csiborgtools/notebooks/field_sample.ipynb

7251 lines
2 MiB
Text
Raw Normal View History

Overlap fixing and more (#107) * Update README * Update density field reader * Update name of SDSSxALFAFA * Fix quick bug * Add little fixes * Update README * Put back fit_init * Add paths to initial snapshots * Add export * Remove some choices * Edit README * Add Jens' comments * Organize imports * Rename snapshot * Add additional print statement * Add paths to initial snapshots * Add masses to the initial files * Add normalization * Edit README * Update README * Fix bug in CSiBORG1 so that does not read fof_00001 * Edit README * Edit README * Overwrite comments * Add paths to init lag * Fix Quijote path * Add lagpatch * Edit submits * Update README * Fix numpy int problem * Update README * Add a flag to keep the snapshots open when fitting * Add a flag to keep snapshots open * Comment out some path issue * Keep snapshots open * Access directly snasphot * Add lagpatch for CSiBORG2 * Add treatment of x-z coordinates flipping * Add radial velocity field loader * Update README * Add lagpatch to Quijote * Fix typo * Add setter * Fix typo * Update README * Add output halo cat as ASCII * Add import * Add halo plot * Update README * Add evaluating field at radial distanfe * Add field shell evaluation * Add enclosed mass computation * Add BORG2 import * Add BORG boxsize * Add BORG paths * Edit run * Add BORG2 overdensity field * Add bulk flow clauclation * Update README * Add new plots * Add nbs * Edit paper * Update plotting * Fix overlap paths to contain simname * Add normalization of positions * Add default paths to CSiBORG1 * Add overlap path simname * Fix little things * Add CSiBORG2 catalogue * Update README * Add import * Add TNG density field constructor * Add TNG density * Add draft of calculating BORG ACL * Fix bug * Add ACL of enclosed density * Add nmean acl * Add galaxy bias calculation * Add BORG acl notebook * Add enclosed mass calculation * Add TNG300-1 dir * Add TNG300 and BORG1 dir * Update nb
2024-01-30 16:14:07 +00:00
{
"cells": [
{
"cell_type": "code",
2024-03-28 12:23:52 +00:00
"execution_count": 1,
Overlap fixing and more (#107) * Update README * Update density field reader * Update name of SDSSxALFAFA * Fix quick bug * Add little fixes * Update README * Put back fit_init * Add paths to initial snapshots * Add export * Remove some choices * Edit README * Add Jens' comments * Organize imports * Rename snapshot * Add additional print statement * Add paths to initial snapshots * Add masses to the initial files * Add normalization * Edit README * Update README * Fix bug in CSiBORG1 so that does not read fof_00001 * Edit README * Edit README * Overwrite comments * Add paths to init lag * Fix Quijote path * Add lagpatch * Edit submits * Update README * Fix numpy int problem * Update README * Add a flag to keep the snapshots open when fitting * Add a flag to keep snapshots open * Comment out some path issue * Keep snapshots open * Access directly snasphot * Add lagpatch for CSiBORG2 * Add treatment of x-z coordinates flipping * Add radial velocity field loader * Update README * Add lagpatch to Quijote * Fix typo * Add setter * Fix typo * Update README * Add output halo cat as ASCII * Add import * Add halo plot * Update README * Add evaluating field at radial distanfe * Add field shell evaluation * Add enclosed mass computation * Add BORG2 import * Add BORG boxsize * Add BORG paths * Edit run * Add BORG2 overdensity field * Add bulk flow clauclation * Update README * Add new plots * Add nbs * Edit paper * Update plotting * Fix overlap paths to contain simname * Add normalization of positions * Add default paths to CSiBORG1 * Add overlap path simname * Fix little things * Add CSiBORG2 catalogue * Update README * Add import * Add TNG density field constructor * Add TNG density * Add draft of calculating BORG ACL * Fix bug * Add ACL of enclosed density * Add nmean acl * Add galaxy bias calculation * Add BORG acl notebook * Add enclosed mass calculation * Add TNG300-1 dir * Add TNG300 and BORG1 dir * Update nb
2024-01-30 16:14:07 +00:00
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"from h5py import File\n",
"from scipy.stats import spearmanr\n",
"\n",
"import csiborgtools\n",
"\n",
"%matplotlib inline\n",
"%load_ext autoreload\n",
"%autoreload 2"
]
},
{
"cell_type": "code",
2024-03-28 12:23:52 +00:00
"execution_count": 2,
Overlap fixing and more (#107) * Update README * Update density field reader * Update name of SDSSxALFAFA * Fix quick bug * Add little fixes * Update README * Put back fit_init * Add paths to initial snapshots * Add export * Remove some choices * Edit README * Add Jens' comments * Organize imports * Rename snapshot * Add additional print statement * Add paths to initial snapshots * Add masses to the initial files * Add normalization * Edit README * Update README * Fix bug in CSiBORG1 so that does not read fof_00001 * Edit README * Edit README * Overwrite comments * Add paths to init lag * Fix Quijote path * Add lagpatch * Edit submits * Update README * Fix numpy int problem * Update README * Add a flag to keep the snapshots open when fitting * Add a flag to keep snapshots open * Comment out some path issue * Keep snapshots open * Access directly snasphot * Add lagpatch for CSiBORG2 * Add treatment of x-z coordinates flipping * Add radial velocity field loader * Update README * Add lagpatch to Quijote * Fix typo * Add setter * Fix typo * Update README * Add output halo cat as ASCII * Add import * Add halo plot * Update README * Add evaluating field at radial distanfe * Add field shell evaluation * Add enclosed mass computation * Add BORG2 import * Add BORG boxsize * Add BORG paths * Edit run * Add BORG2 overdensity field * Add bulk flow clauclation * Update README * Add new plots * Add nbs * Edit paper * Update plotting * Fix overlap paths to contain simname * Add normalization of positions * Add default paths to CSiBORG1 * Add overlap path simname * Fix little things * Add CSiBORG2 catalogue * Update README * Add import * Add TNG density field constructor * Add TNG density * Add draft of calculating BORG ACL * Fix bug * Add ACL of enclosed density * Add nmean acl * Add galaxy bias calculation * Add BORG acl notebook * Add enclosed mass calculation * Add TNG300-1 dir * Add TNG300 and BORG1 dir * Update nb
2024-01-30 16:14:07 +00:00
"metadata": {},
"outputs": [],
"source": [
2024-03-28 12:23:52 +00:00
"paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)"
Overlap fixing and more (#107) * Update README * Update density field reader * Update name of SDSSxALFAFA * Fix quick bug * Add little fixes * Update README * Put back fit_init * Add paths to initial snapshots * Add export * Remove some choices * Edit README * Add Jens' comments * Organize imports * Rename snapshot * Add additional print statement * Add paths to initial snapshots * Add masses to the initial files * Add normalization * Edit README * Update README * Fix bug in CSiBORG1 so that does not read fof_00001 * Edit README * Edit README * Overwrite comments * Add paths to init lag * Fix Quijote path * Add lagpatch * Edit submits * Update README * Fix numpy int problem * Update README * Add a flag to keep the snapshots open when fitting * Add a flag to keep snapshots open * Comment out some path issue * Keep snapshots open * Access directly snasphot * Add lagpatch for CSiBORG2 * Add treatment of x-z coordinates flipping * Add radial velocity field loader * Update README * Add lagpatch to Quijote * Fix typo * Add setter * Fix typo * Update README * Add output halo cat as ASCII * Add import * Add halo plot * Update README * Add evaluating field at radial distanfe * Add field shell evaluation * Add enclosed mass computation * Add BORG2 import * Add BORG boxsize * Add BORG paths * Edit run * Add BORG2 overdensity field * Add bulk flow clauclation * Update README * Add new plots * Add nbs * Edit paper * Update plotting * Fix overlap paths to contain simname * Add normalization of positions * Add default paths to CSiBORG1 * Add overlap path simname * Fix little things * Add CSiBORG2 catalogue * Update README * Add import * Add TNG density field constructor * Add TNG density * Add draft of calculating BORG ACL * Fix bug * Add ACL of enclosed density * Add nmean acl * Add galaxy bias calculation * Add BORG acl notebook * Add enclosed mass calculation * Add TNG300-1 dir * Add TNG300 and BORG1 dir * Update nb
2024-01-30 16:14:07 +00:00
]
},
{
"cell_type": "code",
2024-03-28 12:23:52 +00:00
"execution_count": 3,
