mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-22 22:48:02 +00:00
222 lines
6.9 KiB
Python
222 lines
6.9 KiB
Python
|
# Copyright (C) 2024 Richard Stiskalek
|
||
|
# This program is free software; you can redistribute it and/or modify it
|
||
|
# under the terms of the GNU General Public License as published by the
|
||
|
# Free Software Foundation; either version 3 of the License, or (at your
|
||
|
# option) any later version.
|
||
|
#
|
||
|
# This program is distributed in the hope that it will be useful, but
|
||
|
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
||
|
# Public License for more details.
|
||
|
#
|
||
|
# You should have received a copy of the GNU General Public License along
|
||
|
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||
|
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||
|
"""Script to help with `mah.py`."""
|
||
|
from datetime import datetime
|
||
|
|
||
|
import csiborgtools
|
||
|
import numpy as np
|
||
|
from astropy.cosmology import FlatLambdaCDM
|
||
|
from h5py import File
|
||
|
from tqdm import tqdm, trange
|
||
|
from cache_to_disk import cache_to_disk
|
||
|
from os.path import join
|
||
|
|
||
|
|
||
|
RANDOM_MAH_Sorce_Virgo_UPPER = np.array(
|
||
|
[[2.18554217, 0.16246594],
|
||
|
[2.93253012, 0.17284951],
|
||
|
[3.2939759, 0.34169001],
|
||
|
[3.75180723, 0.42006683],
|
||
|
[4.28192771, 0.44691426],
|
||
|
[4.61927711, 0.53819753],
|
||
|
[5.34216867, 0.58454257],
|
||
|
[5.89638554, 0.68954882],
|
||
|
[6.23373494, 0.73361948],
|
||
|
[6.45060241, 0.81341823],
|
||
|
[7.05301205, 0.92071572],
|
||
|
[7.82409639, 0.92071572],
|
||
|
[8.28192771, 0.95953933],
|
||
|
[8.61927711, 0.97956078],
|
||
|
[9.70361446, 1.],
|
||
|
[11.17349398, 1.],
|
||
|
[13.07710843, 1.],
|
||
|
[13.82409639, 1.]]
|
||
|
)
|
||
|
|
||
|
RANDOM_MAH_SORCE_Virgo_LOWER = np.array(
|
||
|
[[3.36626506e+00, 1.00000000e-02],
|
||
|
[3.75180723e+00, 1.10877404e-02],
|
||
|
[3.99277108e+00, 1.04216677e-02],
|
||
|
[4.30602410e+00, 1.15552746e-02],
|
||
|
[4.61927711e+00, 1.67577322e-02],
|
||
|
[4.98072289e+00, 2.14703224e-02],
|
||
|
[5.39036145e+00, 3.82789169e-02],
|
||
|
[5.89638554e+00, 5.00670000e-02],
|
||
|
[6.30602410e+00, 5.11116827e-02],
|
||
|
[7.29397590e+00, 5.32668971e-02],
|
||
|
[7.77590361e+00, 5.55129899e-02],
|
||
|
[8.11325301e+00, 6.68516464e-02],
|
||
|
[8.57108434e+00, 8.56515893e-02],
|
||
|
[9.60722892e+00, 1.32152759e-01],
|
||
|
[1.04265060e+01, 1.46527548e-01],
|
||
|
[1.07638554e+01, 1.49584947e-01],
|
||
|
[1.11493976e+01, 1.72849513e-01],
|
||
|
[1.18240964e+01, 2.16931625e-01],
|
||
|
[1.21855422e+01, 2.45546942e-01],
|
||
|
[1.25951807e+01, 3.48819614e-01],
|
||
|
[1.30771084e+01, 5.27197199e-01],
|
||
|
[1.36795181e+01, 8.83462949e-01],
|
||
|
[1.38000000e+01, 1.00000000e+00]]
|
||
|
)
|
||
|
|
||
|
|
||
|
def t():
|
||
|
return datetime.now()
|
||
|
|
||
|
|
||
|
@cache_to_disk(90)
|
||
|
def load_data(nsim0, simname, min_logmass):
|
||
|
"""
|
||
|
Load the reference catalogue, the cross catalogues, the merger trees and
|
||
|
the overlap reader (in this order).
|
||
|
"""
|
||
|
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||
|
nsims = paths.get_ics(simname)
|
||
|
if "csiborg2_" in simname:
|
||
|
kind = simname.split("_")[-1]
|
||
|
print(f"{t()}: loading {len(nsims)} halo catalogues.")
|
||
|
cat0 = csiborgtools.read.CSiBORG2Catalogue(nsim0, 99, kind)
|
||
|
catxs = [csiborgtools.read.CSiBORG2Catalogue(n, 99, kind)
|
||
|
for n in nsims if n != nsim0]
|
||
|
|
||
|
print(f"{t()}: loading {len(nsims)} merger trees.")
|
||
|
merger_trees = {}
|
||
|
for nsim in tqdm(nsims):
|
||
|
merger_trees[nsim] = csiborgtools.read.CSiBORG2MergerTreeReader(
|
||
|
nsim, kind)
|
||
|
else:
|
||
|
raise ValueError(f"Unknown simname: {simname}")
|
||
|
|
||
|
overlaps = csiborgtools.summary.NPairsOverlap(cat0, catxs, min_logmass)
|
||
|
|
||
|
return cat0, catxs, merger_trees, overlaps
|
||
|
|
||
|
|
||
|
def extract_main_progenitor_maxoverlap(group_nr, overlaps, merger_trees):
|
||
|
"""
|
||
|
Follow the main progenitor of a reference group and its maximum overlap
|
||
|
group in the cross catalogues.
