mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2025-01-05 12:44:15 +00:00
187 lines
4.8 KiB
Text
187 lines
4.8 KiB
Text
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 1,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"import numpy as np\n",
|
||
|
"import matplotlib.pyplot as plt\n",
|
||
|
"from h5py import File\n",
|
||
|
"from scipy.stats import spearmanr\n",
|
||
|
"\n",
|
||
|
"import csiborgtools\n",
|
||
|
"\n",
|
||
|
"%matplotlib inline\n",
|
||
|
"%load_ext autoreload\n",
|
||
|
"%autoreload 2"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 2,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)\n",
|
||
|
"\n",
|
||
|
"# d = np.load(paths.field_interpolated(\"SDSS\", \"csiborg2_main\", 16817, \"density\", \"SPH\", 1024))"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 33,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"survey = csiborgtools.SDSS()(apply_selection=False)\n",
|
||
|
"# survey = csiborgtools.SDSSxALFALFA()(apply_selection=False)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 35,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stderr",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"Reading fields: 0%| | 0/20 [00:00<?, ?it/s]"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"name": "stderr",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"Reading fields: 100%|██████████| 20/20 [00:11<00:00, 1.80it/s]\n",
|
||
|
"Reading fields: 100%|██████████| 20/20 [00:10<00:00, 1.86it/s]\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"for kind in [\"main\", \"random\"]:\n",
|
||
|
" x, smooth = csiborgtools.summary.read_interpolated_field(survey, f\"csiborg2_{kind}\", \"density\", \"SPH\", 1024, paths)\n",
|
||
|
" np .savez(f\"../data/{survey.name}_{kind}_density_SPH_1024.npz\", val=x, smooth_scales=smooth)\n",
|
||
|
"\n",
|
||
|
"\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 37,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"(20, 641409, 5)"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 37,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": []
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 24,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"array([[[nan, nan, nan, nan, nan],\n",
|
||
|
" [nan, nan, nan, nan, nan],\n",
|
||
|
" [nan, nan, nan, nan, nan],\n",
|
||
|
" ...,\n",
|
||
|
" [nan, nan, nan, nan, nan],\n",
|
||
|
" [nan, nan, nan, nan, nan],\n",
|
||
|
" [nan, nan, nan, nan, nan]],\n",
|
||
|
"\n",
|
||
|
" [[nan, nan, nan, nan, nan],\n",
|
||
|
" [nan, nan, nan, nan, nan],\n",
|
||
|
" [nan, nan, nan, nan, nan],\n",
|
||
|
" ...,\n",
|
||
|
" [nan, nan, nan, nan, nan],\n",
|
||
|
" [nan, nan, nan, nan, nan],\n",
|
||
|
" [nan, nan, nan, nan, nan]],\n",
|
||
|
"\n",
|
||
|
" [[nan, nan, nan, nan, nan],\n",
|
||
|
" [nan, nan, nan, nan, nan],\n",
|
||
|
" [nan, nan, nan, nan, nan],\n",
|
||
|
" ...,\n",
|
||
|
" [nan, nan, nan, nan, nan],\n",
|
||
|
" [nan, nan, nan, nan, nan],\n",
|
||
|
" [nan, nan, nan, nan, nan]],\n",
|
||
|
"\n",
|
||
|
" ...,\n",
|
||
|
"\n",
|
||
|
" [[nan, nan, nan, nan, nan],\n",
|
||
|
" [nan, nan, nan, nan, nan],\n",
|
||
|
" [nan, nan, nan, nan, nan],\n",
|
||
|
" ...,\n",
|
||
|
" [nan, nan, nan, nan, nan],\n",
|
||
|
" [nan, nan, nan, nan, nan],\n",
|
||
|
" [nan, nan, nan, nan, nan]],\n",
|
||
|
"\n",
|
||
|
" [[nan, nan, nan, nan, nan],\n",
|
||
|
" [nan, nan, nan, nan, nan],\n",
|
||
|
" [nan, nan, nan, nan, nan],\n",
|
||
|
" ...,\n",
|
||
|
" [nan, nan, nan, nan, nan],\n",
|
||
|
" [nan, nan, nan, nan, nan],\n",
|
||
|
" [nan, nan, nan, nan, nan]],\n",
|
||
|
"\n",
|
||
|
" [[nan, nan, nan, nan, nan],\n",
|
||
|
" [nan, nan, nan, nan, nan],\n",
|
||
|
" [nan, nan, nan, nan, nan],\n",
|
||
|
" ...,\n",
|
||
|
" [nan, nan, nan, nan, nan],\n",
|
||
|
" [nan, nan, nan, nan, nan],\n",
|
||
|
" [nan, nan, nan, nan, nan]]], dtype=float32)"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 24,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"np.load(\"../data/SDSS_main_density_SPH_1024.npz\")[\"val\"]"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": []
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"kernelspec": {
|
||
|
"display_name": "venv_csiborg",
|
||
|
"language": "python",
|
||
|
"name": "python3"
|
||
|
},
|
||
|
"language_info": {
|
||
|
"codemirror_mode": {
|
||
|
"name": "ipython",
|
||
|
"version": 3
|
||
|
},
|
||
|
"file_extension": ".py",
|
||
|
"mimetype": "text/x-python",
|
||
|
"name": "python",
|
||
|
"nbconvert_exporter": "python",
|
||
|
"pygments_lexer": "ipython3",
|
||
|
"version": "3.11.4"
|
||
|
}
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 2
|
||
|
}
|