csiborgtools/notebooks/flow/process_upglade.ipynb

316 lines
8.7 KiB
Text
Raw Normal View History

{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Copyright (C) 2024 Richard Stiskalek\n",
"# This program is free software; you can redistribute it and/or modify it\n",
"# under the terms of the GNU General Public License as published by the\n",
"# Free Software Foundation; either version 3 of the License, or (at your\n",
"# option) any later version.\n",
"#\n",
"# This program is distributed in the hope that it will be useful, but\n",
"# WITHOUT ANY WARRANTY; without even the implied warranty of\n",
"# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General\n",
"# Public License for more details.\n",
"#\n",
"# You should have received a copy of the GNU General Public License along\n",
"# with this program; if not, write to the Free Software Foundation, Inc.,\n",
"# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"from h5py import File\n",
"import csiborgtools\n",
"\n",
"SPEED_OF_LIGHT = 299792.458 # km / s\n",
"\n",
"\n",
"%load_ext autoreload\n",
"%autoreload 2\n",
"%matplotlib inline\n",
"\n",
"paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Read in upGLADE\n",
"\n",
"- Mask out galaxies with bad redshifts\n",
"- Convert heliocentric redshifts to the CMB frame."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fname = \"/mnt/users/rstiskalek/csiborgtools/data/upglade_all_z0p05_new.h5\"\n",
"data = {}\n",
"with File(fname, \"r\") as f:\n",
" for i, key in enumerate([\"RA\", \"dec\", \"zhelio\", \"e_zhelio\"]):\n",
" data[key] = f[\"data\"][\"block0_values\"][:, i]\n",
"data[\"DEC\"] = data.pop(\"dec\")\n",
"\n",
"print(f\"Initially, we have {data['zhelio'].size} objects.\")\n",
"\n",
"# Ask about this\n",
"mask = (data[\"e_zhelio\"] < 0) | (data[\"zhelio\"] < 0)\n",
"print(f\"Masking {mask.sum()} objects that have `e_zhelio` < 0 or `zhelio` < 0.\")\n",
"for key in data.keys():\n",
" data[key][mask] = np.nan\n",
"\n",
"mask = (data[\"e_zhelio\"] / data[\"zhelio\"] > 0.15)\n",
"print(f\"Masking {mask.sum()} objects that have `e_zhelio` / `zhelio` > 0.15.\")\n",
"for key in data.keys():\n",
" data[key][mask] = np.nan\n",
"\n",
"print(f\"Finally, we have {np.sum(np.isfinite(data['zhelio']))} objects.\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.figure()\n",
"plt.scatter(data[\"zhelio\"], data[\"e_zhelio\"], s=0.1)\n",
"\n",
"plt.yscale(\"log\")\n",
"plt.xscale(\"log\")\n",
"plt.xlabel(r\"$z_{\\rm helio}$\")\n",
"plt.ylabel(r\"$\\sigma_{z_{\\rm helio}}$\")\n",
"\n",
"plt.tight_layout()\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"zcmb, e_zcmb = csiborgtools.heliocentric_to_cmb(data[\"zhelio\"], data[\"RA\"], data[\"DEC\"], data[\"e_zhelio\"])\n",
"data[\"zcmb\"] = zcmb\n",
"data[\"e_zcmb\"] = e_zcmb\n",
"\n",
"\n",
"mask = (data[\"zcmb\"] > 0.06) #& ~np.isnan(data[\"zhelio\"])\n",
"print(f\"Masking {mask.sum()} objects that have `zcmb` > 0.06.\")\n",
"for key in data.keys():\n",
" data[key][mask] = np.nan\n",
"\n",
"print(f\"Finally, we have {np.sum(np.isfinite(data['zhelio']))} objects.\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.figure()\n",
"\n",
"plt.scatter(data[\"zcmb\"], data[\"e_zcmb\"], s=0.001)\n",
"plt.xlabel(r\"$z_{\\rm CMB}$\")\n",
"plt.ylabel(r\"$\\sigma_{z_{\\rm CMB}}$\")\n",
"\n",
"plt.xlim(0, 0.05)\n",
"plt.ylim(0, 0.008)\n",
"\n",
