csiborgtools/notebooks/flow/flow_bulk.py

66 lines
2.1 KiB
Python
Raw Normal View History

# Copyright (C) 2024 Richard Stiskalek
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""Script to help with plots in `flow_calibration.ipynb`."""
from os.path import exists, join
import csiborgtools
import numpy as np
from astropy import units as u
from astropy.cosmology import FlatLambdaCDM
FDIR = "/mnt/extraspace/rstiskalek/csiborg_postprocessing/field_shells"
def read_enclosed_density(simname):
fname = join(FDIR, f"enclosed_mass_{simname}.npz")
if exists(fname):
data = np.load(fname)
else:
raise FileNotFoundError(f"File `{fname}` not found.")
Om0 = csiborgtools.simname2Omega_m(simname)
cosmo = FlatLambdaCDM(H0=100, Om0=Om0)
rho_matter = Om0 * cosmo.critical_density(0).to(u.M_sun / u.Mpc**3).value
r = data["distances"]
volume = 4 * np.pi / 3 * r**3
overdensity = data["enclosed_mass"] / volume / rho_matter - 1
return r, overdensity
def read_enclosed_flow(simname):
fname = join(FDIR, f"enclosed_mass_{simname}.npz")
if exists(fname):
data = np.load(fname)
else:
raise FileNotFoundError(f"File {fname} not found.")
r = data["distances"]
V = data["cumulative_velocity"]
nsim, nbin = V.shape[:2]
Vmag = np.linalg.norm(V, axis=-1)
l = np.empty((nsim, nbin), dtype=V.dtype) # noqa
b = np.empty_like(l)
for n in range(nsim):
V_n = csiborgtools.cartesian_to_radec(V[n])
l[n], b[n] = csiborgtools.radec_to_galactic(V_n[:, 1], V_n[:, 2])
return r, Vmag, l, b