csiborgtools/notebooks/flow/reconstruction_comparison.py

270 lines
9.3 KiB
Python
Raw Normal View History

# Copyright (C) 2024 Richard Stiskalek
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""Script to help with plots in `flow_calibration.ipynb`."""
from copy import copy
from os.path import join
import numpy as np
from jax import numpy as jnp
from getdist import MCSamples
from h5py import File
import csiborgtools
###############################################################################
# Convert between coordinate systems #
###############################################################################
def cartesian_to_radec(x, y, z):
d = (x**2 + y**2 + z**2)**0.5
dec = np.arcsin(z / d)
ra = np.arctan2(y, x)
ra[ra < 0] += 2 * np.pi
ra *= 180 / np.pi
dec *= 180 / np.pi
return d, ra, dec
###############################################################################
# Get the filename of the samples #
###############################################################################
def get_fname(simname, catalogue, ksmooth=0, nsim=None, sample_beta=True):
"""Get the filename of the HDF5 file containing the posterior samples."""
FDIR = "/mnt/extraspace/rstiskalek/csiborg_postprocessing/peculiar_velocity/" # noqa
fname = join(FDIR, f"samples_{simname}_{catalogue}_ksmooth{ksmooth}.hdf5")
if nsim is not None:
fname = fname.replace(".hdf5", f"_nsim{nsim}.hdf5")
if sample_beta:
fname = fname.replace(".hdf5", "_sample_beta.hdf5")
return fname
###############################################################################
# Convert names to LaTeX #
###############################################################################
def names_to_latex(names, for_corner=False):
"""Convert the names of the parameters to LaTeX."""
ltx = {"alpha": "\\alpha",
"beta": "\\beta",
"Vmag": "V_{\\rm ext}",
"sigma_v": "\\sigma_v",
"alpha_cal": "\\mathcal{A}",
"beta_cal": "\\mathcal{B}",
"mag_cal": "\\mathcal{M}",
"e_mu": "\\sigma_\\mu",
"aTF": "a_{\\rm TF}",
"bTF": "b_{\\rm TF}",
}
ltx_corner = {"alpha": r"$\alpha$",
"beta": r"$\beta$",
"Vmag": r"$V_{\rm ext}$",
"l": r"$\ell_{V_{\rm ext}}$",
"b": r"$b_{V_{\rm ext}}$",
"sigma_v": r"$\sigma_v$",
"alpha_cal": r"$\mathcal{A}$",
"beta_cal": r"$\mathcal{B}$",
"mag_cal": r"$\mathcal{M}$",
"e_mu": r"$\sigma_\mu$",
"aTF": r"$a_{\rm TF}$",
"bTF": r"$b_{\rm TF}$",
}
labels = copy(names)
for i, label in enumerate(names):
if for_corner:
labels[i] = ltx_corner[label] if label in ltx_corner else label
else:
labels[i] = ltx[label] if label in ltx else label
return labels
def simname_to_pretty(simname):
ltx = {"Carrick2015": "Carrick+15",
"Lilow2024": "Lilow+24",
"csiborg1": "CB1",
"csiborg2_main": "CB2",
"csiborg2X": "Manticore",
"CF4": "CF4",
"CF4gp": "CF4group",
}
if isinstance(simname, list):
return [ltx[s] if s in ltx else s for s in simname]
return ltx[simname] if simname in ltx else simname
###############################################################################
# Read in goodness-of-fit #
###############################################################################
def get_gof(kind, simname, catalogue, ksmooth=0, nsim=None, sample_beta=True):
"""Read in the goodness-of-fit statistics `kind`."""
if kind not in ["BIC", "AIC", "lnZ"]:
raise ValueError("`kind` must be one of 'BIC', 'AIC', 'lnZ'")
fname = get_fname(simname, catalogue, ksmooth, nsim, sample_beta)
with File(fname, 'r') as f:
return f[f"gof/{kind}"][()]
###############################################################################
# Read in samples #
###############################################################################
def get_samples(simname, catalogue, ksmooth=0, nsim=None, sample_beta=True,
convert_Vext_to_galactic=True):
"""Read in the samples from the HDF5 file."""
fname = get_fname(simname, catalogue, ksmooth, nsim, sample_beta)
samples = {}
with File(fname, 'r') as f:
grp = f["samples"]
for key in grp.keys():
samples[key] = grp[key][...]
