csiborgtools/scripts/halo_overlap/fit_init.py

129 lines
5 KiB
Python
Raw Normal View History

Overlap fixing and more (#107) * Update README * Update density field reader * Update name of SDSSxALFAFA * Fix quick bug * Add little fixes * Update README * Put back fit_init * Add paths to initial snapshots * Add export * Remove some choices * Edit README * Add Jens' comments * Organize imports * Rename snapshot * Add additional print statement * Add paths to initial snapshots * Add masses to the initial files * Add normalization * Edit README * Update README * Fix bug in CSiBORG1 so that does not read fof_00001 * Edit README * Edit README * Overwrite comments * Add paths to init lag * Fix Quijote path * Add lagpatch * Edit submits * Update README * Fix numpy int problem * Update README * Add a flag to keep the snapshots open when fitting * Add a flag to keep snapshots open * Comment out some path issue * Keep snapshots open * Access directly snasphot * Add lagpatch for CSiBORG2 * Add treatment of x-z coordinates flipping * Add radial velocity field loader * Update README * Add lagpatch to Quijote * Fix typo * Add setter * Fix typo * Update README * Add output halo cat as ASCII * Add import * Add halo plot * Update README * Add evaluating field at radial distanfe * Add field shell evaluation * Add enclosed mass computation * Add BORG2 import * Add BORG boxsize * Add BORG paths * Edit run * Add BORG2 overdensity field * Add bulk flow clauclation * Update README * Add new plots * Add nbs * Edit paper * Update plotting * Fix overlap paths to contain simname * Add normalization of positions * Add default paths to CSiBORG1 * Add overlap path simname * Fix little things * Add CSiBORG2 catalogue * Update README * Add import * Add TNG density field constructor * Add TNG density * Add draft of calculating BORG ACL * Fix bug * Add ACL of enclosed density * Add nmean acl * Add galaxy bias calculation * Add BORG acl notebook * Add enclosed mass calculation * Add TNG300-1 dir * Add TNG300 and BORG1 dir * Update nb
2024-01-30 16:14:07 +00:00
# Copyright (C) 2022 Richard Stiskalek
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""
Script to calculate the particle centre of mass and Lagrangian patch size in
the initial snapshot. The initial snapshot particles are read from the sorted
files.
"""
from argparse import ArgumentParser
from datetime import datetime
import csiborgtools
import numpy
from mpi4py import MPI
from taskmaster import work_delegation
from tqdm import tqdm
from utils import get_nsims
def _main(nsim, simname, verbose):
"""
Calculate and save the Lagrangian halo centre of mass and Lagrangian patch
size in the initial snapshot.
Parameters
----------
nsim : int
IC realisation index.
simname : str
Simulation name.
verbose : bool
Verbosity flag.
Returns
-------
None
"""
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
cols = [("index", numpy.int32),
("x", numpy.float32),
("y", numpy.float32),
("z", numpy.float32),
("lagpatch_size", numpy.float32),
("lagpatch_ncells", numpy.int32),]
if simname == "csiborg1":
snap = csiborgtools.read.CSiBORG1Snapshot(nsim, 1, paths,
keep_snapshot_open=True)
cat = csiborgtools.read.CSiBORG1Catalogue(nsim, paths, snapshot=snap)
fout = f"/mnt/extraspace/rstiskalek/csiborg1/chain_{nsim}/initial_lagpatch.npy" # noqa
elif "csiborg2" in simname:
kind = simname.split("_")[-1]
snap = csiborgtools.read.CSiBORG2Snapshot(nsim, 0, kind, paths,
keep_snapshot_open=True)
cat = csiborgtools.read.CSiBORG2Catalogue(nsim, 99, kind, paths,
snapshot=snap)
fout = f"/mnt/extraspace/rstiskalek/csiborg2_{kind}/catalogues/initial_lagpatch_{nsim}.npy" # noqa
elif simname == "quijote":
snap = csiborgtools.read.QuijoteSnapshot(nsim, "ICs", paths,
keep_snapshot_open=True)
cat = csiborgtools.read.QuijoteHaloCatalogue(nsim, paths,
snapshot=snap)
fout = f"/mnt/extraspace/rstiskalek/quijote/fiducial_processed/chain_{nsim}/initial_lagpatch.npy" # noqa
else:
raise ValueError(f"Unknown simulation name `{simname}`.")
boxsize = csiborgtools.simname2boxsize(simname)
# Initialise the overlapper.
if simname == "csiborg" or "csiborg2" in simname:
kwargs = {"box_size": 2048, "bckg_halfsize": 512}
else:
kwargs = {"box_size": 512, "bckg_halfsize": 256}
overlapper = csiborgtools.match.ParticleOverlap(**kwargs)
out = csiborgtools.read.cols_to_structured(len(cat), cols)
for i, hid in enumerate(tqdm(cat["index"]) if verbose else cat["index"]):
out["index"][i] = hid
pos = snap.halo_coordinates(hid)
mass = snap.halo_masses(hid)
# Calculate the centre of mass and the Lagrangian patch size.
cm = csiborgtools.center_of_mass(pos, mass, boxsize=boxsize)
distances = csiborgtools.periodic_distance(pos, cm, boxsize=boxsize)
out["x"][i], out["y"][i], out["z"][i] = cm
out["lagpatch_size"][i] = numpy.percentile(distances, 99)
pos /= boxsize # need to normalize the positions to be [0, 1).
# Calculate the number of cells with > 0 density.
delta = overlapper.make_delta(pos, mass, subbox=True)
out["lagpatch_ncells"][i] = csiborgtools.delta2ncells(delta)
# Now save it
if verbose:
print(f"{datetime.now()}: dumping fits to .. `{fout}`.", flush=True)
with open(fout, "wb") as f:
numpy.save(f, out)
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--simname", type=str,
choices=["csiborg1", "csiborg2_main", "csiborg2_random", "csiborg2_varysmall", "quijote"], # noqa
help="Simulation name")
parser.add_argument("--nsims", type=int, nargs="+", default=None,
help="IC realisations. If `-1` processes all.")
args = parser.parse_args()
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
nsims = get_nsims(args, paths)
def main(nsim):
_main(nsim, args.simname, MPI.COMM_WORLD.Get_size() == 1)
work_delegation(main, nsims, MPI.COMM_WORLD)