mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2025-01-05 07:14:14 +00:00
687 lines
21 KiB
Python
687 lines
21 KiB
Python
|
# Copyright (C) 2022 Richard Stiskalek, Harry Desmond
|
||
|
# This program is free software; you can redistribute it and/or modify it
|
||
|
# under the terms of the GNU General Public License as published by the
|
||
|
# Free Software Foundation; either version 3 of the License, or (at your
|
||
|
# option) any later version.
|
||
|
#
|
||
|
# This program is distributed in the hope that it will be useful, but
|
||
|
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
||
|
# Public License for more details.
|
||
|
#
|
||
|
# You should have received a copy of the GNU General Public License along
|
||
|
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||
|
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||
|
"""
|
||
|
Support for reading the PHEW/ACACIA CSiBORG merger trees. However, note that
|
||
|
the merger trees are very unreliable.
|
||
|
"""
|
||
|
from abc import ABC
|
||
|
from datetime import datetime
|
||
|
from gc import collect
|
||
|
|
||
|
import numpy
|
||
|
from h5py import File
|
||
|
from tqdm import tqdm, trange
|
||
|
from treelib import Tree
|
||
|
|
||
|
from ..utils import periodic_distance
|
||
|
from .paths import Paths
|
||
|
|
||
|
###############################################################################
|
||
|
# Utility functions. #
|
||
|
###############################################################################
|
||
|
|
||
|
|
||
|
def clump_identifier(clump, nsnap):
|
||
|
"""
|
||
|
Generate a unique identifier for a clump at a given snapshot.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
clump : int
|
||
|
Clump ID.
|
||
|
nsnap : int
|
||
|
Snapshot index.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
str
|
||
|
"""
|
||
|
return f"{str(clump).rjust(9, 'x')}__{str(nsnap).rjust(4, 'x')}"
|
||
|
|
||
|
|
||
|
def extract_identifier(identifier):
|
||
|
"""
|
||
|
Extract the clump ID and snapshot index from a identifier generated by
|
||
|
`clump_identifier`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
identifier : str
|
||
|
Identifier.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
clump, nsnap : int
|
||
|
Clump ID and snapshot index.
|
||
|
"""
|
||
|
clump, nsnap = identifier.split('__')
|
||
|
return int(clump.lstrip('x')), int(nsnap.lstrip('x'))
|
||
|
|
||
|
|
||
|
###############################################################################
|
||
|
# Merger tree reader class. #
|
||
|
###############################################################################
|
||
|
|
||
|
|
||
|
class BaseMergerReader(ABC):
|
||
|
"""
|
||
|
Base class for the CSiBORG merger tree reader.
|
||
|
"""
|
||
|
_paths = None
|
||
|
_nsim = None
|
||
|
_min_snap = None
|
||
|
_cache = {}
|
||
|
|
||
|
@property
|
||
|
def paths(self):
|
||
|
"""Paths manager."""
|
||
|
if self._paths is None:
|
||
|
raise ValueError("`paths` is not set.")
|
||
|
return self._paths
|
||
|
|
||
|
@paths.setter
|
||
|
def paths(self, paths):
|
||
|
assert isinstance(paths, Paths)
|
||
|
self._paths = paths
|
||
|
|
||
|
@property
|
||
|
def nsim(self):
|
||
|
"""Simulation index."""
|
||
|
if self._nsim is None:
|
||
|
raise ValueError("`nsim` is not set.")
|
||
|
return self._nsim
|
||
|
|
||
|
@nsim.setter
|
||
|
def nsim(self, nsim):
|
||
|
assert isinstance(nsim, (int, numpy.integer))
|
||
|
self._nsim = nsim
|
||
|
|
||
|
@property
|
||
|
def min_snap(self):
|
||
|
"""Minimum snapshot index to read."""
|
||
|
return self._min_snap
|
||
|
|
||
|
@min_snap.setter
|
||
|
def min_snap(self, min_snap):
|
||
|
if min_snap is not None:
|
||
|
assert isinstance(min_snap, (int, numpy.integer))
|
||
|
self._min_snap = int(min_snap)
|
||
|
|
||
|
def cache_length(self):
|
||
|
"""Length of the cache."""
|
||
|
return len(self._cache)
|
||
|
|
||
|
def cache_clear(self):
|
||
|
"""Clear the cache."""
