range(nsamples):
|
||||
dist, indx = knn.radius_neighbors(X[i, :].reshape(-1, 3),
|
||||
radiusX[i] + patchknn_max,
|
||||
sort_results=True)
|
||||
dist, indx = knn.radius_neighbors(
|
||||
X[i, :].reshape(-1, 3), radiusX[i] + patchknn_max, sort_results=True
|
||||
)
|
||||
# Note that `dist` and `indx` are wrapped in 1-element arrays
|
||||
# so we take the first item where appropriate
|
||||
mask = (dist[0] / (radiusX[i] + radiusKNN[indx[0]])) < nmult
|
||||
|
@ -924,58 +973,3 @@ def radius_neighbours(knn, X, radiusX, radiusKNN, nmult=1.,
|
|||
indxs[i] = indxs[i].astype(numpy.int32)
|
||||
|
||||
return numpy.asarray(indxs, dtype=object)
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Sky mathing #
|
||||
###############################################################################
|
||||
|
||||
|
||||
# def brute_spatial_separation(c1, c2, angular=False, N=None, verbose=False):
|
||||
# """
|
||||
# Calculate for each point in `c1` the `N` closest points in `c2`.
|
||||
|
||||
# Parameters
|
||||
# ----------
|
||||
# c1 : `astropy.coordinates.SkyCoord`
|
||||
# Coordinates of the first set of points.
|
||||
# c2 : `astropy.coordinates.SkyCoord`
|
||||
# Coordinates of the second set of points.
|
||||
# angular : bool, optional
|
||||
# Whether to calculate angular separation or 3D separation. By default
|
||||
# `False` and 3D separation is calculated.
|
||||
# N : int, optional
|
||||
# Number of closest points in `c2` to each object in `c1` to return.
|
||||
# verbose : bool, optional
|
||||
# Verbosity flag. By default `False`.
|
||||
|
||||
# Returns
|
||||
# -------
|
||||
# sep : 1-dimensional array
|
||||
# Separation of each object in `c1` to `N` closest objects in `c2`. The
|
||||
# array shape is `(c1.size, N)`. Separation is in units of `c1`.
|
||||
# indxs : 1-dimensional array
|
||||
# Indexes of the closest objects in `c2` for each object in `c1`. The
|
||||
# array shape is `(c1.size, N)`.
|
||||
# """
|
||||
# if not (isinstance(c1, SkyCoord) and isinstance(c2, SkyCoord)):
|
||||
# raise TypeError(
|
||||
# "`c1` & `c2` must be `astropy.coordinates.SkyCoord`.")
|
||||
# N1 = c1.size
|
||||
# N2 = c2.size if N is None else N
|
||||
|
||||
# # Pre-allocate arrays
|
||||
# sep = numpy.full((N1, N2), numpy.nan)
|
||||
# indxs = numpy.full((N1, N2), numpy.nan, dtype=int)
|
||||
# iters = tqdm(range(N1)) if verbose else range(N1)
|
||||
# for i in iters:
|
||||
# if angular:
|
||||
# dist = c1[i].separation(c2).value
|
||||
# else:
|
||||
# dist = c1[i].separation_3d(c2).value
|
||||
# # Sort the distances
|
||||
# sort = numpy.argsort(dist)[:N2]
|
||||
# indxs[i, :] = sort
|
||||
# sep[i, :] = dist[sort]
|
||||
|
||||
# return sep, indxs
|
|
@ -16,27 +16,27 @@
|
|||
import numpy
|
||||
|
||||
|
||||
def concatenate_clumps(clumps, include_velocities=False):
|
||||
def concatenate_parts(list_parts, include_velocities=False):
|
||||
"""
|
||||
Concatenate an array of clumps to a single array containing all particles.
|
||||
Concatenate a list of particle arrays into a single array.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
clumps : list of structured arrays
|
||||
List of clumps. Each clump must be a structured array with keys
|
||||
list_parts : list of structured arrays
|
||||
List of particle arrays.
|
||||
include_velocities : bool, optional
|
||||
Whether to include velocities in the output array.