Overlap fixing and more (#107) * Update README * Update density field reader * Update name of SDSSxALFAFA * Fix quick bug * Add little fixes * Update README * Put back fit_init * Add paths to initial snapshots * Add export * Remove some choices * Edit README * Add Jens' comments * Organize imports * Rename snapshot * Add additional print statement * Add paths to initial snapshots * Add masses to the initial files * Add normalization * Edit README * Update README * Fix bug in CSiBORG1 so that does not read fof_00001 * Edit README * Edit README * Overwrite comments * Add paths to init lag * Fix Quijote path * Add lagpatch * Edit submits * Update README * Fix numpy int problem * Update README * Add a flag to keep the snapshots open when fitting * Add a flag to keep snapshots open * Comment out some path issue * Keep snapshots open * Access directly snasphot * Add lagpatch for CSiBORG2 * Add treatment of x-z coordinates flipping * Add radial velocity field loader * Update README * Add lagpatch to Quijote * Fix typo * Add setter * Fix typo * Update README * Add output halo cat as ASCII * Add import * Add halo plot * Update README * Add evaluating field at radial distanfe * Add field shell evaluation * Add enclosed mass computation * Add BORG2 import * Add BORG boxsize * Add BORG paths * Edit run * Add BORG2 overdensity field * Add bulk flow clauclation * Update README * Add new plots * Add nbs * Edit paper * Update plotting * Fix overlap paths to contain simname * Add normalization of positions * Add default paths to CSiBORG1 * Add overlap path simname * Fix little things * Add CSiBORG2 catalogue * Update README * Add import * Add TNG density field constructor * Add TNG density * Add draft of calculating BORG ACL * Fix bug * Add ACL of enclosed density * Add nmean acl * Add galaxy bias calculation * Add BORG acl notebook * Add enclosed mass calculation * Add TNG300-1 dir * Add TNG300 and BORG1 dir * Update nb
2024-01-30 16:14:07 +00:00
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"WARNING: VerifyWarning: It is strongly recommended that column names contain only upper and lower-case ASCII letters, digits, or underscores for maximum compatibility with other software (got '#AGC'). [astropy.io.fits.column]\n",
"WARNING: VerifyWarning: It is strongly recommended that column names contain only upper and lower-case ASCII letters, digits, or underscores for maximum compatibility with other software (got '#AGCNr'). [astropy.io.fits.column]\n",
2024-03-28 12:23:52 +00:00
"/mnt/users/rstiskalek/csiborgtools/csiborgtools/read/obs.py:367: UserWarning: Key `IN_DR7_LSS` found in both `routine_keys` and `fits_keys`. Returning `routine_keys` value.\n",
Overlap fixing and more (#107) * Update README * Update density field reader * Update name of SDSSxALFAFA * Fix quick bug * Add little fixes * Update README * Put back fit_init * Add paths to initial snapshots * Add export * Remove some choices * Edit README * Add Jens' comments * Organize imports * Rename snapshot * Add additional print statement * Add paths to initial snapshots * Add masses to the initial files * Add normalization * Edit README * Update README * Fix bug in CSiBORG1 so that does not read fof_00001 * Edit README * Edit README * Overwrite comments * Add paths to init lag * Fix Quijote path * Add lagpatch * Edit submits * Update README * Fix numpy int problem * Update README * Add a flag to keep the snapshots open when fitting * Add a flag to keep snapshots open * Comment out some path issue * Keep snapshots open * Access directly snasphot * Add lagpatch for CSiBORG2 * Add treatment of x-z coordinates flipping * Add radial velocity field loader * Update README * Add lagpatch to Quijote * Fix typo * Add setter * Fix typo * Update README * Add output halo cat as ASCII * Add import * Add halo plot * Update README * Add evaluating field at radial distanfe * Add field shell evaluation * Add enclosed mass computation * Add BORG2 import * Add BORG boxsize * Add BORG paths * Edit run * Add BORG2 overdensity field * Add bulk flow clauclation * Update README * Add new plots * Add nbs * Edit paper * Update plotting * Fix overlap paths to contain simname * Add normalization of positions * Add default paths to CSiBORG1 * Add overlap path simname * Fix little things * Add CSiBORG2 catalogue * Update README * Add import * Add TNG density field constructor * Add TNG density * Add draft of calculating BORG ACL * Fix bug * Add ACL of enclosed density * Add nmean acl * Add galaxy bias calculation * Add BORG acl notebook * Add enclosed mass calculation * Add TNG300-1 dir * Add TNG300 and BORG1 dir * Update nb
2024-01-30 16:14:07 +00:00
" warn(f\"Key `{key}` found in both `routine_keys` and `fits_keys`. \"\n"
]
}
],
"source": [
2024-03-28 12:23:52 +00:00
"nsa_alfalfa = csiborgtools.SDSSxALFALFA()()\n",
"nsa = csiborgtools.SDSS()()"
Overlap fixing and more (#107) * Update README * Update density field reader * Update name of SDSSxALFAFA * Fix quick bug * Add little fixes * Update README * Put back fit_init * Add paths to initial snapshots * Add export * Remove some choices * Edit README * Add Jens' comments * Organize imports * Rename snapshot * Add additional print statement * Add paths to initial snapshots * Add masses to the initial files * Add normalization * Edit README * Update README * Fix bug in CSiBORG1 so that does not read fof_00001 * Edit README * Edit README * Overwrite comments * Add paths to init lag * Fix Quijote path * Add lagpatch * Edit submits * Update README * Fix numpy int problem * Update README * Add a flag to keep the snapshots open when fitting * Add a flag to keep snapshots open * Comment out some path issue * Keep snapshots open * Access directly snasphot * Add lagpatch for CSiBORG2 * Add treatment of x-z coordinates flipping * Add radial velocity field loader * Update README * Add lagpatch to Quijote * Fix typo * Add setter * Fix typo * Update README * Add output halo cat as ASCII * Add import * Add halo plot * Update README * Add evaluating field at radial distanfe * Add field shell evaluation * Add enclosed mass computation * Add BORG2 import * Add BORG boxsize * Add BORG paths * Edit run * Add BORG2 overdensity field * Add bulk flow clauclation * Update README * Add new plots * Add nbs * Edit paper * Update plotting * Fix overlap paths to contain simname * Add normalization of positions * Add default paths to CSiBORG1 * Add overlap path simname * Fix little things * Add CSiBORG2 catalogue * Update README * Add import * Add TNG density field constructor * Add TNG density * Add draft of calculating BORG ACL * Fix bug * Add ACL of enclosed density * Add nmean acl * Add galaxy bias calculation * Add BORG acl notebook * Add enclosed mass calculation * Add TNG300-1 dir * Add TNG300 and BORG1 dir * Update nb
2024-01-30 16:14:07 +00:00
]
},
{
"cell_type": "code",
2024-03-28 12:23:52 +00:00
"execution_count": 14,
Overlap fixing and more (#107) * Update README * Update density field reader * Update name of SDSSxALFAFA * Fix quick bug * Add little fixes * Update README * Put back fit_init * Add paths to initial snapshots * Add export * Remove some choices * Edit README * Add Jens' comments * Organize imports * Rename snapshot * Add additional print statement * Add paths to initial snapshots * Add masses to the initial files * Add normalization * Edit README * Update README * Fix bug in CSiBORG1 so that does not read fof_00001 * Edit README * Edit README * Overwrite comments * Add paths to init lag * Fix Quijote path * Add lagpatch * Edit submits * Update README * Fix numpy int problem * Update README * Add a flag to keep the snapshots open when fitting * Add a flag to keep snapshots open * Comment out some path issue * Keep snapshots open * Access directly snasphot * Add lagpatch for CSiBORG2 * Add treatment of x-z coordinates flipping * Add radial velocity field loader * Update README * Add lagpatch to Quijote * Fix typo * Add setter * Fix typo * Update README * Add output halo cat as ASCII * Add import * Add halo plot * Update README * Add evaluating field at radial distanfe * Add field shell evaluation * Add enclosed mass computation * Add BORG2 import * Add BORG boxsize * Add BORG paths * Edit run * Add BORG2 overdensity field * Add bulk flow clauclation * Update README * Add new plots * Add nbs * Edit paper * Update plotting * Fix overlap paths to contain simname * Add normalization of positions * Add default paths to CSiBORG1 * Add overlap path simname * Fix little things * Add CSiBORG2 catalogue * Update README * Add import * Add TNG density field constructor * Add TNG density * Add draft of calculating BORG ACL * Fix bug * Add ACL of enclosed density * Add nmean acl * Add galaxy bias calculation * Add BORG acl notebook * Add enclosed mass calculation * Add TNG300-1 dir * Add TNG300 and BORG1 dir * Update nb
2024-01-30 16:14:07 +00:00
"metadata": {},
2024-03-28 12:23:52 +00:00
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Reading fields: 100%|██████████| 20/20 [00:00<00:00, 20.89it/s]\n",
"Reading fields: 100%|██████████| 20/20 [00:00<00:00, 27.93it/s]\n"
]
}
],
Overlap fixing and more (#107) * Update README * Update density field reader * Update name of SDSSxALFAFA * Fix quick bug * Add little fixes * Update README * Put back fit_init * Add paths to initial snapshots * Add export * Remove some choices * Edit README * Add Jens' comments * Organize imports * Rename snapshot * Add additional print statement * Add paths to initial snapshots * Add masses to the initial files * Add normalization * Edit README * Update README * Fix bug in CSiBORG1 so that does not read fof_00001 * Edit README * Edit README * Overwrite comments * Add paths to init lag * Fix Quijote path * Add lagpatch * Edit submits * Update README * Fix numpy int problem * Update README * Add a flag to keep the snapshots open when fitting * Add a flag to keep snapshots open * Comment out some path issue * Keep snapshots open * Access directly snasphot * Add lagpatch for CSiBORG2 * Add treatment of x-z coordinates flipping * Add radial velocity field loader * Update README * Add lagpatch to Quijote * Fix typo * Add setter * Fix typo * Update README * Add output halo cat as ASCII * Add import * Add halo plot * Update README * Add evaluating field at radial distanfe * Add field shell evaluation * Add enclosed mass computation * Add BORG2 import * Add BORG boxsize * Add BORG paths * Edit run * Add BORG2 overdensity field * Add bulk flow clauclation * Update README * Add new plots * Add nbs * Edit paper * Update plotting * Fix overlap paths to contain simname * Add normalization of positions * Add default paths to CSiBORG1 * Add overlap path simname * Fix little things * Add CSiBORG2 catalogue * Update README * Add import * Add TNG density field constructor * Add TNG density * Add draft of calculating BORG ACL * Fix bug * Add ACL of enclosed density * Add nmean acl * Add galaxy bias calculation * Add BORG acl notebook * Add enclosed mass calculation * Add TNG300-1 dir * Add TNG300 and BORG1 dir * Update nb