|
||
|
"""
|
||
|
min_overlap = 0
|
||
|
|
||
|
# NOTE these can be all cached in the overlap object.
|
||
|
max_overlaps = overlaps.max_overlap(0, True)[group_nr]
|
||
|
if np.sum(max_overlaps > 0) == 0:
|
||
|
raise ValueError(f"No overlaps for group {group_nr}.")
|
||
|
|
||
|
max_overlap_indxs = overlaps.max_overlap_key(
|
||
|
"index", min_overlap, True)[group_nr]
|
||
|
|
||
|
out = {}
|
||
|
for i in trange(len(overlaps), desc="Cross main progenitors"):
|
||
|
nsimx = overlaps[i].catx().nsim
|
||
|
group_nr_cross = max_overlap_indxs[i]
|
||
|
|
||
|
if np.isnan(group_nr_cross):
|
||
|
continue
|
||
|
|
||
|
x = merger_trees[nsimx].main_progenitor(int(group_nr_cross))
|
||
|
x["Overlap"] = max_overlaps[i]
|
||
|
|
||
|
out[nsimx] = x
|
||
|
|
||
|
nsim0 = overlaps.cat0().nsim
|
||
|
print(f"Appending main progenitor for {nsim0}.")
|
||
|
out[nsim0] = merger_trees[nsim0].main_progenitor(group_nr)
|
||
|
|
||
|
return out
|
||
|
|
||
|
|
||
|
def summarize_extracted_mah(simname, data, nsim0, nsimxs, key,
|
||
|
min_age=0, include_nsim0=True):
|
||
|
"""
|
||
|
Turn the dictionaries of extracted MAHs into a single array.
|
||
|
"""
|
||
|
if "csiborg2_" in simname:
|
||
|
nsnap = 100
|
||
|
else:
|
||
|
raise ValueError(f"Unknown simname: {simname}")
|
||
|
|
||
|
X = []
|
||
|
for nsimx in nsimxs + [nsim0] if include_nsim0 else nsimxs:
|
||
|
try:
|
||
|
d = data[nsimx]
|
||
|
except KeyError:
|
||
|
continue
|
||
|
|
||
|
x = np.full(nsnap, np.nan, dtype=np.float32)
|
||
|
x[d["SnapNum"]] = d[key]
|
||
|
|
||
|
X.append(x)
|
||
|
|
||
|
cosmo = FlatLambdaCDM(H0=67.76, Om0=csiborgtools.simname2Omega_m(simname))
|
||
|
zs = [csiborgtools.snap2redshift(i, simname) for i in range(nsnap)]
|
||
|
age = cosmo.age(zs).value
|
||
|
|
||
|
mask = age > min_age
|
||
|
return age[mask], np.vstack(X)[:, mask]
|
||
|
|
||
|
|
||
|
def extract_mah(simname, logmass_bounds, key, min_age=0):
|
||
|
"""
|
||
|
Extract the random MAHs for a given simulation and mass range and key.
|
||
|
Keys are for example: "MainProgenitorMass" or "GroupMass"
|
||
|
"""
|
||
|
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||
|
nsims = paths.get_ics(simname)
|
||
|
|
||
|
X = []
|
||
|
for i, nsim in enumerate(nsims):
|
||
|
with File(paths.random_mah(simname, nsim), 'r') as f:
|
||
|
mah = f[key][:]
|
||
|
final_mass = mah[:, -1]
|
||
|
|
||
|
# Select the mass range
|
||
|
mask = final_mass >= 10**logmass_bounds[0]
|
||
|
mask &= final_mass < 10**logmass_bounds[1]
|
||
|
|
||
|
X.append(mah[mask])
|
||
|
|
||
|
if i == 0:
|
||
|
redshift = f["Redshift"][:]
|
||
|
|
||
|
X = np.vstack(X)
|
||
|
|
||
|
cosmo = FlatLambdaCDM(H0=67.76, Om0=csiborgtools.simname2Omega_m(simname))
|
||
|
age = cosmo.age(redshift).value
|
||
|
|
||
|
mask = age > min_age
|
||
|
return age[mask], X[:, mask]
|
||
|
|
||
|
|
||
|
def extract_mah_mdpl2(logmass_bounds, min_age=1.5):
|
||
|
"""
|
||
|
MAH extraction for the MDPL2 simulation. Data comes from
|
||
|
`https://arxiv.org/abs/2105.05859`
|
||
|
"""
|
||
|
fdir = "/mnt/extraspace/rstiskalek/catalogs/"
|
||
|
|
||
|
age = np.genfromtxt(join(fdir, "mdpl2_cosmic_time.txt"))
|
||
|
with File(join(fdir, "diffmah_mdpl2.h5"), 'r') as f:
|
||
|
log_mp = f["logmp_sim"][:]
|
||
|
log_mah_sim = f["log_mah_sim"][...]
|
||
|
|
||
|
xmin, xmax = logmass_bounds
|
||
|
ks = np.where((log_mp > xmin) & (log_mp < xmax))[0]
|
||
|
X = 10**log_mah_sim[ks]
|
||
|
|
||
|
mask = age > min_age
|
||
|
return age[mask], X[:, mask]
|