|
||
|
self._cache = {}
|
||
|
collect()
|
||
|
|
||
|
def __getitem__(self, key):
|
||
|
try:
|
||
|
return self._cache[key]
|
||
|
except KeyError:
|
||
|
fname = self.paths.processed_merger_tree(self.nsim)
|
||
|
|
||
|
nsnap, kind = key.split("__")
|
||
|
|
||
|
with File(fname, "r") as f:
|
||
|
if kind == "clump_to_array":
|
||
|
cl = self[f"{nsnap}__clump"]
|
||
|
|
||
|
x = {}
|
||
|
for i, c in enumerate(cl):
|
||
|
if c in x:
|
||
|
x[c] += (i,)
|
||
|
else:
|
||
|
x[c] = (i,)
|
||
|
else:
|
||
|
x = f[f"{str(nsnap)}/{kind}"][:]
|
||
|
|
||
|
# Cache it
|
||
|
self._cache[key] = x
|
||
|
|
||
|
return x
|
||
|
|
||
|
|
||
|
class MergerReader(BaseMergerReader):
|
||
|
"""
|
||
|
Merger tree reader.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
nsim : int
|
||
|
Simulation index.
|
||
|
paths : Paths
|
||
|
Paths manager.
|
||
|
min_snap : int
|
||
|
Minimum snapshot index. Trees below this snapshot will not be read.
|
||
|
"""
|
||
|
def __init__(self, nsim, paths, min_snap=None):
|
||
|
self.nsim = nsim
|
||
|
self.paths = paths
|
||
|
self.min_snap = min_snap
|
||
|
|
||
|
def get_info(self, current_clump, current_snap, is_main=None):
|
||
|
"""
|
||
|
Make a list of information about a clump at a given snapshot.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
current_clump : int
|
||
|
Clump ID.
|
||
|
current_snap : int
|
||
|
Snapshot index.
|
||
|
is_main : bool
|
||
|
Whether this is the main progenitor.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
list
|
||
|
"""
|
||
|
if current_clump < 0:
|
||
|
raise ValueError("Clump ID must be positive.")
|
||
|
|
||
|
if is_main is not None and not isinstance(is_main, bool):
|
||
|
raise ValueError("`is_main` must be a boolean.")
|
||
|
|
||
|
k = self[f"{current_snap}__clump_to_array"][current_clump][0]
|
||
|
|
||
|
out = [self[f"{current_snap}__desc_mass"][k],
|
||
|
*self[f"{current_snap}__desc_pos"][k][::-1]] # TODO REMOVE LATER
|
||
|
|
||
|
if is_main is not None:
|
||
|
return [is_main,] + out
|
||
|
|
||
|
return out
|
||
|
|
||
|
def get_mass(self, clump, snap):
|
||
|
"""
|
||
|
Get the mass of a clump at a given snapshot.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
clump : int
|
||
|
Clump ID.
|
||
|
snap : int
|
||
|
Snapshot index.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
float
|
||
|
"""
|
||
|
if clump < 0:
|
||
|
raise ValueError("Clump ID must be positive.")
|
||
|
k = self[f"{snap}__clump_to_array"][clump][0]
|
||
|
return self[f"{snap}__desc_mass"][k]
|
||
|
|
||
|
def get_pos(self, clump, snap):
|
||
|
if clump < 0:
|
||
|
raise ValueError("Clump ID must be positive.")
|
||
|
k = self[f"{snap}__clump_to_array"][clump][0]
|
||
|
return self[f"{snap}__desc_pos"][k]
|
||
|
|
||
|
def find_main_progenitor(self, clump, nsnap):
|
||
|
"""
|
||
|
Find the main progenitor of a clump at a given snapshot. Cases are:
|
||
|
- `clump > 0`, `progenitor > 0`: main progenitor is in the adjacent
|
||
|
snapshot,
|
||
|
- `clump > 0`, `progenitor < 0`: main progenitor is not in the
|
||
|
adjacent snapshot.
|
||
|
- `clump < 0`, `progenitor = 0`: no progenitor, newly formed clump.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
clump : int
|
||
|
Clump ID.
|
||
|
nsnap : int
|
||
|
Snapshot index.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
progenitor : int
|
||
|
Main progenitor clump ID.
|
||
|
progenitor_snap : int
|
||
|
Main progenitor snapshot index.
|
||
|
"""
|
||
|
if not clump > 0:
|
||
|
raise ValueError("Clump ID must be positive.")
|
||
|
|
||
|
cl2array = self[f"{nsnap}__clump_to_array"]
|
||
|
if clump in cl2array:
|
||
|
k = cl2array[clump]
|
||
|
else:
|
||
|
raise ValueError("Clump ID not found.")