|
||||
|
||||
Returns
|
||||
-------
|
||||
particles : structured array
|
||||
parts_out : structured array
|
||||
"""
|
||||
# Count how large array will be needed
|
||||
N = 0
|
||||
for clump, __ in clumps:
|
||||
N += clump.size
|
||||
for part in list_parts:
|
||||
N += part.size
|
||||
# Infer dtype of positions
|
||||
if clumps[0][0]["x"].dtype.char in numpy.typecodes["AllInteger"]:
|
||||
if list_parts[0]["x"].dtype.char in numpy.typecodes["AllInteger"]:
|
||||
posdtype = numpy.int32
|
||||
else:
|
||||
posdtype = numpy.float32
|
||||
|
@ -54,14 +54,14 @@ def concatenate_clumps(clumps, include_velocities=False):
|
|||
"names": ["x", "y", "z", "M"],
|
||||
"formats": [posdtype] * 3 + [numpy.float32],
|
||||
}
|
||||
particles = numpy.full(N, numpy.nan, dtype)
|
||||
parts_out = numpy.full(N, numpy.nan, dtype)
|
||||
|
||||
# Fill it one clump by another
|
||||
start = 0
|
||||
for clump, __ in clumps:
|
||||
end = start + clump.size
|
||||
for parts in list_parts:
|
||||
end = start + parts.size
|
||||
for p in dtype["names"]:
|
||||
particles[p][start:end] = clump[p]
|
||||
parts_out[p][start:end] = parts[p]
|
||||
start = end
|
||||
|
||||
return particles
|
||||
return parts_out
|
||||
|
|
|
@ -375,9 +375,6 @@ class HaloCatalogue(BaseCatalogue):
|
|||
Halo catalogue, i.e. parent halos with summed substructure, defined in the
|
||||
final snapshot.
|
||||
|
||||
TODO:
|
||||
Add the fitted quantities
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsim : int
|
||||
|
@ -391,26 +388,60 @@ class HaloCatalogue(BaseCatalogue):
|
|||
minmass : len-2 tuple
|
||||
Minimum mass. The first element is the catalogue key and the second is
|
||||
the value.
|
||||
load_fitted : bool, optional
|
||||
Whether to load fitted quantities.
|
||||
load_initial : bool, optional
|
||||
Whether to load initial positions.
|
||||
rawdata : bool, optional
|
||||
Whether to return the raw data. In this case applies no cuts and
|
||||
transformations.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, nsim, paths, maxdist=155.5 / 0.705, minmass=("M", 1e12), rawdata=False
|
||||
self,
|
||||
nsim,
|
||||
paths,
|
||||
maxdist=155.5 / 0.705,
|
||||
minmass=("M", 1e12),
|
||||
load_fitted=True,
|
||||
load_initial=False,
|
||||
rawdata=False,
|
||||
):
|
||||
self.nsim = nsim
|
||||
self.paths = paths
|
||||
# Read in the mmain catalogue of summed substructure
|
||||
mmain = numpy.load(self.paths.mmain_path(self.nsnap, self.nsim))
|
||||
self._data = mmain["mmain"]
|
||||
|
||||
if load_fitted:
|
||||
fits = numpy.load(paths.structfit_path(self.nsnap, nsim, "halos"))
|
||||
cols = [col for col in fits.dtype.names if col != "index"]
|
||||
X = [fits[col] for col in cols]
|
||||
self._data = add_columns(self._data, X, cols)
|
||||
|
||||
# TODO: load initial positions
|
||||
|
||||
if not rawdata:
|
||||
# Flip positions and convert from code units to cMpc. Convert M too
|
||||
flip_cols(self._data, "x", "z")
|
||||
for p in ("x", "y", "z"):
|
||||
self._data[p] -= 0.5
|
||||
self._data = self.box.convert_from_boxunits(
|
||||
self._data, ["x", "y", "z", "M"]
|
||||
self._data,
|
||||
[
|
||||
"x",
|
||||
"y",
|
||||
"z",
|
||||
"M",
|
||||
"totpartmass",
|
||||
"rho0",
|
||||
"r200c",
|
||||
"r500c",
|
||||
"m200c",
|
||||
"m500c",
|
||||
"r200m",
|
||||
"m200m",
|
||||
],
|
||||
)
|
||||
|
||||
if maxdist is not None:
|
||||
|
|
|
@ -133,13 +133,13 @@ class CSiBORGPaths:
|
|||
nsim : int
|
||||
IC realisation index.
|
||||
kind : str
|
||||
Type of match. Can be either `cm` or `particles`.
