csiborgtools/old/merger.py

687 lines
21 KiB
Python
Raw Normal View History

Add pynbody and other support (#92) * Simplify box units * Move old scripts * Add printing * Update readers * Disable boundscheck * Add new ordering * Clean up imports * Enforce dtype and add mass to quijote * Simplify print statements * Fix little typos * Fix key bug * Bug fixing * Delete boring comments * Improve ultimate clumps for PHEW * Delete boring comments * Add basic reading * Remove 0th index HID * Add flipping of X and Z * Updates to halo catalogues * Add ordered caching * Fix flipping * Add new flags * Fix PHEW empty clumps * Stop over-wrriting * Little improvements to angular neighbours * Add catalogue masking * Change if-else statements * Cache only filtered data * Add PHEW cats * Add comments * Sort imports * Get Quijote workign * Docs * Add HMF calculation * Move to old * Fix angular * Add great circle distance * Update imports * Update impotrts * Update docs * Remove unused import * Fix a quick bug * Update compatibility * Rename files * Renaming * Improve compatiblity * Rename snapsht * Fix snapshot bug * Update interface * Finish updating interface * Update all paths * Add old scripts * Add basic halo * Update imports * Improve snapshot processing * Update ordering * Fix how CM positions accessed * Add merger paths * Add imports * Add merger reading * Add making a merger tree * Add a basic merger tree reader * Add imports * Add main branch walking + comments + debuggin * Get tree running * Add working merger tree walking along main branch * Add units conversion for merger data * Add hid_to_array_index * Update merger tree * Add mergertree mass to PHEWcat * Edit comments * Add this to track changes... * Fix a little bug * Add mergertree mass * Add cache clearing * Improve summing substructure code * Littbe bug * Little updates to the merger tree reader * Update .giignore * Add box selection * Add optional deletingf of a group * add to keep track of changes * Update changes * Remove * Add manual tracker * Fix bug * Add m200c_to_r200c * Add manual halo tracking * Remove skipped snapshots * update cosmo params to match csiborg * remove old comments * Add SDSSxALFALFA * Fix bugs * Rename * Edit paths * Updates * Add comments * Add comment * Add hour conversion * Add imports * Add new observation class * Add selection * Add imports * Fix small bug * Add field copying for safety * Add matching to survey without masking * Add P(k) calculation * Add nb * Edit comment * Move files * Remove merger import * Edit setup.yp * Fix typo * Edit import warnigns * update nb * Update README * Update README * Update README * Add skeleton * Add skeleton
2023-12-07 14:23:32 +00:00
# Copyright (C) 2022 Richard Stiskalek, Harry Desmond
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""
Support for reading the PHEW/ACACIA CSiBORG merger trees. However, note that
the merger trees are very unreliable.
"""
from abc import ABC
from datetime import datetime
from gc import collect
import numpy
from h5py import File
from tqdm import tqdm, trange
from treelib import Tree
from ..utils import periodic_distance
from .paths import Paths
###############################################################################
# Utility functions. #
###############################################################################
def clump_identifier(clump, nsnap):
"""
Generate a unique identifier for a clump at a given snapshot.
Parameters
----------
clump : int
Clump ID.
nsnap : int
Snapshot index.
Returns
-------
str
"""
return f"{str(clump).rjust(9, 'x')}__{str(nsnap).rjust(4, 'x')}"
def extract_identifier(identifier):
"""
Extract the clump ID and snapshot index from a identifier generated by
`clump_identifier`.
Parameters
----------
identifier : str
Identifier.
Returns
-------
clump, nsnap : int
Clump ID and snapshot index.
"""
clump, nsnap = identifier.split('__')
return int(clump.lstrip('x')), int(nsnap.lstrip('x'))
###############################################################################
# Merger tree reader class. #
###############################################################################
class BaseMergerReader(ABC):
"""
Base class for the CSiBORG merger tree reader.