"plt.tight_layout()\n",
"plt.savefig(\"../../plots/UPGLADE_zcmb_vs_ezcmb.png\")\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"- Write only masked galaxies to this file, but also save the mask."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fname_here = fname.replace(\".h5\", \"_PROCESSED.h5\")\n",
"mask = np.isfinite(data[\"RA\"])\n",
"print(f\"Writing {mask.sum()} objects to `{fname_here}`.\")\n",
"\n",
"with File(fname_here, \"w\") as f:\n",
" for key in data.keys():\n",
" f[key] = data[key][mask]\n",
"\n",
" f[\"mask\"] = mask"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"- Having generated this file, next step is to run `field_los.py` to evaluate the density and velocity field along the LOS of each object that is not masked.\n",
"- Then, the next step is to run `post_upglade.py` to calculate the cosmological redshift of each object in UPGLADE.\n",
" - Based on Carrick2015 samples calibrated against Pantheon+"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Results verification"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fname = \"/mnt/extraspace/rstiskalek/csiborg_postprocessing/peculiar_velocity/UPGLADE/zcosmo_UPGLADE.hdf5\"\n",
"\n",
"with File(fname, \"r\") as f:\n",
" indxs = f[\"indxs\"][:]\n",
" mean_zcosmo = f[\"mean_zcosmo\"][:]\n",
" std_zcosmo = f[\"std_zcosmo\"][:]\n",
"\n",
"\n",
"plt.figure()\n",
"plt.scatter(mean_zcosmo, std_zcosmo, s=0.001)\n",
"\n",
"plt.xlabel(r\"$z_{\\rm cosmo}$\")\n",
"plt.ylabel(r\"$\\sigma_{z_{\\rm cosmo}}$\")\n",
"\n",
"plt.xlim(0, 0.05)\n",
"plt.ylim(0, 0.006)\n",
"plt.tight_layout()\n",
"plt.savefig(\"../../plots/UPGLADE_zcosmo_vs_ezcosmo.png\")\n",
"\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Combine datasets\n",
"i.e. match to the original UPGLADE file"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data[\"zcosmo\"] = np.zeros_like(data[\"RA\"])\n",
"data[\"zcosmo\"][mask] = mean_zcosmo\n",
"\n",
"data[\"e_zcosmo\"] = np.zeros_like(data[\"RA\"])\n",
"data[\"e_zcosmo\"][mask] = std_zcosmo"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.figure()\n",
"plt.scatter(data[\"zcmb\"], data[\"zcosmo\"], s=0.01)\n",
"plt.axline([0, 0], slope=1, color=\"red\", ls=\"--\")\n",
"\n",
"plt.xlabel(r\"$z_{\\rm CMB}$\")\n",
"plt.ylabel(r\"$z_{\\rm cosmo}$\")\n",
"plt.xlim(0)\n",
"plt.ylim(0)\n",
"\n",
"plt.tight_layout()\n",
"plt.savefig(\"../../plots/UPGLADE_zcmb_vs_zcosmo.png\")\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.figure()\n",
"plt.scatter(data[\"zcmb\"], (data[\"zcosmo\"] - data[\"zcmb\"]) * SPEED_OF_LIGHT, s=0.001)\n",
"\n",
"plt.xlabel(r\"$z_{\\rm CMB}$\")\n",
"plt.ylabel(r\"$c (z_{\\rm cosmo} - z_{\\rm CMB}) ~ [\\mathrm{km} / \\mathrm{s}]$\")\n",
"plt.xlim(0)\n",
"plt.ylim(-1000, 1000)\n",
"\n",
"plt.tight_layout()\n",
"plt.savefig(\"../../plots/UPGLADE_zcmb_vs_dzcosmo.png\")\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Save the data\n",
"- In a format matching what Gergely shared."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fname = \"/mnt/users/rstiskalek/csiborgtools/data/upglade_z_0p05_all_WZCOSMO.h5\"\n",
"print(f\"Writing to `{fname}`.\")\n",
"\n",
"with File(fname, \"w\") as f:\n",
" for key in data.keys():\n",
" f.create_dataset(key, data=data[key])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "venv_csiborg",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}