csiborgtools/scripts/mass_enclosed_8600.ipynb

438 lines
724 KiB
Text
Raw Normal View History

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"# Copyright (C) 2024 Richard Stiskalek\n",
"# This program is free software; you can redistribute it and/or modify it\n",
"# under the terms of the GNU General Public License as published by the\n",
"# Free Software Foundation; either version 3 of the License, or (at your\n",
"# option) any later version.\n",
"#\n",
"# This program is distributed in the hope that it will be useful, but\n",
"# WITHOUT ANY WARRANTY; without even the implied warranty of\n",
"# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General\n",
"# Public License for more details.\n",
"#\n",
"# You should have received a copy of the GNU General Public License along\n",
"# with this program; if not, write to the Free Software Foundation, Inc.,\n",
"# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.\n",
"from gc import collect\n",
"\n",
"import numpy\n",
"import matplotlib.pyplot as plt\n",
"from h5py import File\n",
"from astropy.cosmology import FlatLambdaCDM\n",
"import csiborgtools\n",
"\n",
"%matplotlib inline\n",
"%load_ext autoreload\n",
"%autoreload 2"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"def get_particles_gadget(kind, fpath):\n",
" with File(fpath, \"r\") as f:\n",
" if kind == \"Masses\":\n",
" npart = f[\"Header\"].attrs[\"NumPart_Total\"][1]\n",
" x_high = numpy.ones(npart, dtype=numpy.float32)\n",
" x_high *= f[\"Header\"].attrs[\"MassTable\"][1]\n",
" else:\n",
" x_high = f[f\"PartType1/{kind}\"][...]\n",
"\n",
" x_low = f[f\"PartType5/{kind}\"][...]\n",
"\n",
" return x_high, x_low"
]
},
{
"cell_type": "code",
"execution_count": 174,
"metadata": {},
"outputs": [],
"source": [
"option = \"csiborg2\"\n",
"chain_index = 16017\n",
"distances = numpy.linspace(0, 155, 101)[1:]\n",
"\n",
"if option == \"csiborg1\":\n",
" if chain_index != 8600:\n",
" raise ValueError(f\"Invalid chain index: `{chain_index}`.\")\n",
"\n",
" fpath_csiborg = \"/mnt/extraspace/rstiskalek/csiborg1/gadget4/chain_8600/output/snapshot_099.hdf5\"\n",
" fpath_borg = f\"/mnt/users/hdesmond/BORG_final/mcmc_{chain_index}.h5\"\n",
" Om0 = 0.307\n",
" boxsize = 677.7\n",
" H0 = 70.5\n",
"elif option == \"csiborg2\":\n",
" fpath_csiborg = f\"/mnt/extraspace/rstiskalek/csiborg2_main/chain_{chain_index}/output/snapshot_099_full.hdf5\"\n",
" fpath_borg = f\"/mnt/extraspace/rstiskalek/BORG_STOPYRA_2023/mcmc_{chain_index}.h5\"\n",
" Om0 = 0.3111\n",
" H0 = 67.66\n",
" boxsize = 676.6\n",
"else:\n",
" raise ValueError(f\"Invalid option: `{option}`.\")\n",
"\n",
"\n",
"rho_matter_borg = Om0 * FlatLambdaCDM(H0=H0, Om0=Om0).critical_density(0).to(\"Msun/Mpc^3\").value\n",
"rho_matter = Om0 * FlatLambdaCDM(H0=100, Om0=Om0).critical_density(0).to(\"Msun/Mpc^3\").value"
]
},
{
"cell_type": "code",
"execution_count": 175,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Getting positions\n",
"Getting masses\n",
"Concatenating the high- and low-resolution particles.\n",
"Calculating the radial distances.\n",
"Sorting particles\n"
]
}
],
"source": [
"print(\"Getting positions\")\n",
"pos_high, pos_low = get_particles_gadget(\"Coordinates\", fpath_csiborg)\n",
"print(\"Getting masses\")\n",
"mass_high, mass_low = get_particles_gadget(\"Masses\", fpath_csiborg)\n",
"\n",