2024-01-30 16:14:07 +00:00
"source": [
2024-03-28 12:23:52 +00:00
"fval1_cb2, smooth_scales = csiborgtools.summary.read_interpolated_field(\n",
" nsa_alfalfa, \"csiborg2_random\", \"density\", \"SPH\", 1024, paths)\n",
"fval2_cb2, smooth_scales = csiborgtools.summary.read_interpolated_field(\n",
" nsa_alfalfa, \"csiborg2_main\", \"density\", \"SPH\", 1024, paths)\n"
Overlap fixing and more (#107) * Update README * Update density field reader * Update name of SDSSxALFAFA * Fix quick bug * Add little fixes * Update README * Put back fit_init * Add paths to initial snapshots * Add export * Remove some choices * Edit README * Add Jens' comments * Organize imports * Rename snapshot * Add additional print statement * Add paths to initial snapshots * Add masses to the initial files * Add normalization * Edit README * Update README * Fix bug in CSiBORG1 so that does not read fof_00001 * Edit README * Edit README * Overwrite comments * Add paths to init lag * Fix Quijote path * Add lagpatch * Edit submits * Update README * Fix numpy int problem * Update README * Add a flag to keep the snapshots open when fitting * Add a flag to keep snapshots open * Comment out some path issue * Keep snapshots open * Access directly snasphot * Add lagpatch for CSiBORG2 * Add treatment of x-z coordinates flipping * Add radial velocity field loader * Update README * Add lagpatch to Quijote * Fix typo * Add setter * Fix typo * Update README * Add output halo cat as ASCII * Add import * Add halo plot * Update README * Add evaluating field at radial distanfe * Add field shell evaluation * Add enclosed mass computation * Add BORG2 import * Add BORG boxsize * Add BORG paths * Edit run * Add BORG2 overdensity field * Add bulk flow clauclation * Update README * Add new plots * Add nbs * Edit paper * Update plotting * Fix overlap paths to contain simname * Add normalization of positions * Add default paths to CSiBORG1 * Add overlap path simname * Fix little things * Add CSiBORG2 catalogue * Update README * Add import * Add TNG density field constructor * Add TNG density * Add draft of calculating BORG ACL * Fix bug * Add ACL of enclosed density * Add nmean acl * Add galaxy bias calculation * Add BORG acl notebook * Add enclosed mass calculation * Add TNG300-1 dir * Add TNG300 and BORG1 dir * Update nb
2024-01-30 16:14:07 +00:00
]
},
{
"cell_type": "code",
2024-03-28 12:23:52 +00:00
"execution_count": 21,
Overlap fixing and more (#107) * Update README * Update density field reader * Update name of SDSSxALFAFA * Fix quick bug * Add little fixes * Update README * Put back fit_init * Add paths to initial snapshots * Add export * Remove some choices * Edit README * Add Jens' comments * Organize imports * Rename snapshot * Add additional print statement * Add paths to initial snapshots * Add masses to the initial files * Add normalization * Edit README * Update README * Fix bug in CSiBORG1 so that does not read fof_00001 * Edit README * Edit README * Overwrite comments * Add paths to init lag * Fix Quijote path * Add lagpatch * Edit submits * Update README * Fix numpy int problem * Update README * Add a flag to keep the snapshots open when fitting * Add a flag to keep snapshots open * Comment out some path issue * Keep snapshots open * Access directly snasphot * Add lagpatch for CSiBORG2 * Add treatment of x-z coordinates flipping * Add radial velocity field loader * Update README * Add lagpatch to Quijote * Fix typo * Add setter * Fix typo * Update README * Add output halo cat as ASCII * Add import * Add halo plot * Update README * Add evaluating field at radial distanfe * Add field shell evaluation * Add enclosed mass computation * Add BORG2 import * Add BORG boxsize * Add BORG paths * Edit run * Add BORG2 overdensity field * Add bulk flow clauclation * Update README * Add new plots * Add nbs * Edit paper * Update plotting * Fix overlap paths to contain simname * Add normalization of positions * Add default paths to CSiBORG1 * Add overlap path simname * Fix little things * Add CSiBORG2 catalogue * Update README * Add import * Add TNG density field constructor * Add TNG density * Add draft of calculating BORG ACL * Fix bug * Add ACL of enclosed density * Add nmean acl * Add galaxy bias calculation * Add BORG acl notebook * Add enclosed mass calculation * Add TNG300-1 dir * Add TNG300 and BORG1 dir * Update nb
2024-01-30 16:14:07 +00:00
"metadata": {},
"outputs": [
{
2024-03-28 12:23:52 +00:00
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWC0lEQVR4nO3deViU9f7/8dcAw6qySCwipoXaooJHw9TOTyvNNsvTqfxaR8nKsrQ0LItOalZKm4YV5WlxadG0UrPsZIpbpelxwVMdk0xLDinmgsgSIMzvDy7nNM0AMzALMzwf1zXXdeb+3PfMe5iDvbg/m8FkMpkEAAAAr+fn6QIAAADgHAQ7AAAAH0GwAwAA8BEEOwAAAB9BsAMAAPARBDsAAAAfQbADAADwEQQ7AAAAHxHg6QLcraamRr/88otat24tg8Hg6XIAAADqZTKZdOrUKbVr105+fvXfk2txwe6XX35RYmKip8sAAABwSH5+vtq3b1/vOS0u2LVu3VpS7Q+nTZs2Hq4GAACgfsXFxUpMTDRnmPq0uGB3pvu1TZs2BDsAAOA17BlCxuQJAAAAH0GwAwAA8BEEOwAAAB/R4sbYAQDgy6qrq1VVVeXpMuAAo9Eof39/p7wWwQ4AAB9gMpl0+PBhFRUVeboUNEJERITi4uKavMYuwQ4AAB9wJtTFxMQoNDSURfi9hMlkUllZmY4cOSJJio+Pb9LrEewAAPBy1dXV5lDXtm1bT5cDB4WEhEiSjhw5opiYmCZ1yzJ5AgAAL3dmTF1oaKiHK0Fjnfnumjo+kmAHAICPoPvVeznruyPYAQAA+AjG2AEA4MMKisp1orTSLe8VGRaohIgQt7yXMxgMBi1fvlzDhg3zdClOQ7ADAMBHFRSVa9CsjSqvqnbL+4UY/bV20gCHwt1tt92mhQsXSpICAgLUvn173XTTTXriiScUHBzsqlJ9FsEOAAAfdaK0UuVV1coanqKkmFYufa99R0o0cUmuTpRWOnzX7sorr9T8+fNVVVWlHTt2KC0tTQaDQc8884yLqvVdjLEDAMDHJcW0UreEcJc+mhIcg4KCFBcXp8TERA0bNkyDBg3SmjVrJEnHjh3TiBEjlJCQoNDQUHXv3l2LFy+2uH7gwIG6//77NXnyZEVFRSkuLk6PP/64xTk//PCD/t//+38KDg7WBRdcYH793/vmm2902WWXKSQkRG3bttVdd92lkpISc/ttt92mYcOGaebMmYqNjVVERISeeOIJnT59Wg899JCioqLUvn17zZ8/v9E/i6Yi2AEAgGbj22+/1ebNmxUYGChJ+u2339SrVy+tWrVK3377re666y6NHDlS27Zts7hu4cKFCgsL09atW/Xss8/qiSeeMIe3mpoa3XDDDQoMDNTWrVs1d+5cPfzwwxbXl5aWasiQIYqMjNS//vUvvf/++1q7dq3Gjx9vcd66dev0yy+/aNOmTZo9e7amTZuma6+9VpGRkdq6davGjh2ru+++W//9739d+FOqG12xgA+ob3C0tw1mBtDyfPLJJ2rVqpVOnz6tiooK+fn56eWXX5YkJSQk6MEHHzSfe99992n16tVaunSpUlNTzcd79OihadOmSZI6d+6sl19+WTk5ORo8eLDWrl2r77//XqtXr1a7du0kSTNnztRVV11lvn7RokX67bff9NZbbyksLEyS9PLLL2vo0KF65plnFBsbK0mKiorSiy++KD8/P3Xt2lXPPvusysrK9Oijj0qSMjIy9PTTT+vLL7/U//3f/7nwp2YbwQ7wcg0Njm7MYGYAcKdLL71Ur776qkpLS/XCCy8oICBAf/3rXyXV7qoxc+ZMLV26VAUFBaqsrFRFRYXVYsw9evSweB4fH2/epmvPnj1KTEw0hzpJ6tu3r8X5e/bsUXJysjnUSVL//v1VU1OjvXv3moPdhRdeKD+//3V4xsbGqlu3bubn/v7+atu2rfm93Y1gB3i5+gZHN2UwMwC4S1hYmJKSkiRJ8+bNU3Jyst58803dcccdeu655zRnzhxlZWWpe/fuCgsL08SJE1VZadlLYTQaLZ4bDAbV1NQ4vVZb7+Ou97YHY+wAH2FrcLSrZ8EBgLP5+fnp0Ucf1WOPPaby8nJ99dVXuv766/W3v/1NycnJOuecc5SXl+fQa55//vnKz8/XoUOHzMe+/vprq3N2796t0tJS87GvvvrK3OXqLQh2AACgWbnpppvk7++v7Oxsde7cWWvWrNHmzZu1Z88e3X333SosLHTo9QYNGqQuXbooLS1Nu3fv1hdffKG///3vFufceuutCg4OVlpamr799lutX79e9913n0aOHGnuhvUGdMUCAODj9h0pafikZvQeAQEBGj9+vJ599lnt2rVL+/fv15AhQxQaGqq77rpLw4YN08mTJ+1+PT8/Py1fvlx33HGHUlNT1bFjR7344ou68sorzeeEhoZq9erVmjBhgi666CKFhobqr3/9q2bPnu20z+UOBpPJZPJ0Ee5UXFys8PBwnTx5Um3atPF0OUCTfVtwUte+9KU+ue8SdUsIt7sNgO/47bffdODAAXXq1MlitwZv2HkCter6DiXHsgt37AAA8FEJESFaO2kAe8W2IAQ7AAB8WEJECGGrBfHo5IlNmzZp6NChateunQwGg1asWNHgNRUVFfr73/+us88+W0FBQerYsaPmzZvn+mIBAACaOY/esSstLVVycrJuv/123XDDDXZdc/PNN6uwsFBvvvmmkpKSdOjQIY+tFQO4m60dJtwxKBoA4B08Guyuuuoqi+08GvLZZ59p48aN2r9/v6KioiRJHTt2dFF1QPNS3yDoEKO/IsMCPVAVAKA58aoxditXrlTv3r317LPP6u2331ZYWJiuu+46PfnkkwoJYfwAfFt9O0wwYBkAIHlZsNu/f7++/PJLBQcHa/ny5Tp69KjuvfdeHTt2TPPnz7d5TUVFhSoqKszPi4uL3VUu4BJndpgAAOCPvGrniZqaGhkMBr377rtKTU3V1VdfrdmzZ2vhwoUqLy+3eU1mZqbCw8PNj8TERDdXDQAA4B5eFezi4+OVkJCg8PD/3a04//zzZTKZ9N///tfmNRkZGTp58qT5kZ+f765yAbhKUb70S671o4jfb6Al2rBhgwwGg4qKijxdisd5VVds//799f7776ukpEStWtWOMcrLy5Ofn5/at29v85qgoCAFBQW5s0wArlSUL2WnSlVl1m3GUGncNimCO/OAWVG+VHbMPe8V2rZRv3+HDx/WjBkztGrVKhUUFCgmJkYpKSmaOHGiLr/8cu3evVtTpkzR119/reLiYsXFxalPnz566aWXFBMTo379+unQoUPmGz8bNmzQpZdean794OBgnXPOOZowYYLuuusui/fevHmznnrqKW3ZskXl5eXq3LmzRo8erQkTJsjf3998nsFgMP/v1q1bq2vXrnrsscd0/fXXW7xeZWWl5syZo8WLF2vv3r0KCAhQx44dNXToUN17771q166dwz8fR3g02JWUlGjfvn3m5wcOHFBubq6ioqLUoUMHZWRkqKCgQG+99ZYk6ZZbbtGTTz6p0aNHa/r06Tp69Kgeeugh3X777UyeAFqKsmO1oe6G16XoLv87fjRPWjamtp1gB9Sq7w8hV2jEH1c//fST+vfvr4iICD333HPq3r27qqqqtHr1ao0bN05ffPGFLr/8cl177bVavXq1IiIi9NNPP2nlypUqLS2VJAUGBiouLs7qtffu3as2bdqovLxcH3/8se655x6de+65uvzyyyVJy5cv180336zRo0dr/fr1ioiI0Nq1azV58mRt2bJFS5cutQh08+fP15VXXqni4mK98soruvHGG7Vz5051795dUu24/iuuuEL//ve/NX36dPXv319nnXWWDhw4oMWLF+ull15SZmZmU37CDfJosNu+fbtFok5PT5ckpaWlacGCBTp06JAOHjxobm/VqpXWrFmj++67T71791bbtm11880366mnnnJ77QA8LLqL1C7F01UAzVtdfwi5QiP/uLr33ntlMBi0bds2hYWFmY9feOGFuv3227VhwwadPHlSb7zxhgICamNLp06dLPLDmTt
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