|
||
|
|
||
|
if len(k) > 1:
|
||
|
raise ValueError("Found more than one main progenitor.")
|
||
|
k = k[0]
|
||
|
|
||
|
progenitor = abs(self[f"{nsnap}__progenitor"][k])
|
||
|
progenitor_snap = self[f"{nsnap}__progenitor_outputnr"][k]
|
||
|
|
||
|
if (self.min_snap is not None) and (nsnap < self.min_snap):
|
||
|
return 0, numpy.nan
|
||
|
|
||
|
return progenitor, progenitor_snap
|
||
|
|
||
|
def find_minor_progenitors(self, clump, nsnap):
|
||
|
"""
|
||
|
Find the minor progenitors of a clump at a given snapshot. This means
|
||
|
that `clump < 0`, `progenitor > 0`, i.e. this clump also has another
|
||
|
main progenitor.
|
||
|
|
||
|
If there are no minor progenitors, return `None` for both lists.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
clump : int
|
||
|
Clump ID.
|
||
|
nsnap : int
|
||
|
Snapshot index.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
prog : list
|
||
|
List of minor progenitor clump IDs.
|
||
|
prog_snap : list
|
||
|
List of minor progenitor snapshot indices.
|
||
|
"""
|
||
|
if not clump > 0:
|
||
|
raise ValueError("Clump ID must be positive.")
|
||
|
|
||
|
try:
|
||
|
ks = self[f"{nsnap}__clump_to_array"][-clump]
|
||
|
except KeyError:
|
||
|
return None, None
|
||
|
|
||
|
prog = [self[f"{nsnap}__progenitor"][k] for k in ks]
|
||
|
prog_nsnap = [self[f"{nsnap}__progenitor_outputnr"][k] for k in ks]
|
||
|
|
||
|
if (self.min_snap is not None) and (nsnap < self.min_snap):
|
||
|
return None, None
|
||
|
|
||
|
return prog, prog_nsnap
|
||
|
|
||
|
def find_progenitors(self, clump, nsnap):
|
||
|
"""
|
||
|
Find all progenitors of a clump at a given snapshot. The main
|
||
|
progenitor is the first element of the list.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
clump : int
|
||
|
Clump ID.
|
||
|
nsnap : int
|
||
|
Snapshot index.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
prog : list
|
||
|
List of progenitor clump IDs.
|
||
|
prog_nsnap : list
|
||
|
List of progenitor snapshot indices.
|
||
|
"""
|
||
|
main_prog, main_prog_nsnap = self.find_main_progenitor(clump, nsnap)
|
||
|
min_prog, min_prog_nsnap = self.find_minor_progenitors(clump, nsnap)
|
||
|
|
||
|
# Check that if the main progenitor is not in the adjacent snapshot,
|
||
|
# then the minor progenitor are also in that snapshot (if any).
|
||
|
if (min_prog is not None) and (main_prog_nsnap != nsnap - 1) and not all(prog_nsnap == mprog for mprog in min_prog_nsnap): # noqa
|
||
|
raise ValueError(f"For clump {clump} at snapshot {nsnap} we have "
|
||
|
f"main progenitor at {main_prog_nsnap} and "
|
||
|
"minor progenitors at {min_prog_nsnap}.")
|
||
|
|
||
|
if min_prog is None:
|
||
|
prog = [main_prog,]
|
||
|
prog_nsnap = [main_prog_nsnap,]
|
||
|
else:
|
||
|
prog = [main_prog,] + min_prog
|
||
|
prog_nsnap = [main_prog_nsnap,] + min_prog_nsnap
|
||
|
|
||
|
if prog[0] == 0 and len(prog) > 1:
|
||
|
raise ValueError("No main progenitor but minor progenitors "
|
||
|
"found for clump {clump} at snapshot {nsnap}.")
|
||
|
|
||
|
return prog, prog_nsnap
|
||
|
|
||
|
def tree_mass_at_snapshot(self, clump, nsnap, target_snap):
|
||
|
"""
|
||
|
Calculate the total mass of nodes in a tree at a given snapshot.