|
||||
Type of match. Can be either `fit` or `particles`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
path : str
|
||||
"""
|
||||
assert kind in ["cm", "particles"]
|
||||
assert kind in ["fit", "particles"]
|
||||
fdir = join(self.postdir, "initmatch")
|
||||
if not isdir(fdir):
|
||||
mkdir(fdir)
|
||||
|
@ -284,6 +284,28 @@ class CSiBORGPaths:
|
|||
fname = "{}_out_{}_{}.npy".format(kind, str(nsim).zfill(5), str(nsnap).zfill(5))
|
||||
return join(fdir, fname)
|
||||
|
||||
def overlap_path(self, nsim0, nsimx):
|
||||
"""
|
||||
Path to the overlap files between two simulations.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsim0 : int
|
||||
IC realisation index of the first simulation.
|
||||
nsimx : int
|
||||
IC realisation index of the second simulation.
|
||||
|
||||
Returns
|
||||
-------
|
||||
path : str
|
||||
"""
|
||||
fdir = join(self.postdir, "overlap")
|
||||
if not isdir(fdir):
|
||||
mkdir(fdir)
|
||||
warn("Created directory `{}`.".format(fdir), UserWarning, stacklevel=1)
|
||||
fname = "ovelrap_{}_{}.npz".format(str(nsim0).zfill(5), str(nsimx).zfill(5))
|
||||
return join(fdir, fname)
|
||||
|
||||
def knnauto_path(self, run, nsim=None):
|
||||
"""
|
||||
Path to the `knn` auto-correlation files. If `nsim` is not specified
|
||||
|
|
File diff suppressed because one or more lines are too long
2220
notebooks/knn.ipynb
2220
notebooks/knn.ipynb
File diff suppressed because one or more lines are too long
|
@ -1139,8 +1139,8 @@
|
|||
"overlapper.clumps_pos2cell(clumps0)\n",
|
||||
"overlapper.clumps_pos2cell(clumpsx)\n",
|
||||
"\n",
|
||||
"mins0, maxs0 = csiborgtools.match.get_clumplims(clumps0, overlapper.inv_clength, overlapper.nshift)\n",
|
||||
"minsx, maxsx = csiborgtools.match.get_clumplims(clumpsx, overlapper.inv_clength, overlapper.nshift)"
|
||||
"mins0, maxs0 = csiborgtools.match.get_halolims(clumps0, overlapper.inv_clength, overlapper.nshift)\n",
|
||||
"minsx, maxsx = csiborgtools.match.get_halolims(clumpsx, overlapper.inv_clength, overlapper.nshift)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
|
|
@ -664,8 +664,8 @@
|
|||
"overlapper.clumps_pos2cell(clumps0)\n",
|
||||
"overlapper.clumps_pos2cell(clumpsx)\n",
|
||||
"\n",
|
||||
"mins0, maxs0 = csiborgtools.match.get_clumplims(clumps0, overlapper.inv_clength, overlapper.nshift)\n",
|
||||
"minsx, maxsx = csiborgtools.match.get_clumplims(clumpsx, overlapper.inv_clength, overlapper.nshift)"
|
||||
"mins0, maxs0 = csiborgtools.match.get_halolims(clumps0, overlapper.inv_clength, overlapper.nshift)\n",
|
||||
"minsx, maxsx = csiborgtools.match.get_halolims(clumpsx, overlapper.inv_clength, overlapper.nshift)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
|
|
@ -1,4 +1,3 @@
|
|||
# Copyright (C) 2022 Richard Stiskalek
|
||||
# This program is free software; you can redistribute it and/or modify it
|
||||
# under the terms of the GNU General Public License as published by the
|
||||
# Free Software Foundation; either version 3 of the License, or (at your
|
||||
|
@ -15,7 +14,7 @@
|
|||
"""A script to calculate overlap between two CSiBORG realisations."""