Overlap fixing and more (#107) * Update README * Update density field reader * Update name of SDSSxALFAFA * Fix quick bug * Add little fixes * Update README * Put back fit_init * Add paths to initial snapshots * Add export * Remove some choices * Edit README * Add Jens' comments * Organize imports * Rename snapshot * Add additional print statement * Add paths to initial snapshots * Add masses to the initial files * Add normalization * Edit README * Update README * Fix bug in CSiBORG1 so that does not read fof_00001 * Edit README * Edit README * Overwrite comments * Add paths to init lag * Fix Quijote path * Add lagpatch * Edit submits * Update README * Fix numpy int problem * Update README * Add a flag to keep the snapshots open when fitting * Add a flag to keep snapshots open * Comment out some path issue * Keep snapshots open * Access directly snasphot * Add lagpatch for CSiBORG2 * Add treatment of x-z coordinates flipping * Add radial velocity field loader * Update README * Add lagpatch to Quijote * Fix typo * Add setter * Fix typo * Update README * Add output halo cat as ASCII * Add import * Add halo plot * Update README * Add evaluating field at radial distanfe * Add field shell evaluation * Add enclosed mass computation * Add BORG2 import * Add BORG boxsize * Add BORG paths * Edit run * Add BORG2 overdensity field * Add bulk flow clauclation * Update README * Add new plots * Add nbs * Edit paper * Update plotting * Fix overlap paths to contain simname * Add normalization of positions * Add default paths to CSiBORG1 * Add overlap path simname * Fix little things * Add CSiBORG2 catalogue * Update README * Add import * Add TNG density field constructor * Add TNG density * Add draft of calculating BORG ACL * Fix bug * Add ACL of enclosed density * Add nmean acl * Add galaxy bias calculation * Add BORG acl notebook * Add enclosed mass calculation * Add TNG300-1 dir * Add TNG300 and BORG1 dir * Update nb
2024-01-30 16:14:07 +00:00
}
],
"source": [
2024-03-28 12:23:52 +00:00
"plt.figure()\n",
"plt.hist(np.log10(fval1_cb2[0, :, 2]), bins=\"auto\", density=1, histtype=\"step\",\n",
" label=\"Random\")\n",
"plt.hist(np.log10(fval2_cb2[10, :, 2]), bins=\"auto\", density=1, histtype=\"step\",\n",
" label=\"CSiBORG\")\n",
"# plt.yscale(\"log\")\n",
"plt.legend()\n",
"plt.xlabel(r\"$\\log \\rho ~ [h^2 M_\\odot / \\mathrm{kpc}^3]$\")\n",
"plt.ylabel(\"Normalized counts\")\n",
"plt.tight_layout()\n",
"plt.savefig(\"../plots/test_samples.png\", dpi=450)\n",
"plt.show()"
Overlap fixing and more (#107) * Update README * Update density field reader * Update name of SDSSxALFAFA * Fix quick bug * Add little fixes * Update README * Put back fit_init * Add paths to initial snapshots * Add export * Remove some choices * Edit README * Add Jens' comments * Organize imports * Rename snapshot * Add additional print statement * Add paths to initial snapshots * Add masses to the initial files * Add normalization * Edit README * Update README * Fix bug in CSiBORG1 so that does not read fof_00001 * Edit README * Edit README * Overwrite comments * Add paths to init lag * Fix Quijote path * Add lagpatch * Edit submits * Update README * Fix numpy int problem * Update README * Add a flag to keep the snapshots open when fitting * Add a flag to keep snapshots open * Comment out some path issue * Keep snapshots open * Access directly snasphot * Add lagpatch for CSiBORG2 * Add treatment of x-z coordinates flipping * Add radial velocity field loader * Update README * Add lagpatch to Quijote * Fix typo * Add setter * Fix typo * Update README * Add output halo cat as ASCII * Add import * Add halo plot * Update README * Add evaluating field at radial distanfe * Add field shell evaluation * Add enclosed mass computation * Add BORG2 import * Add BORG boxsize * Add BORG paths * Edit run * Add BORG2 overdensity field * Add bulk flow clauclation * Update README * Add new plots * Add nbs * Edit paper * Update plotting * Fix overlap paths to contain simname * Add normalization of positions * Add default paths to CSiBORG1 * Add overlap path simname * Fix little things * Add CSiBORG2 catalogue * Update README * Add import * Add TNG density field constructor * Add TNG density * Add draft of calculating BORG ACL * Fix bug * Add ACL of enclosed density * Add nmean acl * Add galaxy bias calculation * Add BORG acl notebook * Add enclosed mass calculation * Add TNG300-1 dir * Add TNG300 and BORG1 dir * Update nb
2024-01-30 16:14:07 +00:00
]
},
2024-03-28 12:23:52 +00:00
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
Overlap fixing and more (#107) * Update README * Update density field reader * Update name of SDSSxALFAFA * Fix quick bug * Add little fixes * Update README * Put back fit_init * Add paths to initial snapshots * Add export * Remove some choices * Edit README * Add Jens' comments * Organize imports * Rename snapshot * Add additional print statement * Add paths to initial snapshots * Add masses to the initial files * Add normalization * Edit README * Update README * Fix bug in CSiBORG1 so that does not read fof_00001 * Edit README * Edit README * Overwrite comments * Add paths to init lag * Fix Quijote path * Add lagpatch * Edit submits * Update README * Fix numpy int problem * Update README * Add a flag to keep the snapshots open when fitting * Add a flag to keep snapshots open * Comment out some path issue * Keep snapshots open * Access directly snasphot * Add lagpatch for CSiBORG2 * Add treatment of x-z coordinates flipping * Add radial velocity field loader * Update README * Add lagpatch to Quijote * Fix typo * Add setter * Fix typo * Update README * Add output halo cat as ASCII * Add import * Add halo plot * Update README * Add evaluating field at radial distanfe * Add field shell evaluation * Add enclosed mass computation * Add BORG2 import * Add BORG boxsize * Add BORG paths * Edit run * Add BORG2 overdensity field * Add bulk flow clauclation * Update README * Add new plots * Add nbs * Edit paper * Update plotting * Fix overlap paths to contain simname * Add normalization of positions * Add default paths to CSiBORG1 * Add overlap path simname * Fix little things * Add CSiBORG2 catalogue * Update README * Add import * Add TNG density field constructor * Add TNG density * Add draft of calculating BORG ACL * Fix bug * Add ACL of enclosed density * Add nmean acl * Add galaxy bias calculation * Add BORG acl notebook * Add enclosed mass calculation * Add TNG300-1 dir * Add TNG300 and BORG1 dir * Update nb
2024-01-30 16:14:07 +00:00
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Reading fields: 100%|██████████| 20/20 [00:42<00:00, 2.10s/it]\n"
]
}
],
"source": [
"fval_rand, smooth_scales = csiborgtools.summary.read_interpolated_field(survey, \"csiborg2_random\", \"density\", \"SPH\", 1024, paths)"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['SERSIC_ABSMAG_F',\n",
" 'SERSIC_ABSMAG_N',\n",
" 'SERSIC_ABSMAG_u',\n",
" 'SERSIC_ABSMAG_g',\n",
" 'SERSIC_ABSMAG_r',\n",
" 'SERSIC_ABSMAG_i',\n",
" 'SERSIC_ABSMAG_z',\n",
" 'ELPETRO_ABSMAG_F',\n",
" 'ELPETRO_ABSMAG_N',\n",
" 'ELPETRO_ABSMAG_u',\n",
" 'ELPETRO_ABSMAG_g',\n",
" 'ELPETRO_ABSMAG_r',\n",
" 'ELPETRO_ABSMAG_i',\n",
" 'ELPETRO_ABSMAG_z',\n",
" 'SERSIC_APPMAG_F',\n",
" 'SERSIC_APPMAG_N',\n",
" 'SERSIC_APPMAG_u',\n",
" 'SERSIC_APPMAG_g',\n",
" 'SERSIC_APPMAG_r',\n",
" 'SERSIC_APPMAG_i',\n",
" 'SERSIC_APPMAG_z',\n",
" 'ELPETRO_APPMAG_F',\n",
" 'ELPETRO_APPMAG_N',\n",
" 'ELPETRO_APPMAG_u',\n",
" 'ELPETRO_APPMAG_g',\n",
" 'ELPETRO_APPMAG_r',\n",
" 'ELPETRO_APPMAG_i',\n",
" 'ELPETRO_APPMAG_z',\n",
" 'SERSIC_COL_FF',\n",
" 'SERSIC_COL_FN',\n",
" 'SERSIC_COL_Fu',\n",
" 'SERSIC_COL_Fg',\n",
" 'SERSIC_COL_Fr',\n",
" 'SERSIC_COL_Fi',\n",
" 'SERSIC_COL_Fz',\n",
" 'SERSIC_COL_NF',\n",
" 'SERSIC_COL_NN',\n",
" 'SERSIC_COL_Nu',\n",
" 'SERSIC_COL_Ng',\n",
" 'SERSIC_COL_Nr',\n",
" 'SERSIC_COL_Ni',\n",
" 'SERSIC_COL_Nz',\n",
" 'SERSIC_COL_uF',\n",
" 'SERSIC_COL_uN',\n",
" 'SERSIC_COL_uu',\n",
" 'SERSIC_COL_ug',\n",
" 'SERSIC_COL_ur',\n",
" 'SERSIC_COL_ui',\n",
" 'SERSIC_COL_uz',\n",
" 'SERSIC_COL_gF',\n",
" 'SERSIC_COL_gN',\n",
" 'SERSIC_COL_gu',\n",
" 'SERSIC_COL_gg',\n",
" 'SERSIC_COL_gr',\n",
" 'SERSIC_COL_gi',\n",
" 'SERSIC_COL_gz',\n",
" 'SERSIC_COL_rF',\n",
" 'SERSIC_COL_rN',\n",
" 'SERSIC_COL_ru',\n",
" 'SERSIC_COL_rg',\n",
" 'SERSIC_COL_rr',\n",
" 'SERSIC_COL_ri',\n",
" 'SERSIC_COL_rz',\n",
" 'SERSIC_COL_iF',\n",
" 'SERSIC_COL_iN',\n",
" 'SERSIC_COL_iu',\n",
" 'SERSIC_COL_ig',\n",
" 'SERSIC_COL_ir',\n",
" 'SERSIC_COL_ii',\n",
" 'SERSIC_COL_iz',\n",
" 'SERSIC_COL_zF',\n",
" 'SERSIC_COL_zN',\n",
" 'SERSIC_COL_zu',\n",
" 'SERSIC_COL_zg',\n",
" 'SERSIC_COL_zr',\n",
" 'SERSIC_COL_zi',\n",
" 'SERSIC_COL_zz',\n",
" 'ELPETRO_COL_FF',\n",
" 'ELPETRO_COL_FN',\n",
" 'ELPETRO_COL_Fu',\n",
" 'ELPETRO_COL_Fg',\n",
" 'ELPETRO_COL_Fr',\n",
" 'ELPETRO_COL_Fi',\n",
" 'ELPETRO_COL_Fz',\n",
" 'ELPETRO_COL_NF',\n",
" 'ELPETRO_COL_NN',\n",
" 'ELPETRO_COL_Nu',\n",
" 'ELPETRO_COL_Ng',\n",
" 'ELPETRO_COL_Nr',\n",
" 'ELPETRO_COL_Ni',\n",
" 'ELPETRO_COL_Nz',\n",
" 'ELPETRO_COL_uF',\n",
" 'ELPETRO_COL_uN',\n",
" 'ELPETRO_COL_uu',\n",
" 'ELPETRO_COL_ug',\n",
" 'ELPETRO_COL_ur',\n",
" 'ELPETRO_COL_ui',\n",
" 'ELPETRO_COL_uz',\n",
" 'ELPETRO_COL_gF',\n",
" 'ELPETRO_COL_gN',\n",
" 'ELPETRO_COL_gu',\n",
" 'ELPETRO_COL_gg',\n",
" 'ELPETRO_COL_gr',\n",
" 'ELPETRO_COL_gi',\n",
" 'ELPETRO_COL_gz',\n",
" 'ELPETRO_COL_rF',\n",
" 'ELPETRO_COL_rN',\n",
" 'ELPETRO_COL_ru',\n",
" 'ELPETRO_COL_rg',\n",
" 'ELPETRO_COL_rr',\n",
" 'ELPETRO_COL_ri',\n",
" 'ELPETRO_COL_rz',\n",
" 'ELPETRO_COL_iF',\n",
" 'ELPETRO_COL_iN',\n",
" 'ELPETRO_COL_iu',\n",
" 'ELPETRO_COL_ig',\n",
" 'ELPETRO_COL_ir',\n",