"""
_paths = None
_nsim = None
_min_snap = None
_cache = {}
@property
def paths(self):
"""Paths manager."""
if self._paths is None:
raise ValueError("`paths` is not set.")
return self._paths
@paths.setter
def paths(self, paths):
assert isinstance(paths, Paths)
self._paths = paths
@property
def nsim(self):
"""Simulation index."""
if self._nsim is None:
raise ValueError("`nsim` is not set.")
return self._nsim
@nsim.setter
def nsim(self, nsim):
assert isinstance(nsim, (int, numpy.integer))
self._nsim = nsim
@property
def min_snap(self):
"""Minimum snapshot index to read."""
return self._min_snap
@min_snap.setter
def min_snap(self, min_snap):
if min_snap is not None:
assert isinstance(min_snap, (int, numpy.integer))
self._min_snap = int(min_snap)
def cache_length(self):
"""Length of the cache."""
return len(self._cache)
def cache_clear(self):
"""Clear the cache."""
self._cache = {}
collect()
def __getitem__(self, key):
try:
return self._cache[key]
except KeyError:
fname = self.paths.processed_merger_tree(self.nsim)
nsnap, kind = key.split("__")
with File(fname, "r") as f:
if kind == "clump_to_array":
cl = self[f"{nsnap}__clump"]
x = {}
for i, c in enumerate(cl):
if c in x:
x[c] += (i,)
else:
x[c] = (i,)
else:
x = f[f"{str(nsnap)}/{kind}"][:]
# Cache it
self._cache[key] = x
return x
class MergerReader(BaseMergerReader):
"""
Merger tree reader.
Parameters
----------
nsim : int
Simulation index.
paths : Paths
Paths manager.
min_snap : int
Minimum snapshot index. Trees below this snapshot will not be read.
"""
def __init__(self, nsim, paths, min_snap=None):
self.nsim = nsim
self.paths = paths
self.min_snap = min_snap
def get_info(self, current_clump, current_snap, is_main=None):
"""
Make a list of information about a clump at a given snapshot.
Parameters
----------
current_clump : int
Clump ID.
current_snap : int
Snapshot index.
is_main : bool
Whether this is the main progenitor.
Returns
-------
list
"""
if current_clump < 0:
raise ValueError("Clump ID must be positive.")
if is_main is not None and not isinstance(is_main, bool):
raise ValueError("`is_main` must be a boolean.")
k = self[f"{current_snap}__clump_to_array"][current_clump][0]
out = [self[f"{current_snap}__desc_mass"][k],
*self[f"{current_snap}__desc_pos"][k][::-1]] # TODO REMOVE LATER
if is_main is not None:
return [is_main,] + out
return out
def get_mass(self, clump, snap):
"""
Get the mass of a clump at a given snapshot.
Parameters
----------
clump : int
Clump ID.
snap : int
Snapshot index.
Returns
-------
float
"""
if clump < 0:
raise ValueError("Clump ID must be positive.")
k = self[f"{snap}__clump_to_array"][clump][0]
return self[f"{snap}__desc_mass"][k]
def get_pos(self, clump, snap):
if clump < 0:
raise ValueError("Clump ID must be positive.")
k = self[f"{snap}__clump_to_array"][clump][0]
return self[f"{snap}__desc_pos"][k]
def find_main_progenitor(self, clump, nsnap):
"""
Find the main progenitor of a clump at a given snapshot. Cases are:
- `clump > 0`, `progenitor > 0`: main progenitor is in the adjacent
snapshot,
- `clump > 0`, `progenitor < 0`: main progenitor is not in the
adjacent snapshot.
- `clump < 0`, `progenitor = 0`: no progenitor, newly formed clump.
Parameters
----------
clump : int
Clump ID.
nsnap : int
Snapshot index.
Returns
-------
progenitor : int
Main progenitor clump ID.
progenitor_snap : int
Main progenitor snapshot index.
"""
if not clump > 0:
raise ValueError("Clump ID must be positive.")
cl2array = self[f"{nsnap}__clump_to_array"]
if clump in cl2array:
k = cl2array[clump]
else:
raise ValueError("Clump ID not found.")
if len(k) > 1:
raise ValueError("Found more than one main progenitor.")
k = k[0]
progenitor = abs(self[f"{nsnap}__progenitor"][k])
progenitor_snap = self[f"{nsnap}__progenitor_outputnr"][k]
if (self.min_snap is not None) and (nsnap < self.min_snap):
return 0, numpy.nan
return progenitor, progenitor_snap
def find_minor_progenitors(self, clump, nsnap):
"""
Find the minor progenitors of a clump at a given snapshot. This means
that `clump < 0`, `progenitor > 0`, i.e. this clump also has another
main progenitor.