|
||||
from argparse import ArgumentParser
|
||||
from datetime import datetime
|
||||
from os.path import join
|
||||
from distutils.util import strtobool
|
||||
|
||||
import numpy
|
||||
from scipy.ndimage import gaussian_filter
|
||||
|
@ -24,71 +23,76 @@ try:
|
|||
import csiborgtools
|
||||
except ModuleNotFoundError:
|
||||
import sys
|
||||
|
||||
sys.path.append("../")
|
||||
import csiborgtools
|
||||
|
||||
import utils
|
||||
|
||||
# Argument parser
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument("--nsim0", type=int)
|
||||
parser.add_argument("--nsimx", type=int)
|
||||
parser.add_argument("--nmult", type=float)
|
||||
parser.add_argument("--sigma", type=float)
|
||||
parser.add_argument("--verbose", type=lambda x: bool(strtobool(x)), default=False)
|
||||
args = parser.parse_args()
|
||||
|
||||
# File paths
|
||||
paths = csiborgtools.read.CSiBORGPaths(**csiborgtools.paths_glamdring)
|
||||
fout = join(utils.dumpdir, "overlap",
|
||||
"cross_{}_{}.npz".format(args.nsim0, args.nsimx))
|
||||
smooth_kwargs = {"sigma": args.sigma, "mode": "constant", "cval": 0.0}
|
||||
overlapper = csiborgtools.match.ParticleOverlap()
|
||||
|
||||
# Load catalogues
|
||||
print("{}: loading catalogues {} and {}."
|
||||
.format(datetime.now(), args.nsim0, args.nsimx), flush=True)
|
||||
cat0 = csiborgtools.read.ClumpsCatalogue(args.nsim0, paths)
|
||||
catx = csiborgtools.read.ClumpsCatalogue(args.nsimx, paths)
|
||||
|
||||
|
||||
print("{}: loading simulation {} and converting positions to cell numbers."
|
||||
.format(datetime.now(), args.nsim0), flush=True)
|
||||
|
||||
with open(paths.initmatch_path(args.nsim0, "particles"), "rb") as f:
|
||||
clumps0 = numpy.load(f, allow_pickle=True)
|
||||
overlapper.clumps_pos2cell(clumps0)
|
||||
print("{}: loading simulation {} and converting positions to cell numbers."
|
||||
.format(datetime.now(), args.nsimx), flush=True)
|
||||
with open(paths.initmatch_path(args.nsimx, "particles"), 'rb') as f:
|
||||
clumpsx = numpy.load(f, allow_pickle=True)
|
||||
overlapper.clumps_pos2cell(clumpsx)
|
||||
|
||||
|
||||
print("{}: generating the background density fields.".format(datetime.now()),
|
||||
flush=True)
|
||||
delta_bckg = overlapper.make_bckg_delta(clumps0)
|
||||
delta_bckg = overlapper.make_bckg_delta(clumpsx, delta=delta_bckg)
|
||||
|
||||
|
||||
print("{}: crossing the simulations.".format(datetime.now()), flush=True)
|
||||
matcher = csiborgtools.match.RealisationsMatcher()
|
||||
ref_indxs, cross_indxs, match_indxs, ngp_overlap = matcher.cross(
|
||||
cat0, catx, clumps0, clumpsx, delta_bckg)
|
||||
|
||||
# Load the raw catalogues (i.e. no selection) including the initial CM positions
|
||||
# and the particle archives.
|
||||
cat0 = csiborgtools.read.HaloCatalogue(
|
||||
args.nsim0, paths, load_initial=True, rawdata=True
|
||||
)
|
||||
catx = csiborgtools.read.HaloCatalogue(
|
||||
args.nsimx, paths, load_initial=True, rawdata=True
|
||||
)
|
||||
halos0_archive = paths.initmatch_path(args.nsim0, "particles")
|
||||
halosx_archive = paths.initmatch_path(args.nsimx, "particles")
|
||||
|
||||
print("{}: smoothing the background field.".format(datetime.now()), flush=True)
|
||||
# We generate the background density fields. Loads halos's particles one by one
|
||||
# from the archive, concatenates them and calculates the NGP density field.
|
||||
args.verbose and print(
|
||||
"{}: generating the background density fields.".format(datetime.now()), flush=True
|
||||
)
|
||||
delta_bckg = overlapper.make_bckg_delta(halos0_archive, verbose=args.verbose)
|
||||
delta_bckg = overlapper.make_bckg_delta(
|
||||
halosx_archive, delta=delta_bckg, verbose=args.verbose
|
||||
)
|
||||
|
||||
# We calculate the overlap between the NGP fields.
|
||||
args.verbose and print(
|
||||
"{}: crossing the simulations.".format(datetime.now()), flush=True
|
||||
)
|
||||
match_indxs, ngp_overlap = matcher.cross(
|
||||
cat0, catx, halos0_archive, halosx_archive, delta_bckg
|
||||
)