|
||
|
"""
|
||
|
# If clump is 0 (i.e., we've reached the end of the tree), return 0
|
||
|
if clump == 0:
|
||
|
return 0
|
||
|
|
||
|
# Find the progenitors for the given clump and nsnap
|
||
|
prog, prog_nsnap = self.find_progenitors(clump, nsnap)
|
||
|
|
||
|
if prog[0] == 0:
|
||
|
print(prog)
|
||
|
return 0
|
||
|
|
||
|
# Sum the mass of the current clump's progenitors
|
||
|
tot = 0
|
||
|
for p, psnap in zip(prog, prog_nsnap):
|
||
|
if psnap == target_snap:
|
||
|
tot += self.get_mass(p, psnap)
|
||
|
|
||
|
# Recursively sum the mass of each progenitor's progenitors
|
||
|
for p, psnap in zip(prog, prog_nsnap):
|
||
|
# print("P ", p, psnap)
|
||
|
tot += self.mass_all_progenitor2(p, psnap, target_snap)
|
||
|
|
||
|
return tot
|
||
|
|
||
|
def is_jumper(self, clump, nsnap, nsnap_descendant):
|
||
|
pass
|
||
|
|
||
|
def make_tree(self, current_clump, current_nsnap,
|
||
|
above_clump=None, above_nsnap=None,
|
||
|
tree=None, is_main=None, verbose=False):
|
||
|
"""
|
||
|
Make a merger tree for a clump at a given snapshot.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
current_clump : int
|
||
|
Clump ID of the descendant clump.
|
||
|
current_nsnap : int
|
||
|
Snapshot index of the descendent clump.
|
||
|
above_clump : int, optional
|
||
|
Clump ID of a clump above the current clump in the tree.
|
||
|
above_nsnap : int, optional
|
||
|
Snapshot index of a clump above the current clump in the tree.
|
||
|
tree : treelib.Tree, optional
|
||
|
Tree to add to.
|
||
|
is_main : bool, optional
|
||
|
Whether this is the main progenitor.
|
||
|
verbose : bool, optional
|
||
|
Verbosity flag.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
treelib.Tree
|
||
|
Tree with the current clump as the root.
|
||
|
"""
|
||
|
if verbose:
|
||
|
print(f"{datetime.now()}: Node of a clump {current_clump} at "
|
||
|
f"snapshot {current_nsnap}.", flush=True)
|
||
|
|
||
|
# Terminate if we are at the end of the tree
|
||
|
if current_clump == 0:
|
||
|
return
|
||
|
|
||
|
# Create the root node or add a new node
|
||
|
if tree is None:
|
||
|
tree = Tree()
|
||
|
tree.create_node(
|
||
|
"root",
|
||
|
identifier=clump_identifier(current_clump, current_nsnap),
|
||
|
data=self.get_info(current_clump, current_nsnap, True),
|
||
|
)
|
||
|
else:
|
||
|
tree.create_node(
|
||
|
identifier=clump_identifier(current_clump, current_nsnap),
|
||
|
parent=clump_identifier(above_clump, above_nsnap),
|
||
|
data=self.get_info(current_clump, current_nsnap, is_main),
|
||
|
)
|
||
|
|
||
|
# This returns a list of progenitors and their snapshots. The first
|
||
|
# element is the main progenitor.
|
||
|
prog, prog_nsnap = self.find_progenitors(current_clump, current_nsnap)
|
||
|
|
||
|
for i, (p, psnap) in enumerate(zip(prog, prog_nsnap)):
|
||
|
self.make_tree(p, psnap, current_clump, current_nsnap, tree,
|
||
|
is_main=i == 0, verbose=verbose)
|
||
|
|
||
|
return tree
|
||
|
|
||
|
def walk_main_progenitor(self, main_clump, main_nsnap, verbose=False):
|
||
|
"""
|
||
|
Walk the main progenitor branch of a clump.
|
||
|
|
||
|
Each snapshot contains information about the clump at that snapshot.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
clump : int
|
||
|
Clump ID.