" 'ELPETRO_COL_ii',\n",
" 'ELPETRO_COL_iz',\n",
" 'ELPETRO_COL_zF',\n",
" 'ELPETRO_COL_zN',\n",
" 'ELPETRO_COL_zu',\n",
" 'ELPETRO_COL_zg',\n",
" 'ELPETRO_COL_zr',\n",
" 'ELPETRO_COL_zi',\n",
" 'ELPETRO_COL_zz',\n",
" 'DIST',\n",
" 'DIST_UNCORRECTED',\n",
" 'SERSIC_MASS',\n",
" 'ELPETRO_MASS',\n",
" 'SERSIC_MTOL_F',\n",
" 'SERSIC_MTOL_N',\n",
" 'SERSIC_MTOL_u',\n",
" 'SERSIC_MTOL_g',\n",
" 'SERSIC_MTOL_r',\n",
" 'SERSIC_MTOL_i',\n",
" 'SERSIC_MTOL_z',\n",
" 'ELPETRO_MTOL_F',\n",
" 'ELPETRO_MTOL_N',\n",
" 'ELPETRO_MTOL_u',\n",
" 'ELPETRO_MTOL_g',\n",
" 'ELPETRO_MTOL_r',\n",
" 'ELPETRO_MTOL_i',\n",
" 'ELPETRO_MTOL_z',\n",
" 'IN_DR7_LSS',\n",
" 'IAUNAME',\n",
" 'SUBDIR',\n",
" 'RA_1',\n",
" 'DEC_1',\n",
" 'ISDSS',\n",
" 'INED',\n",
" 'ISIXDF',\n",
" 'IALFALFA',\n",
" 'IZCAT',\n",
" 'ITWODF',\n",
" 'MAG',\n",
" 'Z',\n",
" 'ZSRC',\n",
" 'SIZE',\n",
" 'RUN',\n",
" 'CAMCOL',\n",
" 'FIELD',\n",
" 'RERUN',\n",
" 'XPOS',\n",
" 'YPOS',\n",
" 'NSAID',\n",
" 'ZDIST',\n",
" 'SERSIC_NMGY',\n",
" 'SERSIC_NMGY_IVAR',\n",
" 'SERSIC_OK',\n",
" 'SERSIC_RNMGY',\n",
" 'SERSIC_ABSMAG',\n",
" 'SERSIC_AMIVAR',\n",
" 'EXTINCTION',\n",
" 'SERSIC_KCORRECT',\n",
" 'SERSIC_KCOEFF',\n",
" 'SERSIC_MTOL',\n",
" 'SERSIC_B300',\n",
" 'SERSIC_B1000',\n",
" 'SERSIC_METS',\n",
" 'SERSIC_MASS',\n",
" 'XCEN',\n",
" 'YCEN',\n",
" 'NPROF',\n",
" 'PROFMEAN',\n",
" 'PROFMEAN_IVAR',\n",
" 'QSTOKES',\n",
" 'USTOKES',\n",
" 'BASTOKES',\n",
" 'PHISTOKES',\n",
" 'PETRO_FLUX',\n",
" 'PETRO_FLUX_IVAR',\n",
" 'FIBER_FLUX',\n",
" 'FIBER_FLUX_IVAR',\n",
" 'PETRO_BA50',\n",
" 'PETRO_PHI50',\n",
" 'PETRO_BA90',\n",
" 'PETRO_PHI90',\n",
" 'SERSIC_FLUX',\n",
" 'SERSIC_FLUX_IVAR',\n",
" 'SERSIC_N',\n",
" 'SERSIC_BA',\n",
" 'SERSIC_PHI',\n",
" 'ASYMMETRY',\n",
" 'CLUMPY',\n",
" 'DFLAGS',\n",
" 'AID',\n",
" 'PID',\n",
" 'DVERSION',\n",
" 'PROFTHETA',\n",
" 'PETRO_THETA',\n",
" 'PETRO_TH50',\n",
" 'PETRO_TH90',\n",
" 'SERSIC_TH50',\n",
" 'PLATE',\n",
" 'FIBERID',\n",
" 'MJD',\n",
" 'RACAT',\n",
" 'DECCAT',\n",
" 'ZSDSSLINE',\n",
" 'SURVEY',\n",
" 'PROGRAMNAME',\n",
" 'PLATEQUALITY',\n",
" 'TILE',\n",
" 'PLUG_RA',\n",
" 'PLUG_DEC',\n",
" 'ELPETRO_BA',\n",
" 'ELPETRO_PHI',\n",
" 'ELPETRO_FLUX_R',\n",
" 'ELPETRO_FLUX_IVAR_R',\n",
" 'ELPETRO_THETA_R',\n",
" 'ELPETRO_TH50_R',\n",
" 'ELPETRO_TH90_R',\n",
" 'ELPETRO_THETA',\n",
" 'ELPETRO_FLUX',\n",
" 'ELPETRO_FLUX_IVAR',\n",
" 'ELPETRO_TH50',\n",
" 'ELPETRO_TH90',\n",
" 'ELPETRO_APCORR_R',\n",
" 'ELPETRO_APCORR',\n",
" 'ELPETRO_APCORR_SELF',\n",
" 'ELPETRO_NMGY',\n",
" 'ELPETRO_NMGY_IVAR',\n",
" 'ELPETRO_OK',\n",
" 'ELPETRO_RNMGY',\n",
" 'ELPETRO_ABSMAG',\n",
" 'ELPETRO_AMIVAR',\n",
" 'ELPETRO_KCORRECT',\n",
" 'ELPETRO_KCOEFF',\n",
" 'ELPETRO_MASS',\n",
" 'ELPETRO_MTOL',\n",
" 'ELPETRO_B300',\n",
" 'ELPETRO_B1000',\n",
" 'ELPETRO_METS',\n",
" 'IN_DR7_LSS',\n",
" '#AGC',\n",
" 'objID',\n",
" 'parentID',\n",
" 'specObjID',\n",
" 'ra_2',\n",
" 'dec_2',\n",
" 'modelMag_u',\n",
" 'modelMag_g',\n",
" 'modelMag_r',\n",
" 'modelMag_i',\n",
" 'modelMag_z',\n",
" 'modelMagErr_u',\n",
" 'modelMagErr_g',\n",
" 'modelMagErr_r',\n",
" 'modelMagErr_i',\n",
" 'modelMagErr_z',\n",
" 'cModelMag_u',\n",
" 'cModelMag_g',\n",
" 'cModelMag_r',\n",
" 'cModelMag_i',\n",
" 'cModelMag_z',\n",
" 'cModelMagErr_u',\n",
" 'cModelMagErr_g',\n",
" 'cModelMagErr_r',\n",
" 'cModelMagErr_i',\n",
" 'cModelMagErr_z',\n",
" 'petroMag_u',\n",
" 'petroMag_g',\n",
" 'petroMag_r(28)',\n",
" 'petroMag_i',\n",
" 'petroMag_z',\n",
" 'petroMagErr_u',\n",
" 'petroMagErr_g',\n",
" 'petroMagErr_r',\n",
" 'petroMagErr_i',\n",
" 'petroMagErr_z',\n",
" 'petroRad_u',\n",
" 'petroRad_g',\n",
" 'petroRad_r',\n",
" 'petroRad_i',\n",
" 'petroRad_z',\n",
" 'petroR50_g',\n",
" 'petroR50_r',\n",
" 'petroR50_i',\n",
" 'petroR90_g',\n",
" 'petroR90_r',\n",
" 'petroR90_i',\n",
" 'extinction_u',\n",
" 'extinction_g',\n",
" 'extinction_r',\n",
" 'extinction_i',\n",
" 'extinction_z',\n",
" 'expAB_g',\n",
" 'expAB_r',\n",
" 'expAB_i',\n",
" 'expMag_g',\n",
" 'expMag_r',\n",
" 'expMag_i',\n",
" 'flags_u',\n",
" 'flags_g',\n",
" 'flags_r',\n",
" 'flags_i',\n",
" 'flags_z',\n",
" 'flags',\n",
" 'lnLExp_r',\n",
" 'lnLDeV_r',\n",
" 'type',\n",
" 'fracDev_g',\n",
" 'fracDev_r',\n",
" 'fracDev_i',\n",
" 'expRad_g',\n",
" 'expRad_r',\n",
" 'expRad_i',\n",
" '#AGCNr',\n",
" 'Name',\n",
" 'RAdeg_HI',\n",
" 'DECdeg_HI',\n",
" 'RAdeg_OC',\n",
" 'DECdeg_OC',\n",
" 'Vhelio',\n",
" 'W50',\n",
" 'sigW',\n",
" 'W20',\n",
" 'HIflux',\n",
" 'sigflux',\n",
" 'SNR',\n",
" 'RMS',\n",
" 'Dist',\n",
" 'sigDist',\n",
" 'logMH',\n",
" 'siglogMH',\n",
" 'HIcode',\n",
" 'Separation',\n",
" 'INDEX']"
]
},
"execution_count": 51,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"survey.keys"
]
},
{
"cell_type": "code",
"execution_count": 90,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/mnt/zfsusers/rstiskalek/csiborgtools/csiborgtools/read/obs.py:374: UserWarning: Returning a FITS property `SERSIC_B300`. Be careful about little h!\n",
" warn(f\"Returning a FITS property `{key}`. \"\n"
]
}
],
"source": [
"col = np.log10(survey[\"SERSIC_B300\"])"
]
},
{
"cell_type": "code",
"execution_count": 91,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(20, 17737, 5)"
]
},
"execution_count": 91,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"fval.shape"
]
},
{
"cell_type": "code",
"execution_count": 96,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"8.0\n",
"MAIN SignificanceResult(statistic=0.01800564415653568, pvalue=0.01648383065884433)\n",
"RAND SignificanceResult(statistic=-0.09834925186515843, pvalue=2.2430402522333184e-39)\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiYAAAGdCAYAAAAmK7htAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACdAklEQVR4nO29f5AU533n/+6Z6Z1tbWBnV0bGs5Y3hAucYLULtREmsYvDTgzxbQRUXTlV5PA5uVRy4ZTwh8NdSUFks4f4WpVQ9wOFcEmuKnGOKsp3SR1CWcdIZ4UiVkKhIsBqQYEch1euHSNhLbPi1rOz86O/f/R8nn36me6ent/ds59XlY12pn88/XTPPJ/5/Hh/NNM0TTAMwzAMwwSASLsHwDAMwzAMQ7BhwjAMwzBMYGDDhGEYhmGYwMCGCcMwDMMwgYENE4ZhGIZhAgMbJgzDMAzDBAY2TBiGYRiGCQxsmDAMwzAMExhi7R5AtRSLRaRSKaxatQqaprV7OAzDMAzD+MA0TTx69AjJZBKRiLtfJHSGSSqVwpNPPtnuYTAMwzAMUwPf+9738MlPftL1/dAZJqtWrQJgXdjq1avbPBqGYRiGYfzw0Ucf4cknnxTruBuhM0wofLN69Wo2TBiGYRgmZFRKw+DkV4ZhGIZhAgMbJgzDMAzDBAY2TBiGYRiGCQxsmDAMwzAMExjYMGEYhmEYJjCwYcIwDMMwTGBgw4RhGIZhmMDAhgnDMAzDMIGBDROGYRiGYQIDGyYMwzAMwwQGNkwYhmEYhgkMbJgwDMMwDBMY2DBhGIZhVixnLs/gMy+/iTOXZ9o9FKYEGyYMwzBMaCHD4tDZazUZGKcv3sVsOoPTF+82aYTLsBHkj9AYJqdOncKmTZvwzDPPtHsoDMMwTEAgw2JyKlWTgXFw53oMJAwc3Lm+6nNXa2i00ggKM6ExTJ577jncunULb7/9druHwjAMw/igFR4CMizGhpOOBobTGOTXDmwfxFvPfx4Htg9Wfe5qDY16jKCVhGaaptnuQVTDRx99hN7eXszPz2P16tXtHg7DMAzjwmdefhOz6QwGEgbeev7zgRlDteM6c3kGpy/excGd64UBc+byDE5cuI1svoh4LILDuzfWZNysJPyu36HxmDAMwzDhol0eAtkj4jSGgzvXI2HoWMjmhSfFy7tDnpHxV6fF+6cv3kU6k8NSvoB0JocTF25jy8Tr2DLxOueQ1AkbJgzDMAyA6kIvfratJ0xSD3KIxWkMB7YPoiceQzqTE2EYr7DMwZ3rEdWAggnxvhpCAoB0JieMFICTXWuFDROGYZgWEIZFqpqciSAncvrx1KjbVNpnVbeOhKFjdLAPWyZex4kLt3Fw53qc3L/VdZ8TF25jNp3B0XPTvjwzjAXnmDAMwyg45RTUSxDyLSpRzXU3Y46CinzvAGA2nQEAJAwdPfEYFrJ5pDM58TfNyZaJ15HO5ABA3Hc6VlQDJvYOdfzcyXCOCcMwTI00wxsQhoqMakIv7QrTNIJqvRbyvaP8lIShA1g2UgYSBg7v3mibk8O7N4ptZc+MGhZi7LBhwjAMo9AMIyLMC3kzcTMSmhnyUA3PSueS792B7YO4Pr4L18d34fDujTaDBIDtOAe2D+Lw7o3oicdsx5rYO+S7tNnPe50Gh3IYhmGYtoVm3EJczQx9ydcKAOOvTqNgou5zUehGA3BsnxWmqeY6vLalYycMHdfHdzleS9CNXg7lMAzDML5pVzKrm3eqmaEv2QNy+uJdFEo/z0cH+6o6jpsXw0R59Q5dh5fno5ZrDnIScq2wx4RhGIYJ1S/vRnLm8kxVHhN5nk5cuG3zkAAQpcJOgmtu5/Iz9+o29PfoYB+uzjwMxX3zu36zYcIwDNNmVqpR0Coqza+bsqvTa2RYJAwd85kc5AXU0CM4MrbJ9R66VeTUEraqtE8QDRcO5TAMw4SETnTHtwK/CaFOyq0yB7YP4uDO9Th98a5N2VW9JxT2iWrW3yYATTpOJlcsS6iVux5TqEYtE5ZDOH6vqVLYp97mhu2EDROGYZg2E4ZS4iDi16BTS3SdFn/1WE7GwuhgnzAsqCLn2L4h7BlJQoPlMaF7qBoGJy7ctiXcqtU7cs6Ln2uqVOVVqblhkOFQDsMwjEIrQiscvqkftzl0yseQcz9o8ZfDIIfOXsPkVApjw0lsW9dv25/CJqqAmp+xUShlbiGLTK4IQ49gMVeECdgqbIIYemk0HMph6mYl1c0zjEwrQiscvqkfN6+BOrfUcK8nHhNhG9WLcHXmIQqm9a8a+qHtAfi+ZzQ2kqxfzBUBQBglKnTOqzMPV7zeDRsmjCv8xcmsVFoRWuHwTfNQwzAL2bxNfdXJoHm8p0v8q4Z+aHsK38j3zM8PuBMXbot8lKcHesXrOzassY1Z7Xi8UmHDhHGFvziZlUorVFpZCbY2zlyewZaJ17Fl4nVfC7jqLXHjZmpe/Htg+yDGhpOIasvaJm5ho0o/4M5cnsF8qV9Or6Hjw4Ul8d7VmYfiv506Hq9U2DBhXOEvToZhggYZGl4LuGws+PVEkCEyNpwEYA/tAMudgo9PvmvzkKjHV6txZG8JYBk6av8copofg4fOXsP6FyZx6Oy1ituGDTZMGIZhmNAgN9FzW8BHB/uEt4N+WKUzOZEA68S2df1Y22tg27p+23lUgyaTK4gqG6Dc06FW4wAQDf/SmRwmp1LYsWGNrX8OIf8YrGR4TE6lUDCtf/0QppxBNkwYhmGY0ODUGE/mzOUZ26LtdyF2Csk8Wlz2zFCnYCKdyWHPK9/BZ15+Eyils1J+ilymS2OlhNeCCbx2I2UzbpyoZHioHp5ari+osGHCMAzDhAqvRVbufUPJq3IXYCecEmRlMTXKK1GNoanZecymM5hNL4q/AYhqHPJ+kLGyZySJhKELIyWbL5aJsBGVDI+T+7fi7tfGsG1df0ME2YKEs8nJMAzDMFWi6oXUk5/mpfNCKq1Oi+zBneuFbLxsVHiNhfJWBhKG2E4+B702OtiH+/MZrO3tFsaICgmpqXoksvx8OpNDVAPisQhm0xncn8+gYFpdjolLdx5gVbcuQkteYycjzesaK81BkGCPCcMwDNMQ/CSmVnMsN6+IV2L+ge2DmNg75Cj97oaTyitgeT6u3JsTuR6X7jxAwQQWsgW8tG8ICUMXSa0JQ7dpnVCOiSyDT54ZQ4+iKxZBNl9EwtCFd4Q8PNXMY5g8IX5hw4RhGCYEhCF50U9iajXH8rvgqnNTbUWhlyS8U65HNl8QIaJj+4ZEmEjWOlGNDWDZcFvKF5DJFZHJFdATj+Hk/q3CmDq4c31V8+jU5yfssCQ9wzBMCKilA+1KoZ65cZKvl8NExydvYTFXxLMjy1L1JC+fMHQhce8ki6+GtWTZ+Ut3HtjeqzQ2AK6hrbA8GyxJzzAMExAa4e3oRJd9o6jHu6J6SFTvSSZXRDJh4OT+reK9eCwKAJgvlSA7dS4+ceE20pmcEFeT2bauH9fHd+H6+C5hsDg9H/LYvEJbnfZssMeEYRimyYTlF23Y8dMYUb0XXvu4NdY7dPYazt+wQjsJQ8ejxRwKpvXf2VKYRmXPSBJXZx46Pgc0pqgGW16MX49JWGCPCcMwTAOpx+vRab9o240fD4PbfmpZsNc5Tly4jbmFrNAdoTwOyjeJalYohvJJVKNEk443OZWyCb+pY9Jgz0cB7N6blaTEzYYJwzCMD+oRqFpJi0o11Grsud2LSvLzTn1z3I5F22ZK3YDJoKBSZADoillLKMnXy6aIoUdwbN8Q9owkoZW2fePWfRRM4K/e+b6o9KGQT7cedTVew5D43EjYMGEYhvEBez0aT63Gntu9qNQIz2k/t2ORkaNHNGiwhM6WDRCLTK4owisDCQPxkqEykDDw7rEv4sD2QZzcvxW9hl6qwrG8KbmiWVbpE49FXI1Xmie19LhTjRXOMWEYhmHagp+ckHqPWe85tky8jnQmZ6vAoaocDcCxfcs5IYfOXsPkVApre7txf34Rm5O9+HBhSWxv6BH098TxeE8X3pmdR7cewRc2rbXlr7hdE3lqKD8ljHlLftdvVn5lGIZhmo6TgVC