|
||||
|
||||
# We now smoothen up the background density field for the smoothed overlap calculation.
|
||||
args.verbose and print(
|
||||
"{}: smoothing the background field.".format(datetime.now()), flush=True
|
||||
)
|
||||
gaussian_filter(delta_bckg, output=delta_bckg, **smooth_kwargs)
|
||||
|
||||
# We calculate the smoothed overlap for the pairs whose NGP overlap is > 0.
|
||||
args.verbose and print(
|
||||
"{}: calculating smoothed overlaps.".format(datetime.now()), flush=True
|
||||
)
|
||||
smoothed_overlap = matcher.smoothed_cross(
|
||||
cat0, catx, halos0_archive, halosx_archive, delta_bckg, match_indxs, smooth_kwargs
|
||||
)
|
||||
|
||||
print("{}: calculating smoothed overlaps.".format(datetime.now()), flush=True)
|
||||
smoothed_overlap = matcher.smoothed_cross(clumps0, clumpsx, delta_bckg,
|
||||
ref_indxs, cross_indxs, match_indxs,
|
||||
smooth_kwargs)
|
||||
|
||||
# Dump the result
|
||||
print("Saving results to `{}`.".format(fout), flush=True)
|
||||
with open(fout, "wb") as f:
|
||||
numpy.savez(fout, ref_indxs=ref_indxs, cross_indxs=cross_indxs,
|
||||
match_indxs=match_indxs, ngp_overlap=ngp_overlap,
|
||||
smoothed_overlap=smoothed_overlap, sigma=args.sigma)
|
||||
print("All finished.", flush=True)
|
||||
# We save the results at long last.
|
||||
fout = paths.overlap_path(args.nsim0, args.nsimx)
|
||||
args.verbose and print(
|
||||
"{}: saving results to `{}`.".format(datetime.now(), fout), flush=True
|
||||
)
|
||||
numpy.savez(
|
||||
fout,
|
||||
match_indxs=match_indxs,
|
||||
ngp_overlap=ngp_overlap,
|
||||
smoothed_overlap=smoothed_overlap,
|
||||
sigma=args.sigma,
|
||||
)
|
||||
print("{}: all finished.".format(datetime.now()), flush=True)
|
||||
|
|
|
@ -72,9 +72,6 @@ def fit_clump(particles, clump_info, box):
|
|||
obj = csiborgtools.fits.Clump(particles, clump_info, box)
|
||||
|
||||
out = {}
|
||||
if numpy.isnan(clump_info["index"]):
|
||||
print("Why am I NaN?", flush=True)
|
||||
out["index"] = clump_info["index"]
|
||||
out["npart"] = len(obj)
|
||||
out["totpartmass"] = numpy.sum(obj["M"])
|
||||
for i, v in enumerate(["vx", "vy", "vz"]):
|
||||
|
@ -121,7 +118,7 @@ def load_parent_particles(clumpid, particle_archive, clumps_cat):
|
|||
|
||||
if len(clumps) == 0:
|
||||
return None
|
||||
return csiborgtools.match.concatenate_clumps(clumps, include_velocities=True)
|
||||
return csiborgtools.match.concatenate_parts(clumps, include_velocities=True)
|
||||
|
||||
|
||||
# We now start looping over all simulations
|
||||
|
@ -152,11 +149,13 @@ for i, nsim in enumerate(paths.get_ics(tonew=False)):
|
|||
jobs = csiborgtools.fits.split_jobs(ntasks, nproc)[rank]
|
||||
out = csiborgtools.read.cols_to_structured(len(jobs), cols_collect)
|
||||
for i, j in enumerate(tqdm(jobs)) if nproc == 1 else enumerate(jobs):
|
||||
clumpid = clumps_cat["index"][j]