# Rename TF parameters
if "a" in samples:
samples["aTF"] = samples.pop("a")
if "b" in samples:
samples["bTF"] = samples.pop("b")
if convert_Vext_to_galactic:
Vext = samples.pop("Vext")
samples["Vmag"] = np.linalg.norm(Vext, axis=1)
Vext = csiborgtools.cartesian_to_radec(Vext)
samples["l"], samples["b"] = csiborgtools.radec_to_galactic(
Vext[:, 1], Vext[:, 2])
return samples
###############################################################################
2024-07-03 08:50:02 +00:00
# Bulk flow plotting #
###############################################################################
2024-07-03 08:50:02 +00:00
def get_bulkflow_simulation(simname, convert_to_galactic=True):
f = np.load(f"/mnt/extraspace/rstiskalek/csiborg_postprocessing/field_shells/enclosed_mass_{simname}.npz") # noqa
r, B = f["distances"], f["cumulative_velocity"]
if convert_to_galactic:
Bmag, Bl, Bb = cartesian_to_radec(B[..., 0], B[..., 1], B[..., 2])
Bl, Bb = csiborgtools.radec_to_galactic(Bl, Bb)
B = np.stack([Bmag, Bl, Bb], axis=-1)
return r, B
2024-07-03 08:50:02 +00:00
def get_bulkflow(simname, catalogue, ksmooth=0, nsim=None, sample_beta=True,
convert_to_galactic=True, weight_simulations=True,
2024-07-03 08:50:33 +00:00
downsample=1, Rmax=125):
# Read in the bulk flow
f = np.load(f"/mnt/extraspace/rstiskalek/csiborg_postprocessing/field_shells/enclosed_mass_{simname}.npz") # noqa
2024-07-03 08:50:02 +00:00
r = f["distances"]
# Shape of B_i is (nsims, nradial)
Bx, By, Bz = (f["cumulative_velocity"][..., i] for i in range(3))
# Mask out the unconstrained large scales
2024-07-03 08:50:33 +00:00
Rmax = Rmax # Mpc/h
mask = r < Rmax
r = r[mask]
2024-07-03 08:50:02 +00:00
Bx = Bx[:, mask]
By = By[:, mask]
Bz = Bz[:, mask]
2024-07-03 08:50:02 +00:00
# Read in the samples
fname_samples = get_fname(simname, catalogue, ksmooth, nsim, sample_beta)
with File(fname_samples, 'r') as f:
# Shape of Vext_i is (nsamples,)
Vext_x, Vext_y, Vext_z = (f["samples/Vext"][...][::downsample, i] for i in range(3)) # noqa
nsamples = len(Vext_x)
if weight_simulations:
simulation_weights = jnp.exp(f["simulation_weights"][...])[::downsample] # noqa
else:
nsims = len(Bx)
simulation_weights = jnp.ones((nsamples, nsims)) / nsims
if sample_beta:
beta = f["samples/beta"][...][::downsample]
else:
beta = jnp.ones(nsamples)
# Multiply the simulation velocities by beta
Bx = Bx[..., None] * beta
By = By[..., None] * beta
Bz = Bz[..., None] * beta
# Shape of B_i is (nsims, nradial, nsamples)
Bx = Bx + Vext_x
By = By + Vext_y
Bz = Bz + Vext_z
simulation_weights = simulation_weights.T[:, None, :]
Bx = jnp.sum(Bx * simulation_weights, axis=0)
By = jnp.sum(By * simulation_weights, axis=0)
Bz = jnp.sum(Bz * simulation_weights, axis=0)
if convert_to_galactic:
2024-07-03 08:50:02 +00:00
Bmag, Bl, Bb = cartesian_to_radec(Bx, By, Bz)
Bl, Bb = csiborgtools.radec_to_galactic(Bl, Bb)
2024-07-03 08:50:02 +00:00
B = np.stack([Bmag, Bl, Bb], axis=-1)
else:
B = np.stack([Bx, By, Bz], axis=-1)
return r, B
###############################################################################
# Prepare samples for plotting #
###############################################################################
def samples_for_corner(samples):
if any(x.ndim > 1 for x in samples.values()):
raise ValueError("All samples must be 1D arrays.")
data = np.vstack([x for x in samples.values()]).T
labels = names_to_latex(list(samples.keys()), for_corner=True)
return data, labels
def samples_to_getdist(samples, simname, catalogue=None):
data, __ = samples_for_corner(samples)
names = list(samples.keys())
if catalogue is None:
label = simname_to_pretty(simname)
else:
label = catalogue
return MCSamples(
samples=data, names=names,
labels=names_to_latex(names, for_corner=False),
label=label)