"print(\"Concatenating the high- and low-resolution particles.\")\n",
"pos = numpy.concatenate([pos_high, pos_low])\n",
"mass = numpy.concatenate([mass_high, mass_low]) * 1e10\n",
"\n",
"del pos_high, pos_low, mass_high, mass_low\n",
"collect()\n",
"\n",
"print(\"Calculating the radial distances.\")\n",
"pos -= boxsize / 2\n",
"rdist = numpy.linalg.norm(pos, axis=1)\n",
"\n",
"del pos\n",
"collect()\n",
"\n",
"print(\"Sorting particles\")\n",
"indxs = numpy.argsort(rdist)\n",
"rdist = rdist[indxs]\n",
"mass = mass[indxs]"
]
},
{
"cell_type": "code",
"execution_count": 193,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Calculating the enclosed mass in BORG.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/tmp/ipykernel_2000/2304497414.py:20: RuntimeWarning: invalid value encountered in divide\n",
" borg_density = borg_mass / borg_volume\n"
]
}
],
"source": [
"# print(\"Calculating the enclosed mass in CSiBORG.\")\n",
"# csiborg_mass = csiborgtools.field.particles_enclosed_mass(rdist, mass, distances)\n",
"# volume = 4 / 3 * numpy.pi * distances**3\n",
"# csiborg_overdensity = csiborg_mass / volume / rho_matter - 1\n",
"\n",
"\n",
"print(\"Calculating the enclosed mass in BORG.\")\n",
"with File(fpath_borg) as f:\n",
" borg_density = f[\"scalars/BORG_final_density\"][...].T\n",
" borg_density += 1\n",
" borg_density *= rho_matter_borg\n",
"\n",
"h = H0 / 100\n",
"\n",
"# Now BORG_density is the density in each cell in units of borg H0.\n",
"borg_mass, borg_volume = csiborgtools.field.field_enclosed_mass(\n",
" borg_density, distances, boxsize)\n",
"\n",
"# Now we need to conver the mass to units of h = 1\n",
"borg_density = borg_mass / borg_volume\n",
"borg_overdensity = borg_density / rho_matter_borg - 1"
]
},
{
"cell_type": "code",
"execution_count": 195,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHWCAYAAAARl3+JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB1iElEQVR4nO3dd3hUVeLG8e+dmWTSSEISSAgkhBJKlN6MFQWlrAXbCj+UoqsriqKgq7grig3sFcWK7q59FUVWUKTYaEqRFqqhhTQISUgvc39/TBjIksQEkkxmeD/PM0+YO+feOWeA4eWce84xTNM0ERERERGPZnF3BURERETk1CnUiYiIiHgBhToRERERL6BQJyIiIuIFFOpEREREvIBCnYiIiIgXUKgTERER8QIKdSIiIiJeQKFORERExAso1ImIiIh4AY8OdbNmzSIuLg4/Pz8GDBjA6tWrqy375ptvct5559G8eXOaN2/O4MGDTyhvmibTpk2jVatW+Pv7M3jwYHbs2NHQzRARERE5ZR4b6j7++GMmT57MQw89xNq1a+nRowdDhgwhIyOjyvLLli1j1KhRLF26lBUrVhATE8Mll1xCSkqKq8xTTz3FSy+9xOzZs1m1ahWBgYEMGTKEoqKixmqWiIiIyEkxTNM03V2JkzFgwAD69evHK6+8AoDD4SAmJoY77riD+++//w/PLy8vp3nz5rzyyiuMGTMG0zSJjo5mypQp3HPPPQDk5OQQGRnJu+++y8iRIxu0PSIiIiKnwubuCpyMkpIS1qxZw9SpU13HLBYLgwcPZsWKFbW6RkFBAaWlpYSFhQGQnJxMWloagwcPdpUJCQlhwIABrFixospQV1xcTHFxseu5w+EgKyuL8PBwDMM42eaJiIjIaco0TY4cOUJ0dDQWS90GVD0y1B08eJDy8nIiIyMrHY+MjGTr1q21usZ9991HdHS0K8SlpaW5rvG/1zz62v+aMWMG06dPr2v1RURERGq0b98+2rRpU6dzPDLUnaqZM2fy0UcfsWzZMvz8/E76OlOnTmXy5Mmu5zk5OcTGxrJv3z6Cg4Pro6qV/LTzILf+aw2do5rx2YSz6/36nuzrp8cxvOw79ifcQpsrprm7OiIiIiclNzeXmJgYmjVrVudzPTLURUREYLVaSU9Pr3Q8PT2dqKioGs995plnmDlzJt999x3du3d3HT96Xnp6Oq1atap0zZ49e1Z5Lbvdjt1uP+F4cHBwg4S6gMAiLPYAfP0DG+T6nswMjSH4iEFQSYY+GxER8XgncxuXR85+9fX1pU+fPixevNh1zOFwsHjxYhITE6s976mnnuLRRx9l4cKF9O3bt9Jr7dq1IyoqqtI1c3NzWbVqVY3XbExHZ7Todr0TFQe2BsCWl/IHJUVERLyTR/bUAUyePJmxY8fSt29f+vfvzwsvvEB+fj7jx48HYMyYMbRu3ZoZM2YA8OSTTzJt2jQ++OAD4uLiXPfJBQUFERQUhGEY3HXXXTz22GPEx8fTrl07HnzwQaKjoxkxYoS7mllZRaozUKr7X47gNpAGAQUH3F0VERERt/DYUHfdddeRmZnJtGnTSEtLo2fPnixcuNA10WHv3r2VZo289tprlJSUcM0111S6zkMPPcTDDz8MwN/+9jfy8/O55ZZbyM7O5txzz2XhwoWndN9dQ1BP3YmszWMBCCrJAEc5WKxurpGIiEjj8th16pqi3NxcQkJCyMnJaZD7upZsTefGd3+le5sQ5k08t96v78k+XZXMlV/3xmY4YHISBEe7u0oiIg3K4XBQUlLi7mpIHfn4+GC1Vt/xcCpZwmN76k5Hpmv4Vf5XeEgAaYTRhoOQs1+hTkS8WklJCcnJyTgcDndXRU5CaGgoUVFR9b6mrUKdBzE1U6JaEUF2UswI2hgHIXsvxPR3d5VERBqEaZqkpqZitVqJiYmp8wK14j6maVJQUODa0vT41Tbqg0KdB3FlOrfWomlq0czOCjMCAEf2fs+c1i0iUgtlZWUUFBQQHR1NQECAu6sjdeTv7w9ARkYGLVu2rHEotq70b58HUkfdicID7RwwwwEoydrj5tqIiDSc8vJywLm8l3imo2G8tLS0Xq+rUOdBNKeler42C1k258znsqy9bq6NiEjD0x7jnquhfu8U6jyIhl9rVhjgvDfByNnv5pqIiIg0PoU6D+Ka/ar/nVXp6K4SvtpVQkTEay1btgzDMMjOznZ3VZochTqP4kx1inTVCGkDgE/ZESjKcXNlRESkKmlpadxxxx20b98eu91OTEwMl112mWubzt9++43LL7+cli1b4ufnR1xcHNddd51rxujZZ59NamoqISEhwLGQd/Th7+/PGWecwRtvvHHCey9fvpzhw4fTvHlz/Pz86NatG88995zrPsWjjr9ecHAw/fr148svvzzheiUlJTz99NP07t2bwMBAQkJC6NGjB//4xz84cKDxdzhSqPMgx3rq3FuPpiokJJQsM8j5REOwIiJNzu7du+nTpw9Llizh6aefZuPGjSxcuJALL7yQ22+/nczMTAYNGkRYWBjffPMNSUlJzJkzh+joaPLz8wHnBJGq1njbtm0bqampbNmyhb/+9a9MmDCh0n7uc+fO5YILLqBNmzYsXbqUrVu3MmnSJB577DFGjhx5wn3rc+bMITU1lV9//ZVzzjmHa665ho0bN7peLy4u5uKLL+aJJ55g3Lhx/PDDD2zcuJGXXnqJgwcP8vLLLzfgJ1kNU+pNTk6OCZg5OTkNcv2vNxww294337z2teUNcn1P98qSHebGB7ub5kPBprl1gburIyLSIAoLC80tW7aYhYWF7q5KnQ0bNsxs3bq1mZeXd8Jrhw8fNufOnWvabDaztLS02mssXbrUBMzDhw9X+fyoDh06mE899ZRpmqaZl5dnhoeHm1ddddUJ15s3b54JmB999JHrGGDOnTvX9Tw3N9cEzBdffNF1bMaMGabFYjHXrl1bZT0dDke1bajp9/BUsoR66jyI5r7WrEWQnf1mC+eTnH3urYyISCMxTZOCkjK3PMw6rMqQlZXFwoULuf322wkMDDzh9aO7LJSVlTF37tyTXvHBNE0WLlzI3r17GTBgAADffvsthw4d4p577jmh/GWXXUanTp348MMPq7xeWVkZb7/9NlB5GZkPP/yQiy++mF69elV5njvuf9fiwx7E1PTXGrVoZmdXxQLEZGutOhE5PRSWlpMw7Ru3vPeWR4YQ4Fu7KLFz505M06RLly7VljnrrLN44IEH+L//+z9uvfVW+vfvz0UXXcSYMWOIjIys8fpt2jjvqy4uLsbhcPDII49w/vnnA7B9+3YAunbtWuW5Xbp0cZU5atSoUVitVgoLC3E4HMTFxfHnP//Z9fr27dsZOHBgpXOuvPJKFi1aBED37t1Zvnx5jXWub+qp8yCmJkrUKOL4nrrDCnUiIk1JbXveHn/8cdLS0pg9ezZnnHEGs2fPpkuXLpXuZ6vKjz/+yPr161m/fj1vvfUWTzzxBK+99tpJ1QHg+eefZ/369SxYsICEhATeeustwsLCajzn1VdfZf369dx4440UFBTU+r3qi3rqPIgmStQsopmvK9SZ2XsVfkXktODvY2XLI0Pc9t61FR8fj2EYbN269Q/LhoeHc+2113LttdfyxBNP0KtXL5555hnee++9as9p164doaGhAJxxxhmsWrWKxx9/nAkTJtCpUycAkpKSOPvss084NykpiYSEhErHoqKi6NixIx07dmTOnDkMHz6cLVu20LJlS1d7tm3bVumco3u5/lH4ayjqqfNAhuJKlcID7ew7LtSJiJwODMMgwNfmlkdd7hsLCwtjyJAhzJo1yzWT9XjVrTvn6+tLhw4dqjynJkeHTgEuueQSwsLCePbZZ08oN2/ePHbs2MGoUaOqvVb//v3p06cPjz/+uOvYqFGjWLRoEevWratTvRqSQp0H0USJmvnaLOT5Of+XZCnMguIjbq6RiIgcb9asWZSXl9O/f38+++wzduzYQVJSEi+99BKJiYnMnz+f66+/nvnz57N9+3a2bdvGM888w9dff80VV1xR47UzMjJIS0tjz549fPrpp/zrX/9
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure()\n",
"\n",
"plt.plot(distances, csiborg_overdensity, label=\"CSiBORG\")\n",
"plt.plot(distances, borg_overdensity * 0.7, label=\"BORG\")\n",
"\n",
"# plt.plot(distances, borg_overdensity - csiborg_overdensity)\n",
"plt.axhline(0, color=\"black\", linestyle=\"--\")\n",
"\n",
"# plt.ylim(0.7, 1.3)\n",
"plt.ylim(-0.2, 0.2)\n",
"plt.ylabel(r\"$\\delta_r$\")\n",
"plt.xlabel(\"Distance [Mpc/h]\")\n",
"\n",
"plt.legend()\n",
"plt.tight_layout()\n",
"# plt.savefig(\"/mnt/users/rstiskalek/csiborgtools/plots/enclosed_overdensity_8600.png\", dpi=300)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {},
"outputs": [],
"source": [
"csiborg_reader = csiborgtools.read.CSiBORG2Field(17417, \"main\")\n",
"borg_reader = csiborgtools.read.BORG2Field(17417)\n",
"Om0 = 0.3111\n",
"boxsize = 676.6\n",
"\n",
"# csiborg_reader = csiborgtools.read.CSiBORG1Field(9844)\n",