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"k = 3\n",
"n = 5\n",
"print(smooth_scales[k])\n",
"print(\"MAIN \", spearmanr(col, fval[n, :, k]))\n",
"print(\"RAND \", spearmanr(col, fval_rand[n, :, k]))\n",
"\n",
"plt.figure()\n",
"plt.scatter(col, fval[n, :, k], s=1)\n",
"# plt.scatter(col, fval_rand[n, :, k], s=1)\n",
"plt.yscale(\"log\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 100,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"MAIN SignificanceResult(statistic=0.01727582463129473, pvalue=0.021402398915955124)\n",
"RAND SignificanceResult(statistic=0.02077892643371117, pvalue=0.00564970605187618)\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiYAAAGdCAYAAAAmK7htAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACcrElEQVR4nO29f3AUZ37n/+6ZaY3GCmgkL16vtLaWcIGzLAsoxSzJ+jjWWUMchR91V8kVd+Q2uVRy4TbLHxvuCgezOoL52pVQuT0cQnK5qlxyVFG7udRhE+0u9sWhSJyl8BF+WOBAwrGySwpe1kIy0Y5G86O/f/R8nnn6mad7en53jz6vKhfWTE/300/3zPPpz4/3x7AsywLDMAzDMEwAiLR6AAzDMAzDMAQbJgzDMAzDBAY2TBiGYRiGCQxsmDAMwzAMExjYMGEYhmEYJjCwYcIwDMMwTGBgw4RhGIZhmMDAhgnDMAzDMIEh1uoBVEo+n8f09DSWLVsGwzBaPRyGYRiGYXxgWRYePHiAvr4+RCLufpHQGSbT09N47LHHWj0MhmEYhmGq4IMPPsCnP/1p1/dDZ5gsW7YMgH1iy5cvb/FoGIZhGIbxw8cff4zHHntMrONuhM4wofDN8uXL2TBhGIZhmJBRLg2Dk18ZhmEYhgkMbJgwDMMwDBMY2DBhGIZhGCYwsGHCMAzDMExgYMOEYRiGYZjAwIYJwzAMwzCBgQ0ThmEYhmECAxsmDMMwDMMEBjZMGIZhGIYJDGyYMAzDMAwTGNgwYRiGYRgmMLBhwjAMwzBMYGDDhGEYhlmynLwwic+98hZOXphs9VCYAmyYMAzDMKGFDIu9py5XZWCcOHcbU7MpnDh3u0EjLMJGkD/YMGEYhmFCCxkW49emqzIw9mxehf5kAns2r6r42JUaGs00gsIMGyYMwzBMQ2iGh4AMi9HhPq2BoRuD/NrujQN4e/+z2L1xoOJjV2po1GIELSUMy7KsVg+iEj7++GN0d3djbm4Oy5cvb/VwGIZhGBc+98pbmJpNoT+ZwNv7nw3MGOi1qAEc2jFU1ig5eWESJ87dxp7Nq8S2Jy9M4ujZm0hn84jHIti3dU1Vxs1Swu/6HRqPyfHjxzE4OIinn3661UNhGIZhfNAqD4HsEdGNYc/mVYgaQM6C8HZ4eXfIMzL22oR4/8S525hNZbCYzWE2lcHRszex7tAbWHfoDc4hqRH2mDAMwzAVo/MiBAU/nhp1/F6fOXlhEmOvTSBnQbxPnx8Z6MGlyfuYT2cxm8oAAJIJE1fGtrh6WoI6b42m7TwmDMMwYSYMFRmVjDHIiZx+PDVqbkm5zyzrNJFMmNizeZXDuDi2a73rZ46evYmp2RQOnnZ6WoI6b0GBDROGYRiFRhgRYViQKhljkBM5yyW06q6v12cobNMVjwEAxl6bcMwTvZ9MmOhPJrBv6xrH5y0UQ0Z7Nq9CMmFiPp0NtJHaStgwYRiGUWiEERHkhZyoZIy1VLO0mlqqaU6cu42cBUQNYGSgB5975S2MDPQIg0Sek31b1yCZKHpaAHveuuIxzKYygTZSWwnnmDAMwygs5TyApYB6fSu53vK2ZOBUWnXkdjyvcbTDPel3/WbDhGEYhmnZwlfNIl3v46uJrZV8Vh7j3lOXMX5tGqPDfTi2a712Gy+8EnDXHXpDhIuujG1xHUOQ4eRXhmEYxjetyoFxO26zxkOhGcAOzVTKfDqLo2dv4uSFSYxfm0bOAl6/Ou2a7Ool+EYhoUrCfWHIXaoUNkwYhmGYluXAuB23WeMhTRMAuDR5v6LPHj17E7OpjMgXGR3uE+/Jya7yeegMCXrt0uR917ydfVvXOBJrazFmgg6HchiGYZhQ4jeMUW47v3ojpPYKAJtWr8CZq9OQF9CEGcFzg4/i0uR91zwR+rysFFtNOKacVouqsxKEUA+HchiGYUJCGDROgojfMIZOuVVm98YBkczqpTdCZcGzqQzGr9lGSdQACg4XpDJ54fUAUNL1mD5P+6JjyRVOfu+Fch6lWpsbthI2TBiGYVpMO+YJNAO/4R5Vgl63+KvXQN63HDah8l9qGnhoxxC2re2DAdtjooZsyDA4evYm5tNZJBMmALheb7/3Qrly7XLNDYNMrNUDYBiGCRrNqHSQj0FP62FaPILA7o0DvkMzyzptg0Au8z1x7rZ4f2SgB3fnUhgZ6HGVq59PZ9EVj5XcF7s3DogqHIKOQ6GUmfk0Upk8EmYEgAEDzmRbOfRCn2/E3IQBNkwYV8JUhsYw9US3cDXyGGEVKgsqqtdBLgemeVYNwUuT95Gz7H8vTd4XoR+gaGTMp7O+7wvZMDh5YRIHT9v7WsjkRV6KnGxLY747l/LV8bid4VAO4wq7l5mlSjMqQsKgBBtW3JRaZfVV1RgcGegRaq5q6Ie2p8oY+Zr5yQk5evYmLNi5KE/1dzuOKY9Z7Xi8VGGPCeMKu5eZpUoz3OBhdrW3ErfKFhl1bv14fmWPCYVl5N8/WTxN3beXF+XkhUnMFRJeuxMmPppfdBxTHrN6zKUKGyaMK/zDyTBM0FArW/zmmJAXwu03Tc4x0UHiaePXph35JHs2rxKJrXJFDx37xLnbonqHNEjIsFINkEp+c3Uqs+0Ch3IYhmGY0EDdeeXGeCpHz94UlTC6v3XIHhOgtMR4dNiuvIkYBtYdegMnL0wKAwiAEFmjzx09e9NRyUPJt7s3DmDf1jWiU7Ebe09dxqoXxrH31GXt+7Kh5IcwlaSzYcIwDMOEhnILuxw6qQQ5x4T+Boo5H8d2rUdfMoFM3sJsKoODpyeEwZPO5h35Kf3JBAAINVfqJnzw9ATWHXoDR8ZvlDWUyhkeo8N9iBpwqM16EaacQTZMGIZhmLrRjCdzr0WWQickenbywmSJnLtuzGQIkMeE/pWTZvdsXiX2awGYX8wiagDZXB45Czhz1TYi1ERZSmy1YHtWUpk8ACCdzZeIsBHlDI9ju9bj9suj2LCyty6CbEGCDROGYRimbtTrydzLwPFaZOm97oQpwivlxMh0lTuyQBmJsu3eOIDDO4eEcZLNWchZQDZvFwBbgAjhXLwzI/a/e+MADu0YQjJhis9GDSAei2jVWU9emMSlyfs4tGOobP5IvQTZggQbJgzDMEzdqNeTudeCqy6yshFD8vIAPPNQdGM+tGMIgC0lD9iej/O37omwy95TlzH22gSe6u9GMmGi04wgYUbQaUaRMCMOVVcyNihHZffGAVwZ24LDO4eEwUNjVNVZy0noq2NPJkxH8m3YYcOEYRgmBIQhebGeooyVGDiqEUOVO13xmK9xyIaOl0FE4Z53p+bwYMEOySxm80hlcujtiuPK2BYRwqFQjKxLIs/Ppcn7YozHdq139OqRNU3KGSe7Nw6IHJYw5I/4gQ0ThmGYEBCG5MV6jrGS0INqxNTitVE/K+enkLERixjIWXYey5N93Y6kWRr3sV3rcWjHkNYTIvfNUd+j0NOhHUNl+/u4jTnsGJZlWeU3Cw5+2yYzDMMEhXp4EsLQIiIMY1SpZszrDr2B2VQGBiByWaIGHFLyuv2S9khHLIJUJo/+ZEJ0ItZtL79Ghov8mbDhd/1mw4RhGMYHtSy61AQuzItKGKjmGnldG1KZTWdziMeiDoG0uVQGFuwcEfr/hBlBPBZFOpvHQiYn3qfGf2RcyK/t3jjgS802jEafit/1m0M5DMMwPqglTNFurvZW4xbW8JM0qn7W69pQrkoqk3cIqJHybDJhYt/WNeguJL0uFLZLFYwSA3Z5MIVv6FibVq/QHsctT6QdjJJKYMOEYRjGB7UYF2Eq1Wwm1Sb0uhmJfhrhqZ/1ujZU8UIVNyMDPZhPZwFAdAgmwbf+ZMLRoE9lLpXBN975AHfnUnjzxodiDCcvTGI+nRXHcDOQ1PMNQzJ0tbBhwjAM4wM2LupPtV4oNyORkka9DEi/BqYcXjkwOogrY1tEJY2hbEv3BjXoixq2N0UWerMAXJuaQ84CFjI5UeJ7ZPw9zKYyiMeiuDK2xdVAUscchmToauEmfgzDMExLqLaDuVezO/U9OQwClHYadguTyCGbF09P4BvvfCAqaR7vfQjvTs0
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"k = 3\n",
"y1 = np.mean(fval[:, :, k], axis=0)\n",
"y2 = np.mean(fval_rand[:, :, k], axis=0)\n",
"\n",
"\n",
"print(\"MAIN \", spearmanr(col, y1))\n",
"print(\"RAND \", spearmanr(col, y2))\n",
"\n",
"plt.figure()\n",
"plt.scatter(col, y1, s=1)\n",
"plt.yscale(\"log\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(22478,)"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"survey.selection_mask.shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"paths.field_interpolated()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"radvel_path = paths.field(\"radvel\", \"SPH\", 1024, 16217, \"csiborg2_main\")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"d = np.load(radvel_path)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"4.1G\t/mnt/extraspace/rstiskalek/csiborg_postprocessing/environment/radvel_csiborg2_main_SPH_16217_1024.npy\n"
]
}
],
"source": [
"!du -h /mnt/extraspace/rstiskalek/csiborg_postprocessing/environment/radvel_csiborg2_main_SPH_16217_1024.npy"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"# x1 = d[\"val\"]"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"x2 = d[\"val\"]"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([ 0., 2., 4., 8., 16.])"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"d[\"smooth_scales\"]"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [],
"source": [
"k = -1\n",
"\n",
"m = np.isfinite(x1[:, k]) & np.isfinite(x2[:, k])"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"SignificanceResult(statistic=0.9946039397587731, pvalue=0.0)\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAGhCAYAAABh6r6nAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABMpklEQVR4nO3de3BT550//veRdLBP/QXLXAKREkziX0Mxjg01AVpycYDEy8+L4+y23UnqhmZn0hkPjdMwbEtKsl5/QxJ36nYyJB5ymXbTxDNemp2WyzoZQ6EuEzZeqGNwHSem8RKFsQu5gEyiCFuX8/1DnOOjqyVb0jmS3q8ZFnx8JD1i3ejD83wugizLMoiIiIhygEnvBRARERGlCwMfIiIiyhkMfIiIiChnMPAhIiKinMHAh4iIiHIGAx8iIiLKGQx8iIiIKGdY9F6Akfj9foyOjmL27NkQBEHv5RAREVEcZFnG559/DpvNBpMp9p4OAx+N0dFRXH/99Xovg4iIiKbh3LlzuO6662Lew8BHY/bs2QACf3Fz5szReTVEREQUj8uXL+P6669XP8djYeCjoRxvzZkzh4EPERFRhoknTYXJzURERJQzGPgQERFRzmDgQ0RERDmDgQ8RERHlDAY+RERElDMY+BAREVHOYOBDREREOYOBDxEREeUMBj5ERESUMxj4EBERUc5g4ENEREQ5g4EPERER5QwGPkRERJQzOJ2diIiIpuWrP30DHr8MABAAnG2p0XdBcWDgQ0RERAlZsqMz7Jqswzqmg4EPERERxaX2ubfQPzIW8XtCmtcyXQx8iIiIaEraY61IMuGYC2DgQ0RERFOIdLSlVVthS9NKZo6BDxEREUXU2NGHA6dHY95Tbi/E7vtWpmlFM8fAh4iIiMLc+FgnYpxsAQA+zJDjLS0GPkRERKSKlcCsVW4vTPi5Gzv60Nk/ippym267RGxgSERERKp4gp5ddWU48PCtCT1ve48DB06PwicDnf2xj89SiTs+REREOa69x4F/3T8w5dGWVbLgVFP1tF6jtWtI/XNNuX7J0NzxISIiymHtPQ48vm/qoAdAQkFPe48D61qOor3HEXTdKom6JkMz8CEiIspR61qO4PF9A1PeV24vTDiReU/3MEacbuzpHgYAbK9eCrtVwvbqpdNaa7Iw8CEiIspBX/3pGxhxXpnyPqtkiSufJ3SHp6GqBHarhMriIqxrOQoAOL5jPerXFs9s4TPEwIeIiCjHrGs5ErMLs0I0CXEfb4Xu8NSvLcbxHetx7MwnGHG6g3J89MTkZiIiohwRb6k6AJgEoKl2+ZT3tfc4sKd7GJXFRQACOz3a7zndHgDAuNc3jRUnHwMfIiKiLLfsiTfh9vjjvr/cXhh3ubqy0wMEjrJCv6fIs5jjfv1UYuBDRESUxWqfeyuhoKe2Yurmgu09DvXo6vabFgAI3ulRNFSVqPfpndSsYOBDRESUheKZsxVqV11ZXMnHe7qH1SOsXscldadHOfZqqCpB/dpi9ZeRMLmZiIgoy6Qy6AECOzlWSYRVEtWdnvYeB5r2DwQlOBsRd3yIiIiyRGNHHw6eHkUcvQiDJBL0AFDv1QY4e7qH4ZMBsxD52MsoGPgQERFliVQFPe09DjzV+R6ueHzYfDUHqLVrCE63R83hcY17YZVEbK9earjjLS0GPkRERBlOGTuRiHgqtyLtIB08PRqU/Dzu9aFp/4C622N0DHyIiIgy2IrmLjjd3oQeY7fmxwx6lB0etye8906+GEgP3l69FHu6h+Ea96pVYz45cOTFHR8iIiJKutrn3ko46AGA4zs2RLw+1ZR2STRhZ00pAKgVW9oGhr2OS4bO7wEY+BAREWWUwG7MYEK9ebTs1vyo32vtGooY9FglEaea7o74GCOWrMfCcnYiIqIMoeTyTDfoMQnRd3tC2a352FVXZoiJ6snEHR8iIqIMMJ3ePFqhHZm13ZeVSiwlb0c5rlKOsLSDRzOdIMtyopVvWevy5csoLCzE2NgY5syZo/dyiIgoxynBybjXN+1dHiC8gktpNui7GgHYrVLYnK11LUcx4nTDLASSliPdYxSJfH7zqIuIiEhH7T0OrGs5ivYeR9j3lF45Mwl6tBVc7T0OLHviTTy+LxD0CIDafTl0HQ1VJbBbJdSU22C3SoZPWo4Xd3w0uONDRETpolRDuca9cLo9YTsqtc+9hf6RsRm9hlkAmu8pAxAIosbcnqCePNrmhcoOj5F3dqJJ5PObOT5ERERppBxfKUGIMvPKNe5FY0cfeh2XAMgYcV6Z8Wv5ZKBp/wBm54vqUFEgsNOzucIWlLPTUFUSlN+TrRj4EBERpUF7jwPNB96FR1MvbhYmGwGOON0zSl6OxicDTrcHkmhGnsUUNFIi0jT1bMccHyIiohRr73HgiX0DQUEPEDiGql9bjMriopSvYW7BLJxqujsouFECLiNPU082Bj5EREQppAQ9oQm1JgFq5+PO/uTv9GgpCcyh61IGi2b78ZYWj7qIiIhSJNbw0Dn54ox78wCBUvXPXBOYVzArYjJ0aP8exZ7uYTWpOheOuBQMfIiIiFIgWtBjt+bDNe6D0+2ZcdDzYUtN0NehlWB2qxQx6AFyJ5k5FAMfIiKiJJpqltbxHRuwovnQjF/HKolhr/uZawK1FTYcO/MJAMQManIlmTkUAx8iIqIkaj74Ljy+6C3yluzoTMrrjHuDAyul2aFr3Bt1oCgxuZmIiCgp2nscuPGxzphBz0yV2wshXP1znoUf4dPBHR8iIqIZUHrhjDjdKXsNkwD87zM1Qa8XeowVOmCUImPgQ0RENAOx8nmSQQDwf6+OnQDCc3OUhGbRJKCpdnlO5u0kgoEPERFRgpI1NT0ehZIYM5hRqrg8fhlN+wNVZAx+omPgQ0REFCflmOmiazzlAY9oEnDNnPwpj65Ek6B2hPbJgf48DHyiY+BDREQ0hdDBoulQkGeZckp6e48DBXmBj/Lbb1qAXscl5vhMgYEPERFRFOkOeMrthfjo4pcAAsnKU9F2X47WqJCCMfAhIiKKQumNkw4CgAMP36p+3d7jUBsdaieqa+Vq9+WZEGRZTteuneFdvnwZhYWFGBsbw5w5c/ReDhER6WQyl2cCbo8vLa8piWbsrFmmDi4NHXcRbeaWlrbUPZfyfBL5/Gbgo8HAh4iI1rUcwYjzStpeTwBgMQtTNj40C0DzPWVo7RoCEJzTowQ561qOYsTpht0qTZkflE0S+fxm20ciIqKrGjv60hr0AEC+aIqr2/NyWyGe2DcAp9sDp9uDzv5RjDjd2NM9rN7TUFUCu1Xi0VcMDHyIiCjntfc4sOyJN2c8LT1RoYNGhQjft1sl7Korw2euCTXBWgBQU25jkDMNTG4mIqKcpVRtpSuBWUuZoq70A7JKIgryLBhxutU/a4+xTpy9iFGnG/miCTtrSgEAvY5LQc+pjM5gL5/ouONDREQ5q/nAu2kPeiTRhF11ZTh25hP1tc1CoHJLOaraXr0Ux3esDwpeeh2XIAOYW5CH+rXFQUGOgkddU2NyswaTm4mIcocy4ypdBABnW2rQ2NEXdKQmAHiyrmzKHRqlYquyuAi9jkvq77lWwRUJq7qmiYEPEVFuCA0+FCYB8KfoU1E0CbCYTWHl8btCgp6pStJztXIrFlZ1ERERRdDe48BXf/pG1CTmvy+3pey1PX45LOiprbCFBTeRjrC0eJw1Mwx8iIgoZ/zr/gF1oGckqazqMgmTv1slEbvqyrD7vpVo73FgXctRtPc4AAQCG6skwjXuVa9p1a8tDsv/ofgx8CEioqzW2NGHJTs6sWRHZ8qOseKhvLYsA6ea7gYQOLZ6qnMQI0632piwfm0xCvIscLo9UXd9aPoY+BARUVY7mObePJFIogni1S2ffDHw0ascaV25Ws4+7vWrOz88zkodBj5ERJS1Gjv60jJVfSpXPH401S6H3SqpPXiU4GZzRaARYZ7FFNSDh8dZqcEGhkRElHXSXaoeiVkATKbADK580Rz2fSWo0U5X56T11GPgQ0REWaW9x6F70AMAsywm3FW6SO21E9pVub3Hgab9A/DJgYAn0g6PEsCV2wt