|
||
|
nsnap : int
|
||
|
Snapshot index.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
structured array
|
||
|
"""
|
||
|
out = []
|
||
|
|
||
|
pbar = tqdm(disable=not verbose)
|
||
|
while True:
|
||
|
prog, prog_nsnap = self.find_progenitors(main_clump, main_nsnap)
|
||
|
|
||
|
# Unpack the main and minor progenitor
|
||
|
mainprog, mainprog_nsnap = prog[0], prog_nsnap[0]
|
||
|
if len(prog) > 1:
|
||
|
minprog, minprog_nsnap = prog[1:], prog_nsnap[1:]
|
||
|
else:
|
||
|
minprog, minprog_nsnap = None, None
|
||
|
|
||
|
# If there is no progenitor, then set the main progenitor mass to 0
|
||
|
if mainprog == 0:
|
||
|
mainprog_mass = numpy.nan
|
||
|
else:
|
||
|
mainprog_mass = self.get_mass(mainprog, mainprog_nsnap)
|
||
|
|
||
|
totprog_mass = mainprog_mass
|
||
|
|
||
|
# Unpack masses of the progenitors
|
||
|
if minprog is not None:
|
||
|
minprog, minprog_nsnap = prog[1:], prog_nsnap[1:]
|
||
|
minprog_masses = [self.get_mass(c, n)
|
||
|
for c, n in zip(minprog, minprog_nsnap)]
|
||
|
|
||
|
max_minprog_mass = max(minprog_masses)
|
||
|
minprog_totmass = sum(minprog_masses)
|
||
|
totprog_mass += minprog_totmass
|
||
|
else:
|
||
|
minprog_totmass = numpy.nan
|
||
|
max_minprog_mass = numpy.nan
|
||
|
|
||
|
out += [
|
||
|
[main_nsnap,]
|
||
|
+ self.get_info(main_clump, main_nsnap)
|
||
|
+ [mainprog_nsnap, totprog_mass, mainprog_mass, minprog_totmass, max_minprog_mass / mainprog_mass] # noqa
|
||
|
]
|
||
|
|
||
|
pbar.update(1)
|
||
|
pbar.set_description(f"Clump {main_clump} ({main_nsnap})")
|
||
|
|
||
|
if mainprog == 0:
|
||
|
pbar.close()
|
||
|
break
|
||
|
|
||
|
main_clump = mainprog
|
||
|
main_nsnap = mainprog_nsnap
|
||
|
|
||
|
# Convert output to a structured array. We store integers as float
|
||
|
# to avoid errors because of converting NaNs to integers.
|
||
|
out = numpy.vstack(out)
|
||
|
dtype = [("desc_snapshot_index", numpy.float32),
|
||
|
("desc_mass", numpy.float32),
|
||
|
("desc_x", numpy.float32),
|
||
|
("desc_y", numpy.float32),
|
||
|
("desc_z", numpy.float32),
|
||
|
("prog_snapshot_index", numpy.float32),
|
||
|
("prog_totmass", numpy.float32),
|
||
|
("mainprog_mass", numpy.float32),
|
||
|
("minprog_totmass", numpy.float32),
|
||
|
("merger_ratio", numpy.float32),
|
||
|
]
|
||
|
|
||
|
return numpy.array([tuple(row) for row in out], dtype=dtype)
|
||
|
|
||
|
def match_mass_to_phewcat(self, phewcat):
|
||
|
"""
|
||
|
For each clump mass in the PHEW catalogue, find the corresponding
|
||
|
clump mass in the merger tree file. If no match is found returns NaN.
|
||
|
These are not equal because the PHEW catalogue mass is the mass without
|
||
|
unbinding.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
phewcat : csiborgtools.read.CSiBORGPEEWReader
|
||
|
PHEW catalogue reader.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
mass : float
|
||
|
"""
|
||
|
if phewcat.nsim != self.nsim:
|
||
|
raise ValueError("Simulation indices do not match.")
|
||
|
|
||
|
nsnap = phewcat.nsnap
|
||
|
indxs = phewcat["index"]
|
||
|
mergertree_mass = numpy.full(len(indxs), numpy.nan,
|
||
|
dtype=numpy.float32)
|
||
|
|
||
|
for i, ind in enumerate(indxs):
|
||
|
try:
|
||
|
mergertree_mass[i] = self.get_mass(ind, nsnap)
|
||
|
except KeyError:
|
||
|
continue
|
||
|
|
||
|
return mergertree_mass
|
||
|
|
||
|
def match_pos_to_phewcat(self, phewcat):
|
||
|
"""
|
||
|
For each clump mass in the PHEW catalogue, find the corresponding
|
||
|
clump mass in the merger tree file. If no match is found returns NaN.
|
||
|
These are not equal because the PHEW catalogue mass is the mass without
|
||
|
unbinding.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
phewcat : csiborgtools.read.CSiBORGPEEWReader
|
||
|
PHEW catalogue reader.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
mass : float
|
||
|
"""
|
||
|
if phewcat.nsim != self.nsim:
|
||
|
raise ValueError("Simulation indices do not match.")