If there are no minor progenitors, return `None` for both lists.
Parameters
----------
clump : int
Clump ID.
nsnap : int
Snapshot index.
Returns
-------
prog : list
List of minor progenitor clump IDs.
prog_snap : list
List of minor progenitor snapshot indices.
"""
if not clump > 0:
raise ValueError("Clump ID must be positive.")
try:
ks = self[f"{nsnap}__clump_to_array"][-clump]
except KeyError:
return None, None
prog = [self[f"{nsnap}__progenitor"][k] for k in ks]
prog_nsnap = [self[f"{nsnap}__progenitor_outputnr"][k] for k in ks]
if (self.min_snap is not None) and (nsnap < self.min_snap):
return None, None
return prog, prog_nsnap
def find_progenitors(self, clump, nsnap):
"""
Find all progenitors of a clump at a given snapshot. The main
progenitor is the first element of the list.
Parameters
----------
clump : int
Clump ID.
nsnap : int
Snapshot index.
Returns
-------
prog : list
List of progenitor clump IDs.
prog_nsnap : list
List of progenitor snapshot indices.
"""
main_prog, main_prog_nsnap = self.find_main_progenitor(clump, nsnap)
min_prog, min_prog_nsnap = self.find_minor_progenitors(clump, nsnap)
# Check that if the main progenitor is not in the adjacent snapshot,
# then the minor progenitor are also in that snapshot (if any).
if (min_prog is not None) and (main_prog_nsnap != nsnap - 1) and not all(prog_nsnap == mprog for mprog in min_prog_nsnap): # noqa
raise ValueError(f"For clump {clump} at snapshot {nsnap} we have "
f"main progenitor at {main_prog_nsnap} and "
"minor progenitors at {min_prog_nsnap}.")
if min_prog is None:
prog = [main_prog,]
prog_nsnap = [main_prog_nsnap,]
else:
prog = [main_prog,] + min_prog
prog_nsnap = [main_prog_nsnap,] + min_prog_nsnap
if prog[0] == 0 and len(prog) > 1:
raise ValueError("No main progenitor but minor progenitors "
"found for clump {clump} at snapshot {nsnap}.")
return prog, prog_nsnap
def tree_mass_at_snapshot(self, clump, nsnap, target_snap):
"""
Calculate the total mass of nodes in a tree at a given snapshot.
"""
# If clump is 0 (i.e., we've reached the end of the tree), return 0
if clump == 0:
return 0
# Find the progenitors for the given clump and nsnap
prog, prog_nsnap = self.find_progenitors(clump, nsnap)
if prog[0] == 0:
print(prog)
return 0
# Sum the mass of the current clump's progenitors
tot = 0
for p, psnap in zip(prog, prog_nsnap):
if psnap == target_snap:
tot += self.get_mass(p, psnap)
# Recursively sum the mass of each progenitor's progenitors
for p, psnap in zip(prog, prog_nsnap):
# print("P ", p, psnap)
tot += self.mass_all_progenitor2(p, psnap, target_snap)
return tot
def is_jumper(self, clump, nsnap, nsnap_descendant):
pass
def make_tree(self, current_clump, current_nsnap,
above_clump=None, above_nsnap=None,
tree=None, is_main=None, verbose=False):
"""
Make a merger tree for a clump at a given snapshot.
Parameters
----------
current_clump : int
Clump ID of the descendant clump.
current_nsnap : int
Snapshot index of the descendent clump.
above_clump : int, optional
Clump ID of a clump above the current clump in the tree.
above_nsnap : int, optional
Snapshot index of a clump above the current clump in the tree.
tree : treelib.Tree, optional
Tree to add to.
is_main : bool, optional
Whether this is the main progenitor.
verbose : bool, optional
Verbosity flag.