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"print(spearmanr(x1[m, k], x2[m, k]))\n",
"\n",
"plt.figure()\n",
"plt.scatter(x1[m, k], x2[m, k], s=1)\n",
"plt.xscale(\"log\")\n",
"plt.yscale(\"log\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([413.8776 , 36.502567, 42.72512 , ..., 86.33546 , 46.866375,\n",
" 16.672348], dtype=float32)"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(641409, 5)"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x1.shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[[38.309074, 37.35447 , 33.675297, ..., 38.631912, 37.806564,\n",
" 38.30662 ],\n",
" [36.995125, 35.11136 , 31.615524, ..., 41.488594, 39.508347,\n",
" 38.271282],\n",
" [35.551605, 32.419254, 28.316347, ..., 44.668957, 41.425102,\n",
" 38.46228 ],\n",
" ...,\n",
" [44.0867 , 46.94581 , 47.402313, ..., 38.326492, 38.893078,\n",
" 40.331207],\n",
" [39.54499 , 39.829464, 38.81296 , ..., 36.481358, 36.73762 ,\n",
" 37.66062 ],\n",
" [38.683113, 38.04618 , 35.1861 , ..., 36.864704, 36.749477,\n",
" 37.77259 ]],\n",
"\n",
" [[39.680145, 39.896065, 37.5201 , ..., 35.309006, 35.451256,\n",
" 37.65782 ],\n",
" [38.184814, 37.705723, 34.6373 , ..., 38.367054, 37.28385 ,\n",
" 37.66665 ],\n",
" [36.350132, 34.192383, 30.708448, ..., 42.486446, 39.748688,\n",
" 37.757904],\n",
" ...,\n",
" [48.202843, 51.6801 , 54.201912, ..., 37.41573 , 39.070263,\n",
" 41.48212 ],\n",
" [41.606823, 44.06209 , 46.2296 , ..., 33.731186, 35.463955,\n",
" 37.43514 ],\n",
" [40.023647, 41.03199 , 39.59713 , ..., 33.46958 , 34.77913 ,\n",
" 37.458004]],\n",
"\n",
" [[42.269516, 44.800823, 43.88061 , ..., 31.999905, 33.81479 ,\n",
" 38.11813 ],\n",
" [40.689667, 41.8762 , 40.181072, ..., 35.19038 , 35.086533,\n",
" 38.080868],\n",
" [38.505177, 37.81341 , 35.218002, ..., 39.726883, 37.880917,\n",
" 37.98939 ],\n",
" ...,\n",
" [53.54201 , 58.9436 , 66.00325 , ..., 36.82529 , 41.091465,\n",
" 46.317104],\n",
" [44.265858, 50.393852, 55.040318, ..., 31.7586 , 34.622643,\n",
" 39.686398],\n",
" [42.591843, 46.13804 , 46.71531 , ..., 30.522701, 32.33912 ,\n",
" 37.310055]],\n",
"\n",
" ...,\n",
"\n",
" [[36.964626, 33.57419 , 29.586971, ..., 43.06893 , 41.11846 ,\n",
" 39.331432],\n",
" [36.032703, 32.74095 , 28.373114, ..., 43.962837, 41.521736,\n",
" 38.690216],\n",
" [35.184982, 31.26581 , 27.127985, ..., 44.944073, 42.05588 ,\n",
" 38.838474],\n",
" ...,\n",
" [38.095966, 37.35273 , 34.85196 , ..., 42.916054, 41.808567,\n",
" 40.2956 ],\n",
" [37.57452 , 35.121746, 32.29693 , ..., 42.38733 , 41.167664,\n",
" 39.764378],\n",
" [37.60174 , 34.37987 , 30.65371 , ..., 42.481983, 41.12721 ,\n",
" 39.814762]],\n",
"\n",
" [[36.984535, 33.885307, 29.960264, ..., 42.689564, 40.912434,\n",
" 39.279568],\n",
" [36.086666, 32.507336, 28.38868 , ..., 44.143845, 41.76999 ,\n",
" 38.934032],\n",
" [35.14676 , 31.207554, 26.969011, ..., 45.590717, 42.514576,\n",
" 39.190063],\n",
" ...,\n",
" [40.034714, 39.873127, 39.855125, ..., 40.560432, 40.166527,\n",
" 40.173508],\n",
" [37.800323, 36.153614, 33.418015, ..., 40.476524, 39.99206 ,\n",
" 39.203354],\n",
" [37.445255, 34.964134, 31.208267, ..., 41.27682 , 40.32644 ,\n",
" 39.46384 ]],\n",
"\n",
" [[37.365154, 35.074844, 31.241234, ..., 41.14966 , 39.78451 ,\n",
" 38.712948],\n",
" [36.41588 , 33.426365, 29.391582, ..., 43.479816, 41.18592 ,\n",
" 38.77536 ],\n",
" [35.295177, 31.421724, 27.27295 , ..., 45.680676, 42.432396,\n",
" 39.032627],\n",
" ...,\n",
" [40.50576 , 42.841057, 42.216366, ..., 39.10556 , 39.566757,\n",
" 40.411335],\n",
" [38.77279 , 37.562416, 35.394333, ..., 38.59305 , 38.3598 ,\n",
" 38.760056],\n",
" [37.811317, 36.106308, 32.836246, ..., 39.24028 , 38.665195,\n",
" 38.452446]]], dtype=float32)"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"field.density_field(\"SPH\", 1024)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 206,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Creating group to tree ID mapping...\n"
]
}
],
"source": [
"mreader = csiborgtools.read.CSiBORG2MergerTreeReader(16517, \"main\")"
]
},
{
"cell_type": "code",
"execution_count": 238,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"136.42772691506084"
]
},
"execution_count": 238,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cat[\"dist\"][4]"
]
},
{
"cell_type": "code",
"execution_count": 251,
"metadata": {},
"outputs": [],
"source": [
"d = mreader.main_progenitor(3000)"
]
},
{
"cell_type": "code",
"execution_count": 252,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.07736389817838397"
]
},
"execution_count": 252,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.max(d[\"MaxNextProgenitorMass\"] / d[\"MainProgenitorMass\"])"
]
},
{
"cell_type": "code",
"execution_count": 253,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAi0AAAGdCAYAAADey0OaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA7EUlEQVR4nO3deXxU9aH+8Wdmsq8QErKQhFXAsCQsAQFRsFFERcGquFQRK1YLFptbb7X3XrW9VtvbX724jGtFpBVFreKtIiCIIJtAMAqEnQBhyQZZJ/vM/P4IRBGBJExy5kw+79drXpAzy3lmRObhnO/5fi1ut9stAAAAL2c1OgAAAEBzUFoAAIApUFoAAIApUFoAAIApUFoAAIApUFoAAIApUFoAAIApUFoAAIAp+BkdwFNcLpeOHj2q8PBwWSwWo+MAAIBmcLvdqqioUEJCgqzWcx9L8ZnScvToUSUlJRkdAwAAtEJeXp4SExPP+RifKS3h4eGSGt90RESEwWkAAEBzlJeXKykpqel7/Fx8prScOiUUERFBaQEAwGSaM7SDgbgAAMAUKC0AAMAUKC0AAMAUKC0AAMAUKC0AAMAUKC0AAMAUKC0AAMAUKC0AAMAUKC0AAMAUKC0AAMAUKC0AAMAUKC0AAMAUKC3nsSu/Qr99/1st255vdBQAADo0n1nlua188u1RLdycp2+PlOmyvjEK8rcZHQkAgA6JIy3ncccl3eVntWjHsXKN+ONyFZbXGB0JAIAOidJyHrERQbpjZLIkqbymQb98a4vqGlwGpwIAoOOxuN1ut9EhPKG8vFyRkZEqKytTRESER1/b7XZrZ36Fbnl5vSpqGyRJt41I1nWD49U3Nlwx4YEe3R8AAB1FS76/OdLSDBaLRRfHR+j524fI32aRJL298ZDu+NtXuua5L1V5ssgAAIC2Y/rSYrfblZKSovT09Dbf17h+XfXBA2N09+geSk3qpPBAPxVV1Oq373+rwvIavb4mV1fPWa0vdhW2eRYAADoaTg9dgMVbj+mXb205Y3uQv1Vv3D1CRZW1uqRXlLqGB7VLHgAAzKYl39+Ulgu0YkeBXvpinzYfLJHNapHTdfrHGexv071je2rm+D5cLg0AwA9QWtqxtJyyt7BCYYH+Cg6w6efzNmnzwZLT7h+S3Env3z9aNqul3bMBAOCtWvL9zeRyHtKna3jT799/YLRKHHWKCPbXsu35emhhtr4+VKrlOwo0YUCcgSkBADAvSksb6RwaIEmaOCheW4+U6cUv9mnWgi36Sf9Y3XFJspKjQmSzWpTYOaTZr1lT79Sn247JUetURU2DKmvrNXV4spK7NP81AAAwK04PtYP8shpd8vSKM7aHBfrp09ljlRR1/tJR73TpvvmbtXJX0WnbEzsH68NfjmGuGACAKTFPi5eJiwxSxsWxZ2yvrG3Qfy7aprP1xs0HTmjumly9sTZXM9/a0lRYRvXqohuHdlNi52AdLqnWvfM3M1cMAMDncaSlnRwprdYf/rVd00b3kEUWbdh/XC99sU91TpdmjO2pB8b10cbc41q377h+cXlvfbY9X0/8K+e01/CzWvTatOEa36+rJGl/UaVufGmdSqvqFexv0/j+MbprVA9d0quLEW8RAIAW4+ohLywtP+a5FXv0zGe7JUkBNqsaXC653I2XSVfXOyVJw7p3VnxkkFxut6amJ+vyvjGnvUbWwRJlvputg8ermraN7t1Ff7hhoPp0DWu/NwMAQCtQWkxSWpwut9766qDe3ZynbUfKz7j/F5f10iMT+8tiOfdl0m63W9uOlGvh5kNauClP9U63ekaH6oMHRmt3QYV6xYQx5gUA4JUoLSYpLd/3TV6p9hZW6trB8fq/7KNqcLl124ik8xaWHzpcUqUpL65TUUVt07Ze0aH6LPNy5ogBAHgdBuKaUGpSJ/10WKKC/G26JT1Jt49MbnFhkaTEziF67LqUpp8tFml/sUPLtud7Mi4AAO2OeVp80KTUBPWOCVNEsJ/e2ZinF1bu1Wtf7tfEQfFGRwMAoNU40uKjUhIilNg5RHeN7q4Am1VbDpUq6wdLCwAAYCaUFh/XNTxI16clSJLmrsk1OA0AAK1HaekA7h3bU5L06bZjOlZWbXAaAABah9LSAfSPi9CInlFyuaV3Nx02Og4AAK1Caekgbh+RLEl6d3OenC6fuModANDBUFo6iKsHxiky2F9HSqv15Z6i8z8BAAAvQ2npIIL8bbpxaDdJ0tsbDxmcBgCAlqO0dCC3nTxF9FlOgW58ca3+a9E2FVbUGJwKAIDmobR0IH1jwzWuX4xcbmnLoVL9fcNBTX9jk6rqGoyOBgDAeVFaOpjXp6Vr8a/G6tlb09QlNEDbj5broXey5WJwLgDAy1FaOhib1aKUhAjdkNZNr941TAF+Vi3LKdD/LN1ldDQAAM6J0tKBDesepb/cNFiS9PKqffrXN0cNTgQAwNlRWjq4G9K66f7Le0uSHn7/G+UcLTc4EQAAP47SAj08oZ8u6xujmnqXZszfrBJHndGRAAA4A6UFslktev7WIereJURHSqv14Ntfq8HpMjoWAACnobRAkhQZ4q9X7hymYH+b1uwt1l+WMTAXAOBdKC1o0j8uQn+5uXFg7iur9uuLXYUGJwIA4DuUFpzmusEJunt0D0nSHz7OUT2niQAAXoLSgjNkXtVXXUIDtL/IoX9sOGh0HAAAJFFa8CMigvyVeVVfSdKc5Xu4mggA4BUMKS1TpkxR586dddNNNzVtKy0t1fDhw5WWlqaBAwfqtddeMyIaTpo6PEn948JVVl2vF1buNToOAADGlJbZs2dr/vz5p20LDw/X6tWrlZ2dra+++kpPPfWUjh8/bkQ8SPKzWfVQRuPRlpU7GZALADCeIaVl3LhxCg8PP22bzWZTSEiIJKm2tlZut1tuN4v4GWl4j86SpNzjDjlqWQkaAGCsFpeW1atXa9KkSUpISJDFYtGiRYvOeIzdblePHj0UFBSkkSNHauPGjc167dLSUqWmpioxMVEPP/ywoqOjWxoPHhQdFqjYiEC53dKOY0zvDwAwVotLi8PhUGpqqux2+4/ev3DhQmVmZurxxx/Xli1blJqaqgkTJqiw8PynGDp16qRvvvlGubm5WrBggQoKCloaDx42ICFSkrSdNYkAAAZrcWmZOHGinnzySU2ZMuVH73/mmWc0Y8YMTZ8+XSkpKXr55ZcVEhKiuXPnNnsfsbGxSk1N1ZdffnnWx9TW1qq8vPy0GzxvQEKEJGn70TKDkwAAOjqPjmmpq6tTVlaWMjIyvtuB1aqMjAytX7/+nM8tKChQRUWFJKmsrEyrV69Wv379zvr4p59+WpGRkU23pKQkz7wJnOa70kIpBAAYy8+TL1ZcXCyn06nY2NjTtsfGxmrnzp1NP2dkZOibb76Rw+FQYmKi3nvvPdlsNt13331NA3AffPBBDRo06Kz7evTRR5WZmdn0c3l5OcWlDZw6PbS7oEJ1DS4F+DG1DwDAGB4tLc21fPnyH92enZ3d7NcIDAxUYGCghxLhbBI7BysiyE/lNQ3aXVChgd0ijY4EAOigPPrP5ujoaNlstjMG0BYUFCguLs6Tu0I7sVgsSjl5iiiHU0QAAAN5tLQEBARo2LBhWrFiRdM2l8ulFStWaNSoUZ7cFdrRd1cQMRgXAGCcFp8eqqys1N69303rnpubq+zsbEVFRSk5OVmZmZmaNm2ahg8frhEjRmjOnDlyOByaPn26R4Oj/TAYFwDgDVpcWjZv3qzx48c3/XxqMOy0adM0b948TZ06VUVFRXrssceUn5+vtLQ0LVmy5IzBuZ5it9tlt9vldDrb5PXx3ZGWHcfK5XK5ZbVaDE4EAOiILG4fmSu/vLxckZGRKisrU0REhNFxfEqD06UBjy9VbYNLn//b5eoVE2Z0JACAj2jJ9zfXr+K8/GxW9Y/nFBEAwFiUFjQL41oAAEajtKBZmM4fAGA0Sgua5dRg3Jyj5fKRYVAAAJOhtKBZ+seFy2a16LijTgXltUbHAQB0QKYvLXa7XSkpKUpPTzc6ik8L8repd0yoJGnhpjw5XRxtAQC0Ly55RrP9z5KdevG