|
||
|
|
||
|
nsnap = phewcat.nsnap
|
||
|
indxs = phewcat["index"]
|
||
|
mergertree_pos = numpy.full((len(indxs), 3), numpy.nan,
|
||
|
dtype=numpy.float32)
|
||
|
|
||
|
for i, ind in enumerate(indxs):
|
||
|
try:
|
||
|
mergertree_pos[i] = self.get_pos(ind, nsnap)
|
||
|
except KeyError:
|
||
|
continue
|
||
|
|
||
|
return mergertree_pos[:, ::-1] # TODO later remove
|
||
|
|
||
|
|
||
|
###############################################################################
|
||
|
# Manual halo tracking. #
|
||
|
###############################################################################
|
||
|
|
||
|
|
||
|
def track_halo_manually(cats, hid, maxdist=0.15, max_dlogm=0.35):
|
||
|
"""
|
||
|
Manually track a halo without using the merger tree. Searches for nearby
|
||
|
halo of similar mass in adjacent snapshots. Supports only main haloes and
|
||
|
can only work for the most massive haloes in a simulation, however even
|
||
|
then significant care should be taken.
|
||
|
|
||
|
Selects the most massive halo within a search radius to be a match.
|
||
|
|
||
|
In case a progenitor is not found in the adjacent snapshot, the search
|
||
|
continues in the next snapshot. Occasionally some haloes disappear..
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
cats : dict
|
||
|
Dictionary of halo catalogues, keys are snapshot indices.
|
||
|
hid : int
|
||
|
Halo ID.
|
||
|
maxdist : float, optional
|
||
|
Maximum comoving distance for a halo to move between adjacent
|
||
|
snapshots.
|
||
|
max_dlogm : float, optional
|
||
|
Maximum |log mass ratio| for a halo to be considered a progenitor.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
hist : structured array
|
||
|
History of the halo.
|
||
|
"""
|
||
|
nsnap0 = max(cats.keys())
|
||
|
k = cats[nsnap0]["hid_to_array_index"][hid]
|
||
|
pos = cats[nsnap0]["cartesian_pos"][k]
|
||
|
mass = cats[nsnap0]["summed_mass"][k]
|
||
|
|
||
|
if not cats[nsnap0]["is_main"][k]:
|
||
|
raise ValueError("Only main haloes are supported.")
|
||
|
|
||
|
if not mass > 1e13:
|
||
|
raise ValueError("Only the most massive haloes are supported.")
|
||
|
|
||
|
if not cats[nsnap0]["dist"][k] < 155.5:
|
||
|
raise ValueError("Only high-resolution region haloes are supported.")
|
||
|
|
||
|
dtype = [("snapshot_index", numpy.float32),
|
||
|
("x", numpy.float32),
|
||
|
("y", numpy.float32),
|
||
|
("z", numpy.float32),
|
||
|
("mass", numpy.float32),
|
||
|
("desc_dist", numpy.float32),
|
||
|
]
|
||
|
hist = numpy.full(len(cats), numpy.nan, dtype=dtype)
|
||
|
hist["snapshot_index"][0] = nsnap0
|
||
|
hist["x"][0], hist["y"][0], hist["z"][0] = pos
|
||
|
hist["mass"][0] = mass
|
||
|
|
||
|
for n in trange(1, len(cats), desc="Tracking halo"):
|
||
|
nsnap = nsnap0 - n
|
||
|
hist["snapshot_index"][n] = nsnap
|
||
|
|
||
|
# Find indices of all main haloes that are within a box of width
|
||
|
indxs = cats[nsnap].select_in_box(pos, 2 * maxdist)
|
||
|
|
||
|
if len(indxs) == 0:
|
||
|
continue
|
||
|
|
||
|
nearby_pos = cats[nsnap]["cartesian_pos"][indxs]
|
||
|
nearby_mass = cats[nsnap]["summed_mass"][indxs]
|
||
|
|
||
|
# Distance from the previous position and |log mass ratio|
|
||
|
dist = periodic_distance(nearby_pos, pos, cats[nsnap].box.boxsize)
|
||
|
dlogm = numpy.abs(numpy.log10(nearby_mass / mass))
|
||
|
k = numpy.argmin(dlogm)
|
||
|
|
||
|
if (dlogm[k] < max_dlogm) & (dist[k] < maxdist):
|
||
|
hist["x"][n], hist["y"][n], hist["z"][n] = nearby_pos[k]
|
||
|
hist["mass"][n] = nearby_mass[k]
|
||
|
hist["desc_dist"][n] = dist[k]
|
||
|
|
||
|
pos = nearby_pos[k]
|
||
|
mass = nearby_mass[k]
|
||
|
|
||
|
return hist
|