"# borg_reader = csiborgtools.read.BORG1Field(9844)\n",
"# Om0 = 0.307\n",
"# boxsize = 677.7\n",
"\n",
"cosmo = FlatLambdaCDM(H0=100, Om0=Om0)\n",
"rho_matter = Om0 * cosmo.critical_density(0).to(\"Msun/kpc^3\").value"
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {},
"outputs": [],
"source": [
"csiborg_density = csiborg_reader.density_field(\"SPH\", 1024)\n",
"\n",
"\n",
"csiborg_density /= rho_matter\n",
"csiborg_density -= 1\n",
"\n",
"borg_overdensity = borg_reader.overdensity_field()"
]
},
{
"cell_type": "code",
"execution_count": 63,
"metadata": {},
"outputs": [],
"source": [
"csiborg_density_downsample = csiborg_density.reshape(256, 4, 256, 4, 256, 4).mean(axis=(1, 3, 5))\n"
]
},
{
"cell_type": "code",
"execution_count": 64,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/mnt/users/rstiskalek/csiborgtools/venv_csiborg/lib/python3.11/site-packages/numpy/core/fromnumeric.py:3464: RuntimeWarning: Mean of empty slice.\n",
" return _methods._mean(a, axis=axis, dtype=dtype,\n",
"/mnt/users/rstiskalek/csiborgtools/venv_csiborg/lib/python3.11/site-packages/numpy/core/_methods.py:192: RuntimeWarning: invalid value encountered in divide\n",
" ret = ret.dtype.type(ret / rcount)\n"
]
}
],
"source": [
"y_csiborg = []\n",
"y_borg = []\n",
"\n",
"dks = range(0, 128 + 1)\n",
"for dk in dks:\n",
" kmin = 128 - dk\n",
" kmax = 128 + dk\n",
"\n",
" y_csiborg.append(numpy.mean(csiborg_density_downsample[kmin:kmax, kmin:kmax, kmin:kmax]))\n",
" y_borg.append(numpy.mean(borg_overdensity[kmin:kmax, kmin:kmax, kmin:kmax]))\n",
"\n",
"y_csiborg = numpy.array(y_csiborg)\n",
"y_borg = numpy.array(y_borg)"
]
},
{
"cell_type": "code",
"execution_count": 66,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAHKCAYAAAA5Cf5NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACHxklEQVR4nO3dd3hUVf7H8feU9JCE0JLQe+81gIKCAgKKZVcQFSzYwIbdtTf82Rvq2sBdUVZdURYVRYogIj10kGooCQFCOmkz9/fHJUOG9GSSScLn9TzzJLlz7plzb+5Mvjnn3O+xGIZhICIiIiKVyurtBoiIiIicCxR0iYiIiFQBBV0iIiIiVUBBl4iIiEgVUNAlIiIiUgUUdImIiIhUAQVdIiIiIlVAQZeIiIhIFVDQJSIiIlIFFHSJiIiIVAEFXSIiIiJVQEGXlw0dOpR77rnnnG9DWVR1e6vL+SlNOzxVpjryVrsNw+CWW24hPDwci8VCTExMmeuoit9Ldfu9Vrf21HbePt/efv2zlac9VXEM9kqtvYabPHkyn376aYHtI0aMYOHChV5okXjDN998g4+Pj+vnoUOH0qNHD9544w2vtaMibTj7eKR4CxcuZPbs2SxbtoxWrVpRv379MtdRm8+5J98PM2bM4JtvvmHnzp0EBAQwcOBA/u///o/27du7lRs0aBCdO3fmgw8+qPBreoK3PhM8rbTHUROOtzzvuap4nyroKsHIkSOZNWuW2zY/Pz8vtebckZ2dja+vr7ebAUB4eLi3mwB4rh3V5Xhqir179xIZGcnAgQPLXYfOeen8+uuvTJ06lb59+5Kbm8ujjz7KxRdfzPbt2wkKCgLA6XSyadMmrrvuOi+31vOq0+deTZV3DsvznquK96mGF0vg5+dHRESE26Nu3bqAGe3fddddPPjgg4SHhxMREcFTTz3ltr/T6eSll16iTZs2+Pn50axZM55//vkiXy8rK4u77rqLhg0b4u/vz+DBg1m7dq3r+a+//pquXbsSEBBAvXr1GD58OOnp6a7XmjFjBi1btiQgIIDu3bvz9ddfu9Wfnp7O9ddfT3BwMJGRkbz66qslnoOS2vTBBx8QFRWF0+l02++yyy7jxhtvLFXbhg4dyrRp07jnnnuoX78+I0aMKHV7S1N3Sb+n4s5r/i7nyZMn8+uvv/Lmm29isViwWCwcOHCAf/3rX9SrV4+srCy3eseNG1foH4cFCxYQFhaGw+EAICYmBovFwsMPP+wqc/PNN3Pttde6Hcc999xTZBvyn4/ijvXsLvTSnJ+zLVy4kMGDBxMWFka9evUYM2YMe/fuLXaf4t4LLVq0KPBfc48ePQq0Izc3l2nTphEaGkr9+vV5/PHHMQzD7TVKeg+crbjre/Lkydx5553ExsZisVho0aJFkfWU9hoCz1zXJSnN/qX53aempjJx4kSCgoKIjIzk9ddf99i1eLaFCxcyefJkOnfuTPfu3Zk9ezaxsbGsX7/eVWbXrl2kp6fTq1evUp+H4j6DK/r5UdQ5KO35L+xzr6R9y/M5XtJ7tqTfZWnKlfT79vT7s7hzePZ7rrjrOH9dFf1sLJEhRZo0aZJx2WWXFfn8kCFDjJCQEOOpp54y/vzzT+PTTz81LBaL8fPPP7vKPPjgg0bdunWN2bNnG3v27DFWrFhhfPjhh2513H333a6f77rrLiMqKsr44YcfjG3bthmTJk0y6tata5w4ccI4cuSIYbfbjddee83Yv3+/sXnzZmPmzJlGamqqYRiG8dxzzxkdOnQwFi5caOzdu9eYNWuW4efnZyxbtsxV/+233240a9bM+OWXX4zNmzcbY8aMMerUqePWhrMV1ybDMIzExETD19fX+OWXX1z7nDhxwm1bSW0bMmSIERwcbDzwwAPGzp07jZ07d5a6vaWpu7jfU0nnNf/vKCkpyYiOjjamTJlixMXFGXFxcUZubq6RkZFhhIaGGl9++aWrXUePHjXsdruxZMmSAuc0KSnJsFqtxtq1aw3DMIw33njDqF+/vtG/f39XmTZt2hR6rRTVhtIc69nHU9p9zvb1118b//3vf43du3cbGzduNMaOHWt07drVcDgcRe5T3HuhefPmxuuvv+5Wvnv37saTTz7p1s7g4GDj7rvvNnbu3Gl89tlnRmBgoPHBBx+4ypTmPXC24q7vpKQk45lnnjGaNGlixMXFGQkJCYXWUZZryDA8c12f7ezXKM3+pfnd33zzzUbz5s2NX375xdiyZYtx+eWXu9pa0WuxJLt37zYAY8uWLa5tn332mWG3241Tp06Vqo6SPoMr+vlR1Dko7fkv7HOvpH3L8zle0nu2uN9lfkWVK83v29Pvz+LO4dnvh+Ku4/y/j4p+NpZEQVcxJk2aZNhsNiMoKMjt8fzzzxuGYf5CBg8e7LZP3759jYceesgwDMNISUkx/Pz83N7gZ8v/S05LSzN8fHyMOXPmuJ7Pzs42oqKijJdeeslYv369ARgHDhwoUE9mZqYRGBho/P77727bb7rpJmPChAmGYRhGamqq4evr6xYYnDhxwggICCjyzVpSm/Jcdtllxo033uj6+Z///KcRFRVlOByOUrVtyJAhRs+ePd2eL017S1t3cb+n4s5r3v7FvTHz3H777caoUaNcP7/66qtGq1atDKfTWWi9vXr1Ml5++WXDMAxj3LhxxvPPP2/4+voaqampxqFDhwzA+PPPPwt93aLaUNKxFnU8Je1TkmPHjhX445hfSe+F0gZdHTt2dDufDz30kNGxY0fDMEp3LZytNNf366+/bjRv3rzQ/fOU5Rry1HVd3GuUdv/SfIb5+PgYX331lev5pKQkIzAw0CPXYnEcDocxevRoY9CgQW7bp0+fbnTr1q1UdZR03Xni8yOvTP5zUJbzf/bnXkn7ludzvDCFvWeL+l2erbByJZ2nynp/FnYOz25jaa7jwo7LE5+NZ9OcrhJccMEFvPfee27b8o/7duvWze25yMhIEhISANixYwdZWVkMGzasVK+1d+9ecnJyGDRokGubj48P/fr1Y8eOHUyfPp1hw4bRtWtXRowYwcUXX8xVV11F3bp12bNnDxkZGVx00UVudWZnZ9OzZ09X/dnZ2fTv39/tWM6epFqWNuWZOHEiU6ZM4d1338XPz485c+Ywfvx4rFZrqdoG0Lt37wKvXVJ7S1t3cb+n7t27F3ley2LKlCn07duXw4cP07hxY2bPns3kyZOxWCyFlh8yZAjLli3jvvvuY8WKFcyYMYMvv/yS3377jcTERKKiomjbtm2Z2lDSsXpqn927d/PEE0+wevVqjh8/7hpajo2NpUuXLgXKl/W9UJQBAwa4nc/o6GheffVVHA5Hqa+F/Ep7fZekLNeQJ6/ropRl/+J+9/v27SMnJ4d+/fq5ng8NDS32M6O0dZdk6tSpbN26ld9++81t+4YNG0o9tFjSdeeJz4+K1AsFP/dK2rc8n+NQ9vdseRR3nirz/Xn2OTxbRa7jilzDhVHQVYKgoCDatGlT5PNn3+lgsVhcF3NAQIBH22Kz2Vi0aBG///47P//8M2+//Tb/+Mc/WL16NWlpaQB8//33NG7c2G2/qpj4P3bsWAzD4Pvvv6dv376sWLGC119/HaDUbcubKFsWpa27uN9Tcee1ZcuWpW5Lz5496d69O//617+4+OKL2bZtG99//32R5YcOHconn3zCpk2b8PHxoUOHDgwdOpRly5Zx8uRJhgwZUurXzq+4Y/XUPmPHjqV58+Z8+OGHrvl8Xbp0ITs7u9DyJb0XrFar29wsgJycnGL3OZs33wOeuobyVPRYyrJ/ea6X0ipv3dOmTWPBggUsX76cJk2auD0XExPDlVdeWarXL+m688TnR0XqhYKfeyXtm5iYWOTrFqes79nyKO48Veb7szx/O0rL0+8PTaSvRG3btiUgIIDFixeXqnzr1q3x9fVl5cqVrm05OTmsXbuWTp06AeYvfNCgQTz99NNs3LgRX19f5s2bR6dOnfDz8yM2NpY2bdq4PZo2beqq38fHh9WrV7vqP3nyJH/++WeF2gTg7+/PFVdcwZw5c/jiiy9o376967/R0rStqNcuqb3lrft
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"dks_phys = numpy.array(dks) * (boxsize / 256)\n",
"\n",
"plt.figure()\n",
"plt.title(\"Enclosed overdensity within a cube of side length $2 L$ centered at the origin.\", fontsize=10)\n",
"plt.plot(dks_phys, y_csiborg, label=\"CSiBORG\")\n",
"plt.plot(dks_phys, y_borg, label=\"BORG\")\n",
"plt.xlabel(r\"$L ~ [\\mathrm{Mpc}/\\mathrm{h}]$\")\n",
"plt.ylabel(r\"$\\delta_r$\")\n",
"plt.axhline(0, color=\"black\", linestyle=\"--\")\n",
"plt.legend()\n",
"plt.ylim(-0.2, 0.1)\n",
"plt.savefig(\"../plots/BORG_enclosed_gadget2.png\", dpi=300)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([ 0. , 2.64296875, 5.2859375 , 7.92890625,\n",
" 10.571875 , 13.21484375, 15.8578125 , 18.50078125,\n",
" 21.14375 , 23.78671875, 26.4296875 , 29.07265625,\n",
" 31.715625 , 34.35859375, 37.0015625 , 39.64453125,\n",
" 42.2875 , 44.93046875, 47.5734375 , 50.21640625,\n",
" 52.859375 , 55.50234375, 58.1453125 , 60.78828125,\n",