Returns
-------
treelib.Tree
Tree with the current clump as the root.
"""
if verbose:
print(f"{datetime.now()}: Node of a clump {current_clump} at "
f"snapshot {current_nsnap}.", flush=True)
# Terminate if we are at the end of the tree
if current_clump == 0:
return
# Create the root node or add a new node
if tree is None:
tree = Tree()
tree.create_node(
"root",
identifier=clump_identifier(current_clump, current_nsnap),
data=self.get_info(current_clump, current_nsnap, True),
)
else:
tree.create_node(
identifier=clump_identifier(current_clump, current_nsnap),
parent=clump_identifier(above_clump, above_nsnap),
data=self.get_info(current_clump, current_nsnap, is_main),
)
# This returns a list of progenitors and their snapshots. The first
# element is the main progenitor.
prog, prog_nsnap = self.find_progenitors(current_clump, current_nsnap)
for i, (p, psnap) in enumerate(zip(prog, prog_nsnap)):
self.make_tree(p, psnap, current_clump, current_nsnap, tree,
is_main=i == 0, verbose=verbose)
return tree
def walk_main_progenitor(self, main_clump, main_nsnap, verbose=False):
"""
Walk the main progenitor branch of a clump.
Each snapshot contains information about the clump at that snapshot.
Parameters
----------
clump : int
Clump ID.
nsnap : int
Snapshot index.
Returns
-------
structured array
"""
out = []
pbar = tqdm(disable=not verbose)
while True:
prog, prog_nsnap = self.find_progenitors(main_clump, main_nsnap)
# Unpack the main and minor progenitor
mainprog, mainprog_nsnap = prog[0], prog_nsnap[0]
if len(prog) > 1:
minprog, minprog_nsnap = prog[1:], prog_nsnap[1:]
else:
minprog, minprog_nsnap = None, None
# If there is no progenitor, then set the main progenitor mass to 0
if mainprog == 0:
mainprog_mass = numpy.nan
else:
mainprog_mass = self.get_mass(mainprog, mainprog_nsnap)
totprog_mass = mainprog_mass
# Unpack masses of the progenitors
if minprog is not None:
minprog, minprog_nsnap = prog[1:], prog_nsnap[1:]
minprog_masses = [self.get_mass(c, n)
for c, n in zip(minprog, minprog_nsnap)]
max_minprog_mass = max(minprog_masses)
minprog_totmass = sum(minprog_masses)
totprog_mass += minprog_totmass
else:
minprog_totmass = numpy.nan
max_minprog_mass = numpy.nan
out += [
[main_nsnap,]
+ self.get_info(main_clump, main_nsnap)
+ [mainprog_nsnap, totprog_mass, mainprog_mass, minprog_totmass, max_minprog_mass / mainprog_mass] # noqa
]
pbar.update(1)
pbar.set_description(f"Clump {main_clump} ({main_nsnap})")
if mainprog == 0:
pbar.close()
break
main_clump = mainprog
main_nsnap = mainprog_nsnap
# Convert output to a structured array. We store integers as float
# to avoid errors because of converting NaNs to integers.
out = numpy.vstack(out)
dtype = [("desc_snapshot_index", numpy.float32),
("desc_mass", numpy.float32),
("desc_x", numpy.float32),
("desc_y", numpy.float32),
("desc_z", numpy.float32),
("prog_snapshot_index", numpy.float32),
("prog_totmass", numpy.float32),
("mainprog_mass", numpy.float32),
("minprog_totmass", numpy.float32),
("merger_ratio", numpy.float32),
]
return numpy.array([tuple(row) for row in out], dtype=dtype)
def match_mass_to_phewcat(self, phewcat):
"""
For each clump mass in the PHEW catalogue, find the corresponding
clump mass in the merger tree file. If no match is found returns NaN.
These are not equal because the PHEW catalogue mass is the mass without
unbinding.
Parameters
----------
phewcat : csiborgtools.read.CSiBORGPEEWReader
PHEW catalogue reader.