|
||||
out["index"][i] = clumpid
|
||||
|
||||
# If we are fitting halos and this clump is not a main, then continue.
|
||||
if args.kind == "halos" and not ismain[j]:
|
||||
continue
|
||||
|
||||
clumpid = clumps_cat["index"][j]
|
||||
if args.kind == "halos":
|
||||
part = load_parent_particles(clumpid, particle_archive, clumps_cat)
|
||||
else:
|
||||
|
@ -169,9 +168,6 @@ for i, nsim in enumerate(paths.get_ics(tonew=False)):
|
|||
_out = fit_clump(part, clumps_cat[j], box)
|
||||
for key in _out.keys():
|
||||
out[key][i] = _out[key]
|
||||
else:
|
||||
out["index"][i] = clumpid
|
||||
out["npart"][i] = 0
|
||||
|
||||
fout = ftemp.format(str(nsim).zfill(5), str(nsnap).zfill(5), rank)
|
||||
if nproc == 0:
|
||||
|
@ -204,7 +200,7 @@ for i, nsim in enumerate(paths.get_ics(tonew=False)):
|
|||
if args.kind == "halos":
|
||||
out = out[ismain]
|
||||
|
||||
fout = paths.structfit_path(nsnap, nsim, "clumps")
|
||||
fout = paths.structfit_path(nsnap, nsim, args.kind)
|
||||
print("Saving to `{}`.".format(fout), flush=True)
|
||||
numpy.save(fout, out)
|
||||
|
||||
|
|
|
@ -13,11 +13,8 @@
|
|||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
"""
|
||||
A script to calculate the centre of mass of particles at redshift 70 that
|
||||
are grouped in a clump at present redshift.
|
||||
|
||||
Optionally also dumps the clumps information, however watch out as this will
|
||||
eat up a lot of memory.
|
||||
Script to calculate the particle centre of mass and Lagrangian patch size in the initial
|
||||
snapshot. Optinally dumps the particle files, however this requires a lot of memory.
|
||||
"""
|
||||
from argparse import ArgumentParser
|
||||
from datetime import datetime
|
||||
|
@ -28,141 +25,143 @@ from os.path import join
|
|||
|
||||
import numpy
|
||||
from mpi4py import MPI
|
||||
from tqdm import tqdm
|
||||
|
||||
try:
|
||||
import csiborgtools
|
||||
except ModuleNotFoundError:
|
||||
import sys
|
||||
|
||||
sys.path.append("../")
|
||||
import csiborgtools
|
||||
|
||||
|
||||
# Get MPI things
|
||||
comm = MPI.COMM_WORLD
|
||||
rank = comm.Get_rank()
|
||||
nproc = comm.Get_size()
|
||||
verbose = nproc == 1
|
||||
|
||||
# Argument parser
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument("--dump_clumps", type=lambda x: bool(strtobool(x)))
|
||||
parser.add_argument("--dump", type=lambda x: bool(strtobool(x)))
|
||||
args = parser.parse_args()
|
||||
|
||||
paths = csiborgtools.read.CSiBORGPaths(**csiborgtools.paths_glamdring)
|
||||
nsims = paths.get_ics(tonew=True)
|
||||
partreader = csiborgtools.read.ParticleReader(paths)
|
||||
ftemp = join(paths.temp_dumpdir, "initmatch_{}_{}_{}.npy")
|
||||
|
||||
# Temporary output file
|
||||
ftemp = join(paths.dumpdir, "temp", "initmatch_{}_{}_{}.npy")
|
||||
|
||||
for nsim in nsims:
|
||||
# We loop over all particles and then use MPI when matching halos to the
|
||||
# initial snapshot and dumping them.
|
||||
for i, nsim in enumerate(paths.get_ics(tonew=True)):
|
||||
if rank == 0:
|
||||
print("{}: reading simulation {}.".format(datetime.now(), nsim),
|
||||
flush=True)
|
||||
nsnap_max = max(paths.get_snapshots(nsim))
|
||||
reader = csiborgtools.read.ParticleReader(paths)
|
||||
print("{}: reading simulation {}.".format(datetime.now(), nsim), flush=True)
|
||||
nsnap = max(paths.get_snapshots(nsim))
|
||||
|
||||
# Read and sort the initial particle files by their particle IDs
|
||||
part0 = reader.read_particle(1, nsim, ["x", "y", "z", "M", "ID"],
|
||||
verbose=False)
|
||||
# We first load particles in the initial and final snapshots and sort them
|
||||
# by their particle IDs so that we can match them by array position.
|
||||
# `clump_ids` are the clump IDs of particles.
|
||||
part0 = partreader.read_particle(
|
||||
1, nsim, ["x", "y", "z", "M", "ID"], verbose=verbose
|
||||
)
|
||||
part0 = part0[numpy.argsort(part0["ID"])]
|
||||
|
||||
# Order the final snapshot clump IDs by the particle IDs
|
||||
pid = reader.read_particle(nsnap_max, nsim, ["ID"], verbose=False)["ID"]
|
||||
clump_ids = reader.read_clumpid(nsnap_max, nsim, verbose=False)
|
||||
pid = partreader.read_particle(nsnap, nsim, ["ID"], verbose=verbose)["ID"]
|
||||
clump_ids = partreader.read_clumpid(nsnap, nsim, verbose=verbose)
|
||||
clump_ids = clump_ids[numpy.argsort(pid)]