" 63.43125 , 66.07421875, 68.7171875 , 71.36015625,\n",
" 74.003125 , 76.64609375, 79.2890625 , 81.93203125,\n",
" 84.575 , 87.21796875, 89.8609375 , 92.50390625,\n",
" 95.146875 , 97.78984375, 100.4328125 , 103.07578125,\n",
" 105.71875 , 108.36171875, 111.0046875 , 113.64765625,\n",
" 116.290625 , 118.93359375, 121.5765625 , 124.21953125,\n",
" 126.8625 , 129.50546875, 132.1484375 , 134.79140625,\n",
" 137.434375 , 140.07734375, 142.7203125 , 145.36328125,\n",
" 148.00625 , 150.64921875, 153.2921875 , 155.93515625,\n",
" 158.578125 , 161.22109375, 163.8640625 , 166.50703125,\n",
" 169.15 , 171.79296875, 174.4359375 , 177.07890625,\n",
" 179.721875 , 182.36484375, 185.0078125 , 187.65078125,\n",
" 190.29375 , 192.93671875, 195.5796875 , 198.22265625,\n",
" 200.865625 , 203.50859375, 206.1515625 , 208.79453125,\n",
" 211.4375 , 214.08046875, 216.7234375 , 219.36640625,\n",
" 222.009375 , 224.65234375, 227.2953125 , 229.93828125,\n",
" 232.58125 , 235.22421875, 237.8671875 , 240.51015625,\n",
" 243.153125 , 245.79609375, 248.4390625 , 251.08203125,\n",
" 253.725 , 256.36796875, 259.0109375 , 261.65390625,\n",
" 264.296875 , 266.93984375, 269.5828125 , 272.22578125,\n",
" 274.86875 , 277.51171875, 280.1546875 , 282.79765625,\n",
" 285.440625 , 288.08359375, 290.7265625 , 293.36953125,\n",
" 296.0125 , 298.65546875, 301.2984375 , 303.94140625,\n",
" 306.584375 , 309.22734375, 311.8703125 , 314.51328125,\n",
" 317.15625 , 319.79921875, 322.4421875 , 325.08515625,\n",
" 327.728125 , 330.37109375, 333.0140625 , 335.65703125,\n",
" 338.3 ])"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": []
},
{
"cell_type": "code",
"execution_count": 213,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAGdCAYAAABKG5eZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9W8xtWXYWCH5jzLnWvvyXc07cM50Xu5MS1Zbtguq2kEFtuYXaqLCQUPulhARGLQFtJbQACVkgI3ERpOCJN3gDtcCPppHcCIElMKJARcsUdmOXs8BunE5nXDIizjn/Ze+9LnOOfhiXOfcfYXCEpaKOfJZ0MiNO/P/ea80157h84xvfIBERvLxeXi+vl9fL6+X1glz8X/oGXl4vr5fXy+vl9fL6JNdLx/Xyenm9vF5eL68X6nrpuF5eL6+X18vr5fVCXS8d18vr5fXyenm9vF6o66Xjenm9vF5eL6+X1wt1vXRcL6+X18vr5fXyeqGul47r5fXyenm9vF5eL9T10nG9vF5eL6+X18vrhbryf+kb+DRXrRXf+MY3cHV1BSL6L307L6+X18vr5fXy+oSXiOD29haf/exnwfzJcqgX0nF94xvfwOc///n/0rfx8np5vbxeXi+v3+D1K7/yK/jc5z73iX7nhXRcV1dXAIBv/TN/HuO6w+U3KtatZl7DvYAqIARIAtYdgVcgzYLxpgACQABeK6YnA9YdYbkgpFmVr2oG0tR+HwA2zyo2z1akU0HZJtSRUTaMav+dqv4BATUBkgkg/YwytIyQC8BFv0cAlA1hekyYXhXwibB7X7D9UEBFkGYBL4J8WFEHRh0IdWCUDUEIABGoCiAA2TOBAGGgJsJyRVh2hOUaqKMAhcALFBwWvV9/1nQCtk/1O6kISOy+ST8Tor9XWZ+FqwBF1xRdwivk90DxPkDA9IhQB19LQRkJkoA6APv3KmjVZ5gvCeuOUHb6HMMdkI9+XwCvgnQSrHtGzUDN+h1pFdAKzNeE+Uq/a/uhgGd9h9MjwvxIUHZA3VUMTxk863rs3tf9Aui7i7W0e193hPka9v36/3UE1i0gg4AnwnohKLsKuSxIHw5IRyCdCGkCeNF3vu4IZQTKBpg/NyNvVpTCyN/YoA62jlV/J98Thlv9Hoh+5/ZZBc+2t5PuARJdE54FJAIhsn1CkAysG0K1E55PwOZpQZoK0lRBpYKq6B6qAjChJkbZZaz7hLLRz/F9VROhbBHfO9xL/P26Q+xDXvSeyPbH8VXGckFYL/RnJOlnbJ4Cw0GQZoCq3juJ7j2xM8WrYLwtQBVIIszXGTXr/vKzKuzP174zzdX2o+7hOpCei4FQM2HdAtNj3YP5CGyeCsa72vavPaPY74L0HYy3BfmoNkRY14d8r1SJvUOi6ypMWC4ylku9SSrA5vkaz3N4c8Dpia4rz3oG80nfZ5r0LHIVVCYsl4zlglE2akdQdX/4vkyT/q7bBEl6BnXfUfz38aa2Z6qCdKr2vgTpsNh+AOom2fk3ewNdE983ENH/BqDsB6z7hMPrWc/fRtd1uBMIAadXCPffugLbCpCAWEAkqKcJX/9//PWw55/keiEdl8ODdLlFvt9ifQP6kmdg4IpUBAJCJQIRgUmQRTDWNTaaZGDeD5ArglwR6oo4pPlDM2YFSItgc1wxngS0ADUNqMRYxox1oDAivOoHJ9HDLKyfxUnvVQiQDVBZD5skPZzymFA+u4CeZchKwCzYPC0YTivSYUG6r6hbhgyMss0owgAR4IecYlHie8