Returns
-------
mass : float
"""
if phewcat.nsim != self.nsim:
raise ValueError("Simulation indices do not match.")
nsnap = phewcat.nsnap
indxs = phewcat["index"]
mergertree_mass = numpy.full(len(indxs), numpy.nan,
dtype=numpy.float32)
for i, ind in enumerate(indxs):
try:
mergertree_mass[i] = self.get_mass(ind, nsnap)
except KeyError:
continue
return mergertree_mass
def match_pos_to_phewcat(self, phewcat):
"""
For each clump mass in the PHEW catalogue, find the corresponding
clump mass in the merger tree file. If no match is found returns NaN.
These are not equal because the PHEW catalogue mass is the mass without
unbinding.
Parameters
----------
phewcat : csiborgtools.read.CSiBORGPEEWReader
PHEW catalogue reader.
Returns
-------
mass : float
"""
if phewcat.nsim != self.nsim:
raise ValueError("Simulation indices do not match.")
nsnap = phewcat.nsnap
indxs = phewcat["index"]
mergertree_pos = numpy.full((len(indxs), 3), numpy.nan,
dtype=numpy.float32)
for i, ind in enumerate(indxs):
try:
mergertree_pos[i] = self.get_pos(ind, nsnap)
except KeyError:
continue
return mergertree_pos[:, ::-1] # TODO later remove
###############################################################################
# Manual halo tracking. #
###############################################################################
def track_halo_manually(cats, hid, maxdist=0.15, max_dlogm=0.35):
"""
Manually track a halo without using the merger tree. Searches for nearby
halo of similar mass in adjacent snapshots. Supports only main haloes and
can only work for the most massive haloes in a simulation, however even
then significant care should be taken.
Selects the most massive halo within a search radius to be a match.
In case a progenitor is not found in the adjacent snapshot, the search
continues in the next snapshot. Occasionally some haloes disappear..
Parameters
----------
cats : dict
Dictionary of halo catalogues, keys are snapshot indices.
hid : int
Halo ID.
maxdist : float, optional
Maximum comoving distance for a halo to move between adjacent
snapshots.
max_dlogm : float, optional
Maximum |log mass ratio| for a halo to be considered a progenitor.
Returns
-------
hist : structured array
History of the halo.
"""
nsnap0 = max(cats.keys())
k = cats[nsnap0]["hid_to_array_index"][hid]
pos = cats[nsnap0]["cartesian_pos"][k]
mass = cats[nsnap0]["summed_mass"][k]
if not cats[nsnap0]["is_main"][k]:
raise ValueError("Only main haloes are supported.")
if not mass > 1e13:
raise ValueError("Only the most massive haloes are supported.")
if not cats[nsnap0]["dist"][k] < 155.5:
raise ValueError("Only high-resolution region haloes are supported.")
dtype = [("snapshot_index", numpy.float32),
("x", numpy.float32),
("y", numpy.float32),
("z", numpy.float32),
("mass", numpy.float32),
("desc_dist", numpy.float32),
]
hist = numpy.full(len(cats), numpy.nan, dtype=dtype)
hist["snapshot_index"][0] = nsnap0
hist["x"][0], hist["y"][0], hist["z"][0] = pos
hist["mass"][0] = mass
for n in trange(1, len(cats), desc="Tracking halo"):
nsnap = nsnap0 - n
hist["snapshot_index"][n] = nsnap
# Find indices of all main haloes that are within a box of width
indxs = cats[nsnap].select_in_box(pos, 2 * maxdist)
if len(indxs) == 0:
continue
nearby_pos = cats[nsnap]["cartesian_pos"][indxs]
nearby_mass = cats[nsnap]["summed_mass"][indxs]
# Distance from the previous position and |log mass ratio|
dist = periodic_distance(nearby_pos, pos, cats[nsnap].box.boxsize)
dlogm = numpy.abs(numpy.log10(nearby_mass / mass))
k = numpy.argmin(dlogm)
if (dlogm[k] < max_dlogm) & (dist[k] < maxdist):
hist["x"][n], hist["y"][n], hist["z"][n] = nearby_pos[k]
hist["mass"][n] = nearby_mass[k]
hist["desc_dist"][n] = dist[k]
pos = nearby_pos[k]
mass = nearby_mass[k]
return hist