|
||||
|
||||
# Release the particle IDs, we will not need them anymore now that both
|
||||
# particle arrays are matched in ordering.
|
||||
del pid
|
||||
collect()
|
||||
|
||||
# Get rid of the clumps whose index is 0 -- those are unassigned
|
||||
# Particles whose clump ID is 0 are unassigned to a clump, so we can get
|
||||
# rid of them to speed up subsequent operations. Again we release the mask.
|
||||
mask = clump_ids > 0
|
||||
clump_ids = clump_ids[mask]
|
||||
part0 = part0[mask]
|
||||
del mask
|
||||
collect()
|
||||
|
||||
# Calculate the centre of mass of each parent halo, the Lagrangian patch
|
||||
# size and optionally the initial snapshot particles belonging to this
|
||||
# parent halo. Dumping the particles will take majority of time.
|
||||
if rank == 0:
|
||||
print("{}: dumping intermediate files.".format(datetime.now()),
|
||||
flush=True)
|
||||
print(
|
||||
"{}: calculating {}th simulation {}.".format(datetime.now(), i, nsim),
|
||||
flush=True,
|
||||
)
|
||||
# We load up the clump catalogue which contains information about the
|
||||
# ultimate parent halos of each clump. We will loop only over the clump
|
||||
# IDs of ultimate parent halos and add their substructure particles and at
|
||||
# the end save these.
|
||||
cat = csiborgtools.read.ClumpsCatalogue(
|
||||
nsim, paths, load_fitted=False, rawdata=True
|
||||
)
|
||||
parent_ids = cat["index"][cat.ismain][:500]
|
||||
jobs = csiborgtools.fits.split_jobs(parent_ids.size, nproc)[rank]
|
||||
for i in tqdm(jobs) if verbose else jobs:
|
||||
clid = parent_ids[i]
|
||||
mmain_indxs = cat["index"][cat["parent"] == clid]
|
||||
|
||||
# Grab unique clump IDs and loop over them
|
||||
unique_clumpids = numpy.unique(clump_ids)
|
||||
mmain_mask = numpy.isin(clump_ids, mmain_indxs, assume_unique=True)
|
||||
mmain_particles = part0[mmain_mask]
|
||||
|
||||
njobs = unique_clumpids.size
|
||||
jobs = csiborgtools.utils.split_jobs(njobs, nproc)[rank]
|
||||
for i in jobs:
|
||||
n = unique_clumpids[i]
|
||||
x0 = part0[clump_ids == n]
|
||||
raddist, cmpos = csiborgtools.match.dist_centmass(mmain_particles)
|
||||
patchsize = csiborgtools.match.dist_percentile(raddist, [99], distmax=0.075)
|
||||
with open(ftemp.format(nsim, clid, "fit"), "wb") as f:
|
||||
numpy.savez(f, cmpos=cmpos, patchsize=patchsize)
|
||||
|
||||
# Center of mass and Lagrangian patch size
|
||||
dist, cm = csiborgtools.match.dist_centmass(x0)
|
||||
patch = csiborgtools.match.dist_percentile(dist, [99], distmax=0.075)
|
||||
|
||||
# Dump the center of mass
|
||||
with open(ftemp.format(nsim, n, "cm"), 'wb') as f:
|
||||
numpy.save(f, cm)
|
||||
# Dump the Lagrangian patch size
|
||||
with open(ftemp.format(nsim, n, "lagpatch"), 'wb') as f:
|
||||
numpy.save(f, patch)
|
||||
# Dump the entire clump
|
||||
if args.dump_clumps:
|
||||
with open(ftemp.format(nsim, n, "clump"), "wb") as f:
|
||||
numpy.save(f, x0)
|
||||
if args.dump:
|
||||
with open(ftemp.format(nsim, clid, "particles"), "wb") as f:
|
||||
numpy.save(f, mmain_particles)
|
||||
|
||||
# We force clean up the memory before continuing.
|
||||
del part0, clump_ids
|
||||
collect()