DAaZdA0Pur9isEoG7QjOGNGlLZAvMFsH1fDwwAJHKHLEirAKt+TRlt7RnAxgyHw7W2mWsC0qZ5tO0KpHs1Ltv3F9x+fsR0QVheAaYN1HFVvRcSYFiB8bneS1r03VJVh8moYCSsmbDs1UlVcyjYEXICUIFNqZCBUAZgJFKHcwJkAfJkDioBcg01/AUgeyeAPlfZEGQP4EpAM2F4DmxvK4TJjL7+nBuHsrUHtvVdr4HpWrA8KqCLFRCCFEI6XmD8ekK+1wNeRv0cN3xpAnIRTDvS556A3bSa4zKDwd13eYABACsgRffAKoxlxxAGEgtGKkgooFT1/XXvzLeQ7AfI44SyU8OeJnMgi0AOFnwtAp4rJBPKhnG8YJStBSMVqABoFeAEHL8ELNcC2Rdc/IcB6aRrQxlIo4AZFoQggqR8VAeURZCGovucCesuQQbS90bA9IZ+Jy8APxPkA5BRwSRx/oQJyLpeRIBsCbgk1NcEvBKIAD4KhMWclr7btOjer6y/ywDSpoKr3k/NBNmyfj7BggFEIEDmPPLAkMThsGmt4FmdhcwZfGSsQrrGRZBEdB9uW0DFCeA9g/eEuiOg6JnIFWDRfZuTIA3SbA0DadRnp8HO6wCQVOQKC94FPAiIKpgFacwgC6zLNqttY1L/Zc6YlnoW7AAADRmyyaDLBN4TMAB5EmxXdXAVCfUOkKOu+enNFelqwdX1CV/v7PknuT6R4/rKV76CH//xH8cv/MIvYLfb4Xf+zt+Jv/bX/hp+62/9rfEz3/d934ef+qmfOvu9P/bH/hj+1t/6W/HvX/va1/DDP/zD+Kf/9J/i8vISP/RDP4SvfOUryPmT+VFaEFkOCwEsFo2JLTSQFj1oaRLdLLYRyzaZAdKMg1eJzGlzWwHRw8S2SQAAFaClgAhIpwJJSQ9rZ/BIACIz4Oak/GDW0Qxt1myjbAXz6wte/9wzPH3+WkRrIIuqh4S6zbrx7YDofVY1DADAFv2ZgyQAYMJwsE3Mlu3Y3pg3QNmI0XL04AsDcimYXgF4YQy3wPhMkCdBmoB1w/FsYhmb2L/Hu6h+0AS86rp5BLsKgYpGX8tViiwgTWbEqmcPLXoc7vV9cTGnsgp4qUiTGsyaGRShoP7h0t4hL0DNAiYCJvXwvu76ThERumdSKO19LRftXVFVx+frSaUZNgBIMyAsqJblLJeE02u6xmUjQBIM2xVlTSg1gY9sn6XPRblF7rSqgx/vKtJMFuXqmvBSY+FrphYwABHIxL4g3xcSQVLcfyJIMQeYFD0QJkgm3L+Z1AmxnxtdrzRZdl/1vdAq+hkCDAfLgEbLgi1ISpNmFngy44tvfYi33/kMAEI6AfkgWC71neSTnjFJhOUCWPfqvOpdc9A1EQ6vt30IANNrFXUU5DtGOhFoFdSJWsYMQ0DY/98ykI2ux3CjWUE+WfbIdh4s8PQ1AwGVoCiCpEAlJGmQBiJQITA0c0Ru+5KqIE/V3gUMaWBIFj2zosFxZKoWLHqmWBOw7hjrFvpeLBvUjNRRAGnPLG19AgnyYJ30/fCimZwH0ABDpEISA7W0TByITJ5EgCKg1X4uEahU2z8J8xXj9KqeGT/PvjYgtbEAIZ8A1Iz5yHi+3ePTXp/IU/zUT/0UvvzlL+O7v/u7sa4r/tyf+3P4/u//fvz8z/88Li4u4uf+yB/5I/hLf+kvxb/v9+0GSyn4gR/4Abz11lv4l//yX+Ltt9/GH/pDfwjDMOCv/tW/+snuvrbMxlP8iLLQ/h+wiKGYU2CF3oBmFKjqP3MB0kl3LFWKlyDkkYdldwbRSAZauIuA8eLf3XENGpErlAjUQTTV31QMqWjWYcaxZoUF4RmVRT51YDV0q4CnFWA1PMgAcUvpUQ1mPKnxjmiWgOWSAHdeHSwmDJTLChQCKiPfA7IY1JJtDaQ7zGiQCixI4KVteF703XigIPY5y17DVy4WWZ9aZEmrOpw86WFvESzAi0apvBTQmuJAhkF2W2HvkaS9Flo1g5GkGaMbJXKn6MYC+p5rBpZL3zjNuYKAMgBJCMJtz/i+4lXfXdkC81urriUJkEWd1pRAx4ThnsCTGZ7F4DOHnUvbh3yQZrizptJxnxbI+D2ikr538ajCnEwRVM/GDcauYDBq7Kl1rwHYuiHcf06NKS/A5kMNBtxRkTkuWv09a6aQFkFdSIOo1PaFvmPCMiVUsUBg0OcTApYLoOwE9Z6Qj+o0yk4doGe1wmzvDViu9L6o6PPVrUCGirIQypaQZg802llyBKBmywg3fg+E4V4MrhSF/diQmmT2Vii+y/dXqQ0yLkML/Hg
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAGdCAYAAABKG5eZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9Waxta5bfBf6+bnZrrd2d7t4bceNGkw1OZyZpVRljW5WyCsqoQLwULyUk27wASiVINi8WlpFoBCl44g3e4AH8aAopZSFsCdJl2VSiBBPlyIzMjMiIuO3p9tnNWmt2X1cP45tz7ZtOICOQSG7lmdJVxDln79XM+X3fGOM//v//UDnnzNvr7fX2enu9vd5eX5BL/0F/gLfX2+vt9fZ6e729fpjrbeB6e7293l5vr7fXF+p6G7jeXm+vt9fb6+31hbreBq6319vr7fX2ent9oa63gevt9fZ6e7293l5fqOtt4Hp7vb3eXm+vt9cX6nobuN5eb6+319vr7fWFut4GrrfX2+vt9fZ6e32hLvsH/QF+lCulxKeffsput0Mp9Qf9cd5eb6+319vr7fVDXjln9vs97733Hlr/cDXUFzJwffrpp7z//vt/0B/j7fX2enu9vd5e/xuvjz76iC9/+cs/1O98IQPXbrcD4P/5y/8PDu4CgCE4boaOl59dYO7ka6U60X3pgNUJHw39XQOzRgWFHjXx0tOej/zkk5e8GTumYJmj4ebVDmUT1kXyRx06Agn0rEgWcp3xlwGz8SggzAalM2Sp/mzt0SajVCZFTdt4rEn0k2OeLG0384+98wP+sbPvcYgt3xsf89+//Aqvb7bkNzXdJxo0ZA1kSBXEJuMvImbQmFGhR0XWkG0ml6eYNaDkd8KVpzkf+Yknr7idWuZoyFnxtfM3jNFymGuuh47GBjZu5mm3535uuZ9rXt5vSUnhJwd7R1YZbAaXICr5nibT7EbmwZEmixo0uUmQgajQsya7TK4jJIUaDCoDjyaUzuSoSL1DRUU2GeoIUaEmg5oVKkNsEpiM7g32qNBeQYLpnQibgK0C4U0DZ57z8x6lMuPsiFHhXGJTzUzBcvdii5o1JHk+uYlQJbRJpN4hHwzUaOBy5uxs4I89/ZjX05Y+OI5zxWGqmSdD9IYUDLYOuDoQo0LrTFMFvn55zRgdZ27kG90r/s/d9zimmjdpg8+GnDURxbXf0uqZkA2fjBc8H8/IGWoTaExgjJbeV1w0A49cj1aJv/Pp19lfd6ijxY6K5DJZyUdPLkMGFRVmVmRkHaQqyzNwCdMF4t6hR43tyzo2kE1GB7kvyWXsOz1ff3rNRTXwndvHXL/ZkicjzzUo9CTrT0XIrqw5ZElkl8mXM003Y00iA94bvnR5x//l8XdwOnLrO/ah5S403EwtQ3DkrJijoZ8r+mMNKi/LmLivqC4Hnp0feNN3TIMjekPuDWbUZAWpTbKOVAYNqnwflHy/z10mo5vAk6s975/dcju2fHJ3znioyV7L+kbeXAWFPWrS+wPWRaa7BndtUQmSkz2mRoMeNNmWZ1COgbKkyAa4nFAaUtCYlxU6yOv7XeLsK/e8f37Ly+OWly/OYdJQl31W7veyt7NLmDNPTvLdzs4GWufxyXD9ekfuDdpr9Cx7KhnIVaJ53ONnS5ws+s7K2QKgM3pW6FlhBkVsMyrJWZcaSDbL+1ayr1WSc9MeZH8mK/cbVT6fgXAWqC9H/q8f/DaVDoyx4ncOV/zU+XPO7IAmszMTVgXmo+ev/JlfXc/zH+b6QgauBR4c6zPuuCIkTbYQqgpdtVhj0AHyDKO3oDLZa+q9W19DZ5isIxrL90fHODn8aOHOYQxkG8l1RG1r9CQPFwNUEiicz6Rj2fgmQ5XkhaMizopoE8pmclYcfEKnjK0D212gqzTX5gnX1ZHHds8/fv4Jse34H7uG103L8Eyh7h1mUJhJEbtMqhO6TbjBYlAoK5snVZlUDhCd5PPEs4ipFdE4fvOuw9/XqCrRnY189fHHOBXx2fDJcEHKCq0y7zYTMPF63nLU5wBMXjHtFGm25IzsyKhQLoHO+FyB02gHbEEfDXpSmFFJwNUQUyafeap3PHXtsTpxv++Ig8FUhmyyBH2FrEarULUChdxXwHiDbkEbhfYwbwI4R0yKKlp8jnirmWdLnC0ERSRBPWGaRPXUkF40cj9nxdQmch1wmxnOFDlrclbEwWA76M5nfvzJnmqo+KRveX17RnIGYxU6g79tSCrhibRnM8eblnlU/Ibecbnraet7trtrHm8D26Sok2UfW/pkGbNlGzWNNtyFlh8cv8SkDUZlog2cd/dsdUQz8G5zR8qKPlV85d2R+yvYjzX315v1gM06o10iBy2H3tGglBw4ymZwGeUSujOoVpEmQzxYtAdVTtjcQdpE3G7iJ97Z87Pnr9Aq89vD+6i8RStFthmlFUoplFFrQFAlWcuV7AG7VehaY2ykdoG7Q8ttNvwP80/io+FRc+RiOzD0Z1irOVeZJ80BqxJTMrwet3zv9SP8bMlR8fjHDjzbHrmqBx77xCf7c+6PFb512MZjTCZnmI4ONWuU1+v5kHWGcy+JUlLkwaK3nm4Teecq4GzFMZwzjZfYs4CxEWMS82wlcGZF7C3dpcEYRXIGNTaoCNqAbgxUirxRmF6jvJKDH0rQhNgm9FahTUQpmHEwSHAxdWbSmWsM96nDxA4NxCbIfogKWoUKCrUkGZ1B64TSmVlbokokpdBdRVYW5RU08jmMksRWNZmmy4SgCbFGJVUCESgrr00NyiHfzcv3W0J+SplUSUQ2UaE7ub/a5pIAyZmYmsRP/Phr/u/PvsWP1c/57w4/xn7acGYUz/Uzvu8d91PDGCzn9chVfg386o/U7vmhAtcv/dIv8df/+l/n29/+Nm3b8qf+1J/i3//3/31+8id/cv2ZP/Nn/gy/8iu/8rnf+5f/5X+Z//g//o/XP3/44Yf8wi/8Av/Nf/PfsN1u+Qt/4S/wS7/0S1j7w8XRPlRgoZ8lIM3BgEuEcyWLKEDOoJCDUHn5vWxhvkyoJgIwjA5jJLD4bTkAkiIHjSqpn0olq9Sn/1Si/CVktCw2WNOuHAGdqRpPW3s29UzMitpEGuN5Pp3Tx4pzO2BUZpilwqEL5E0gdIpgE0rJ9yBKpktG3mv5LCVYYfJaceWoiQFiNpi9IWvDcTT86u4DNm7GqsTe1xznijkYflM/5artmaJlf2jJWZG8Jk8aczDre8YukbMGmzF1JOtImgz63mJ7hQ4lGzcQdSbXCdd6tt1I4wL7sSbeO/SkSU1CtYGcFHi55yo9OJAnjZ4U9qjku9pMqJHqLyl0b+Q5TJrhdYe9Nbiy25LLjEdLriNuO6OeTvjeku4MuYkSfIHg5aBXJnP2+MjT3YHLuuej8ZJP+nN6X3HWjgzGEZImJU06mzEmUdeen336GR9uLvFJ86w78Ky958yOJBTPwzm3ccNn8wX/092X0CpjdeJpvefS9UQ0jfWEpIlZMQbLi2GHJuNM5HF9YEqWOVkeNwe5L4A/NwRviFGTvMbWAdUAW0gXmrQcTCABDchR4eqAqgNxMxNGJ/cd0FXE6oxS8On9GVplNJlDX1NfDXKABwl4ZA1equ7sMtkmCRBtxNQRWw5/rSRpi1GzPzZ8Z5I9+rLe0tUzMWlSVjgT6ezMzk7UOvK4OdC9M9OHiila/sj5CzZ2wpC4thuG4CQwb0Y+OH9DZ2fG6PjkcM790DAMFXGw66lrrJRBymSy9tSNp63kIPjWy3c43jeo3hCDIjqDcok8WFQXMFYq1eVcrarAZDMaJdXGLMgIv7uq40FCWWXiYIgYOSuqRNKZ1ChUlPvTz44YNehMVoI65LrsZ53JqpwtOhNHQ8xGzjOb0OX7aZtJTSTbcm75so9MRuuMs/Js9puKPGvULMFTwVoxqSCBS0U5RLKFZCBupaIllr8r6zCXzRa7hN563n96y596/Dv8VPMJL8OOb959iY9uL5i9ZeodKKgaj9aZyVtuw4/u7/5DRYpf+ZVf4Rd/8Rf543/8jxNC4K/8lb/Cn/2zf5Zf//VfZ7PZrD/3L/6L/yL/9r/
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure()\n",
"plt.imshow(numpy.log10(csiborg_density_downsample[:, :, 128]), origin=\"lower\")\n",
"plt.show()\n",
"\n",
"\n",
"plt.figure()\n",
"plt.imshow(numpy.log10(borg_overdensity[:, :, 128] + 1), origin=\"lower\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "venv_csiborg",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}