|
||||
|
||||
# We now wait for all processes and then use the 0th process to collect the results.
|
||||
# We first collect just the Lagrangian patch size information.
|
||||
comm.Barrier()
|
||||
if rank == 0:
|
||||
print("{}: collecting summary files...".format(datetime.now()),
|
||||
flush=True)
|
||||
# Collect the centre of masses, patch size, etc. and dump them
|
||||
dtype = {"names": ['x', 'y', 'z', "lagpatch", "ID"],
|
||||
"formats": [numpy.float32] * 4 + [numpy.int32]}
|
||||
out = numpy.full(njobs, numpy.nan, dtype=dtype)
|
||||
|
||||
for i, n in enumerate(unique_clumpids):
|
||||
# Load in CM vector
|
||||
fpath = ftemp.format(nsim, n, "cm")
|
||||
print("{}: collecting fits...".format(datetime.now()), flush=True)
|
||||
dtype = {
|
||||
"names": ["index", "x", "y", "z", "lagpatch"],
|
||||
"formats": [numpy.int32] + [numpy.float32] * 4,
|
||||
}
|
||||
out = numpy.full(parent_ids.size, numpy.nan, dtype=dtype)
|
||||
for i, clid in enumerate(parent_ids):
|
||||
fpath = ftemp.format(nsim, clid, "fit")
|
||||
with open(fpath, "rb") as f:
|
||||
fin = numpy.load(f)
|
||||
out['x'][i] = fin[0]
|
||||
out['y'][i] = fin[1]
|
||||
out['z'][i] = fin[2]
|
||||
inp = numpy.load(f)
|
||||
out["index"][i] = clid
|
||||
out["x"][i] = inp["cmpos"][0]
|
||||
out["y"][i] = inp["cmpos"][1]
|
||||
out["z"][i] = inp["cmpos"][2]
|
||||
out["lagpatch"][i] = inp["patchsize"]
|
||||
remove(fpath)
|
||||
|
||||
# Load in the patch size
|
||||
fpath = ftemp.format(nsim, n, "lagpatch")
|
||||
with open(fpath, "rb") as f:
|
||||
out["lagpatch"][i] = numpy.load(f)
|
||||
remove(fpath)
|
||||
|
||||
# Store the halo ID
|
||||
out["ID"][i] = n
|
||||
|
||||
print("{}: dumping to .. `{}`.".format(
|
||||
datetime.now(), paths.initmatch_path(nsim, "cm")), flush=True)
|
||||
with open(paths.initmatch_path(nsim, "cm"), 'wb') as f:
|
||||
fout = paths.initmatch_path(nsim, "fit")
|
||||
print("{}: dumping fits to .. `{}`.".format(datetime.now(), fout), flush=True)
|
||||
with open(fout, "wb") as f:
|
||||
numpy.save(f, out)
|
||||
|
||||
if args.dump_clumps:
|
||||
print("{}: collecting particle files...".format(datetime.now()),
|
||||
flush=True)
|
||||
out = [None] * unique_clumpids.size
|
||||
dtype = {"names": ["clump", "ID"],
|
||||
"formats": [object, numpy.int32]}
|
||||
out = numpy.full(unique_clumpids.size, numpy.nan, dtype=dtype)
|
||||
for i, n in enumerate(unique_clumpids):
|
||||
fpath = ftemp.format(nsim, n, "clump")
|
||||
with open(fpath, 'rb') as f:
|
||||
fin = numpy.load(f)
|
||||
out["clump"][i] = fin
|
||||
out["ID"][i] = n
|
||||
remove(fpath)
|
||||
# We now optionally collect the individual clumps and store them in an archive,
|
||||
# which has the benefit of being a single file that can be easily read in.
|
||||
if args.dump:
|
||||
print("{}: collecting particles...".format(datetime.now()), flush=True)
|
||||
out = {}
|
||||
for clid in parent_ids:
|
||||
fpath = ftemp.format(nsim, clid, "particles")
|
||||
with open(fpath, "rb") as f:
|
||||
out.update({str(clid): numpy.load(f)})
|
||||
|
||||
fout = paths.initmatch_path(nsim, "particles")
|
||||
print("{}: dumping to .. `{}`.".format(datetime.now(), fout),
|
||||
flush=True)
|
||||
print(
|
||||
"{}: dumping particles to .. `{}`.".format(datetime.now(), fout),
|
||||
flush=True,
|
||||
)
|
||||
with open(fout, "wb") as f:
|
||||
numpy.save(f, out)
|
||||
numpy.savez(f, **out)
|
||||
|
||||
# Again we force clean up the memory before continuing.
|
||||
del out
|
||||
collect()
|
Loading…
Reference in a new issue