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure()\n",
"plt.plot(d[\"Redshift\"], d[\"MainProgenitorMass\"])\n",
"plt.plot(d[\"Redshift\"], d[\"MaxNextProgenitorMass\"])\n",
"\n",
"\n",
"plt.yscale(\"log\")\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 202,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0\n",
"702 98\n",
"-1 7\n",
"\n",
"1\n",
"1415 97\n",
"1075 98\n",
"\n",
"2\n",
"2142 96\n",
"1902 97\n",
"\n",
"3\n",
"2887 95\n",
"2602 96\n",
"\n",
"4\n",
"3642 94\n",
"3262 95\n",
"\n"
]
}
],
"source": [
"n = 0\n",
"\n",
"main_progenitor = tree[\"TreeMainProgenitor\"]\n",
"next_progenitor = tree[\"TreeNextProgenitor\"]\n",
"snapnum = tree[\"SnapNum\"]\n",
"\n",
"for i in range(5):\n",
"\n",
" print(i)\n",
" next_progenitor\n",
" # print(main_progenitor[n], snapnum[main_progenitor[n]])\n",
" # print(next_progenitor[n], snapnum[next_progenitor[n]])\n",
" print(\"\")\n",
" \n",
" \n",
" n = main_progenitor[n]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 180,
"metadata": {},
"outputs": [],
"source": [
"# z, y = mreader.fof_progenitor(30)\n",
"d = mreader.main_progenitor(30)"
]
},
{
"cell_type": "code",
"execution_count": 181,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAi0AAAGdCAYAAADey0OaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABDAElEQVR4nO3dd3xV9eH/8de5N4tABiGLkIRtIKwQCBCGgmIRLQVXrVVZbsFR1Co/v3XWYmvrqhEnQ6sFREDrwCoKCDJCQhhCCJsA2ZC9772/P5BYBIHADefem/fz8chDcu5631vqefu5n/P5GA6Hw4GIiIiIi7OYHUBERETkbKi0iIiIiFtQaRERERG3oNIiIiIibkGlRURERNyCSouIiIi4BZUWERERcQsqLSIiIuIWvMwO4Cx2u53Dhw8TEBCAYRhmxxEREZGz4HA4KCsrIyoqCovl9GMpHlNaDh8+TExMjNkxRERE5BxkZ2cTHR192vt4TGkJCAgAjr3pwMBAk9OIiIjI2SgtLSUmJqbhPH46bl9aUlJSSElJwWazARAYGKjSIiIi4mbOZmqH4SkbJpaWlhIUFERJSYlKi4iIiJtozPlbVw+JiIiIW1BpEREREbfg9nNaRETk7DkcDurr6xvmAYpcCN7e3lit1vN+HpUWEZFmora2lpycHCorK82OIs2MYRhER0fTqlWr83oelRYRkWbAbrezd+9erFYrUVFR+Pj4aCFOuSAcDgcFBQUcPHiQrl27nteIi0qLiEgzUFtbi91uJyYmBn9/f7PjSDMTFhbGvn37qKurO6/Soom4IiLNyJmWSRdpCs4a1dPfXhEREXELKi0iItKs7Nu3D8MwyMjIMDuKqdzxc1BpERERlzZx4kQMw+Cuu+466bYpU6ZgGAYTJ0486+eLiYkhJyeHnj17OjGl+/n557B8+XIMw6C4uNjcYKeh0iIiIi4vJiaGefPmUVVV1XCsurqaDz74gNjY2EY9l9VqJTIyEi+vC3styvE1clxFU30OTfk+3b60pKSkEB8fT1JSUpM8f73Nzp3vbWBh2kGOVNQ2yWuIiMjpJSYmEhMTw6JFixqOLVq0iNjYWPr27XvCfZcuXcrQoUMJDg6mTZs2/PrXv2b37t0Nt//8a5HjIwzLli2jf//++Pv7M3jwYHbs2PGLeY4/x7x58xg8eDB+fn707NmTFStWNNzn+PN+8cUX9OvXD19fX1atWkVNTQ333Xcf4eHh+Pn5MXToUFJTU094/k8++YSuXbvi5+fHiBEjmDt37kmjIKtWrWLYsGG0aNGCmJgY7rvvPioqKhpu79ChA3/5y1+YPHkyAQEBxMbG8uabb57yc9i3bx8jRowAoHXr1ieMXp0p7y+9z6bg9qVlypQpbNu27aT/wZ3lg/UH+PKHPB76cBOJz3zFtPkZfJxxiD0F5VTWuk5jFhFpLIfDQWVt/QX/Odd9eidPnszs2bMbfp81axaTJk066X4VFRVMmzaNDRs2sGzZMiwWC1dffTV2u/20z//YY4/xj3/8gw0bNuDl5cXkyZPPmOnhhx/mwQcfZOPGjSQnJzNmzBiKiopOuM+jjz7Kc889x/bt2+nduzd//OMf+eijj5g7dy7p6el06dKFUaNGceTIEQD27t3Lddddx7hx49i0aRN33nknjz322AnPuXv3bq644gquvfZaNm/ezPz581m1ahVTp0494X7/+Mc/6N+/Pxs3buSee+7h7rvvPmUZi4mJ4aOPPgJgx44d5OTk8PLLLwOcMe8vvc+moHVazuDGAbHsKahgzvf7AFi08RCLNh5quL1DG3/uuLgzvx/YuOFJERGzVdXZiH/8ywv+utueHoW/T+NPPzfffDPTp09n//79AKxevZp58+axfPnyE+537bXXnvD7rFmzCAsLY9u2baedx/Lss89yySWXAMdOwFdddRXV1dX4+fn94mOmTp3a8HozZ85k6dKlvPPOO/zxj39suM/TTz/N5ZdfDhwrVDNnzmTOnDmMHj0agLfeeouvvvqKd955h4cffpg33niDuLg4nn/+eQDi4uLYunUrzz77bMNzzpgxg5tuuokHHngAgK5du/LKK69wySWXMHPmzIbMV155Jffccw8AjzzyCC+++CLffvstcXFxJ7wPq9VKSEgIAOHh4QQHB5913lO9z6ai0nIG3lYLT/6mB9Ov7MaWgyV8sO4A6QeOcrikmtp6O/uKKvl/i7ewMquAe0Z0pnd0sNmRRUQ8UlhYGFdddRVz5szB4XBw1VVXERoaetL9du7cyeOPP866desoLCxsGGE5cODAaUvL/44OtG3bFoD8/PzTzplJTk5u+LOXlxf9+/dn+/btJ9ynf//+DX/evXs3dXV1DBkypOGYt7c3AwYMaHjcjh07TpryMGDAgBN+37RpE5s3b+b9999vOOZwOBpWPu7evftJ78kwDCIjI8nPz//F9/NzZ5P3VO+zqai0nCVfLyv9O4TQv0NIw7Hiylpmrd7HK8t2svSHXL7ansd7kwcwuMvJ/ycSEXE1LbytbHt6lCmve64mT57c8BVISkrKKe8zZswY2rdvz1tvvUVUVBR2u52ePXtSW3v6eYne3t4Nfz6+GNqZvlI6Gy1btjzv5/i58vJy7rzzTu67776TbvvfkvW/7wmOvS9nvKdTaYr3+XNuP6fFTMH+Pky7/CK+uH8YI+LCsNkd3P1+OttzSs2OJiJyRoZh4O/jdcF/zmd11CuuuILa2lrq6uoYNerkwlVUVMSOHTv4v//7Py677DK6d+/O0aNHz+djOq21a9c2/Lm+vp60tLSGUY5T6dy5Mz4+PqxevbrhWF1dHampqcTHxwPHvg7asGHDCY/7+bzNxMREtm3bRpcuXU768fHxOaf3cvxx/7sD+NnkvZBUWpyge9tAZt7cj8TYYEqq6rj7X2mapCsi0gSsVivbt29n27Ztp9zDpnXr1rRp04Y333yTXbt28c033zBt2rQmy5OSksLixYvJzMxkypQpHD169LQTeFu2bMndd9/Nww8/zNKlS9m2bRu33347lZWV3HrrrQDceeedZGZm8sgjj5CVlcWCBQuYM2cO8NMI0COPPML333/P1KlTycjIYOfOnXz88ccnTcRtjPbt22MYBp9++ikFBQWUl5efVd4LSaXFSfy8rcyeOIC2QX7sK6pkxueZZkcSEfFIgYGBBAYGnvI2i8XCvHnzSEtLo2fPnvzhD39omNDaFJ577jmee+45+vTpw6pVq/jkk09OOc/m54+59tprueWWW0hMTGTXrl18+eWXtG7dGoCOHTuycOFCFi1aRO/evZk5c2bD1UO+vr7AsbkqK1asICsri2HDhtG3b18ef/xxoqKizvm9tGvXjqeeeopHH32UiIiIhgJ0prwXkuE412vPXExpaSlBQUGUlJT84l/mC2HVzkJufmcdALMm9ufSbhGmZREROa66upq9e/fSsWPH014NI2dn3759dOzYkY0bN5KQkNDkr/fss8/y+uuvk52d3eSv1RRO9/evMedvjbQ42dCuoUwa0gGAhz/cTGF5jbmBRETE7bz22mukpqayZ88e3nvvPZ5//nkmTJhgdizTqbQ0gUeu6Ea3yACKKmp54pMfzI4jIiJuZufOnYwdO5b4+HieeeYZHnzwQZ588kmzY5lOXw81ka2HShibshqb3cHsSUmMiAs3O5KINGP6ekjMpK+HXFzPdkFMGtwBgMc/3kp1ne30DxAREZHTUmlpQg9cfhGRgX5kH6niX2v3mx1HRETEram0NKFWvl7ce1kXAN5ds1+7RIuI6TxkRoC4GWf9vVNpaWJX921HUAtvDhypZMhz3zBr1V6zI4lIM3R8OffKykqTk0hzdHwLhVMtCNgY2nuoifn7ePH2hP489Z8f2HqolGc+20Z8VCCDOrUxO5qINCNWq5Xg4OCGzfL8/f3Pazl9kbNlt9spKCjA398fL6/zqx0qLRdAUocQ/jN1KH9cuJkP0w7yzqq9Ki0icsFFRkYCNGqXXxFnsFgsxMbGnndRdvvSkpKSQkpKygkbPLkiwzC4tl80H6Yd1IaKImIKwzBo27Yt4eHh1NXVmR1
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure()\n",
"plt.plot(d[\"Redshift\"], d[\"MainProgenitorMass\"], label=\"Main progenitor\")\n",
"# plt.plot(z, y, label=\"FoF group\")\n",
"plt.legend()\n",
"plt.yscale(\"log\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 164,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAi0AAAGdCAYAAADey0OaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABCNElEQVR4nO3deXxU9b3/8fcsmcm+EUgICfsalgTCIq4oqRQtFlRqW2uRtrRatHi5ba/Wq9zb24q9evlZ27lF7XWrWhFb0SrSShRxQQjBAGFfAgTIQgjJZF9mzu+PwNAIgUQmOTPJ6/l4zCPkzJkzn+mpzJvvajEMwxAAAECAs5pdAAAAQHsQWgAAQFAgtAAAgKBAaAEAAEGB0AIAAIICoQUAAAQFQgsAAAgKhBYAABAU7GYX4C9er1fHjx9XVFSULBaL2eUAAIB2MAxDVVVVSk5OltV64baUbhNajh8/rtTUVLPLAAAAX0JhYaFSUlIueE63CS1RUVGSWj50dHS0ydUAAID2cLvdSk1N9X2PX0i3CS1nuoSio6MJLQAABJn2DO1gIC4AAAgKhBYAABAUCC0AACAoBH1ocblcSktL06RJk8wuBQAAdCKLYRiG2UX4g9vtVkxMjCorKxmICwBAkOjI93fQt7QAAICegdACAACCAqEFAAAEBUILAAAICoQWAAAQFAgtAAAgKBBaAABAUAj6DRNdLpdcLpc8Hk+nXL+wvFavbS6Ux2vIa0hew5D39J9D7BZFh4YoOtSuqNAQRYe1/Ixw2BUValeE065Ip10OO9kQAIBLxeJyF7GpoFzfeGrDJV3DYbcqOjREMWF2xYSFKDosRNGhIQoLsckZYpXTbpXTbpPDblWIzaoQm0V2q0X203+OcNoVH+FQrwin4iJCFB/ukN1GEAIABL+OfH8HfUtLZ0uKDtWdlw+UxSLZLBZZrRZZLRZZLVJjs1fu+iZV1Tef/VnXpOoGj2oamlXX1NL609jsVVl1g8qqG/xWV7jDJpvFItvpgGO1WGSzWmRRy/beFotksUghVqsSo0OVEhemlLhw9YsLU3JMqDyGoZqGZl+t1Q3NinTalRQTqqToUPWNCVWvSKds1otvFQ4AQFegpaUTNXu8qmnwyF3f1PKoa1Zl3Zk/N6mh2Xv64VFDU8vPJo+hZo9XTd7TPz2GquubdbKmQeU1jaqoa1JX3TGb1aK48BCFO+wKd9gU4Wz5Ge6wKTTEprCQlp8tj5bWIqfdKoe9pfUozGHTiMQoDe4dSfgBAJwXLS0Bwm6zKibcqpjwEL9d0+M1VFHbqJoGjzyGIY/XK49XavZ65fVKhlrG2xiGIUMtrTxFlXU6Wl6no6fqdLSiVkWV9XLYrIpwnhl3Y1O4w67q+mYVuetVUlmv0qp6ebyGyqobJTVeUs0RDpvG9ItRRmqsxqXEanhipFLjwxUaYvPL/yYAgJ6B0BJkbFaLekU61Suyc9+n2ePVieoGVdY1qabBo9rG5rM/Gz1qaPKovsmjuiaP6pu8qmvyqPF0y1Fjs0cNzV6565q0q6hKNY0ebSwo18aCct/1LZaWrrcBvcI1ID5CN0/opymDe3XuhwIABDW6h9CpPF5D+0urtbWwQluPVmj7sUoVnKhRVUNzq/NCbBb941+u0aCEiA5df01+kX6zZo+W3jxWlxF6ACDodOT7m9CCLmcYhk7VNunQyRodOVmrP312WLmHT+m6kX307J2T2n2dsuoGTf+fD1VZ16QRiVF6d9FVsjJ2BgCCSke+v5k3iy5nsVgUH+HQhP5xmj2+n/771nGyWy16f3epPthd2u7r/PqdXaqsa5Ik7Smp0ur8os4qGQAQAAgtMN2Q3pH63pWDJEm/fHunGpu9F33Nx/vK9Mbnx2SxSDPHJEmSnli7Tx5vt2g4BACcB6EFAeHe64YqIdKpgrIaPfdJwQXPrW/y6N9XbZckffeyAfrNreMUExai/aXV+tvW411RLgDABIQWBISo0BDdP3OkJOnJ7H0qdde3ea7rg/06dLJWidFO/XTGCEWHhuiHVw+WJP02e5+aPRdvqQEABB9CCwLGzeP7KSM1VjWNHv1mzZ7znrOvpErLPzwgSfrPm0YrKrRlDZx5lw9UfIRDBWU1WpVHawsAdEeEFgQMq9Wi/7hptCTpL1uO6vMjp1o97/Ua+sUb29XkMZQ1qo9mjE7yPRfptOtHp1tbnszepyZaWwCg2wn6xeU6e5dndK2M1FjNzUzRytyjuvfPn2tcSkzLXkqSquqblXPolMIdNv3n18fIYmk9vfmOqQP0zEcHdaS8Vn/JPapvTu5vzocAAHQK1mlBwDlR1aDrHl93zgJ0Zzx4wygtON2q8kV//OigfvXOLvWLDdMHP50mh53GRAAIZCwuR2gJeruL3copKJchyTAkr9Gyp1J8RIi+nt6vzUXk6ps8uuq/P9CJqgZdMbSXhidGKTG6ZefqPtFOJUQ6FRseorhwh0JsBBoAMBuhhdDSo/1pwyE99OaOi54X6bQrNjxESdGhGpQQocG9IzW4d4SG9I5Q//gIWmkAoAuwyzN6tNunDFBKXLgOnaxRibtBJe56lbjrVeyuV3lNoyrrmmQYUnVDs6obmnX0VJ02H2496Dc1Pkx/XnCZUuLCTfoUAIAvIrSg27FaLbp2ZJ82n/d4DbnrmnSqtlGnaht19FSdCspqdPBEjQ6WVetAaY0Ky+u07B97tey2jK4rHABwQYQW9Dg2q0VxEQ7FRTgkSZkDWj+/7WiFbvr9J3oj75h+eM1gjUxqf3ejx2to1efHlNE/VkN6R/qzbADo8ei0B75gXEqsbhzbV4YhPf738y9y15an1h/Qv67cqu8/n8PKvADgZ4QW4DwWXz9cNqtFa3eVavOh8na95sCJaj2xdp8k6dDJWr2bX9yZJQJAj0NoAc5jSO9IfWNiiiTpv9fs0cUm2Xm9hh74y3Y1NnsV4bBJkv533YGLvg4A0H6EFqANP5k+TE67VZsOlWvd3hMXPPflTUe06VC5wh02rfjRVEU4bNpV5L7o6wAA7UdoAdrQNyZM8y4fKKmltcXrPX+ryfGKOv3m3d2SpJ/PGKEx/WL07SktWwj84YMDXVIrAPQEhBbgAu6+ZoiinHbtKnLrb9vO3T3aMAz9+6p8VTc0a0L/WN0xdaAk6QdXDZbD1tJK094xMQCACyO0ABcQF+HQj65p2efof/6xV8cr6lqNU3lr63G9v7tUDptVv7llnGyntxdIjA7VLZn9JLWMbQEAXDrWaQEuYv4Vg/T8p4d1pLxWlz/6vsIdNt+y/x/vaxmzcs91QzUsMarV63509RCtyCnU+7tLtavIrVF9/be9RGF5rZa8tUPfnJSq60cnXfDclz47rL0lVcpIjdXEAfFKjQ87Z4dsAAgG7D0EtMPH+8r0H3/boUNlNWr+wtiWkUlReuueK8+7V9HCV7bonW1Fuik9WU9+a7xfavF6DX3zmc+0qaBc/ePD9eHPprUZQgrKanTt4+taHUuIdGrigDhdPby3vjU5lQADwFTsPQT42ZXDErR28TVq8nh1pLy2Zcn/E9UqcTfojqkD2txc8e5rhuidbUV6e9tx/fT6Eerf69L3MlqxuVCbClrGyRwpr1Xu4VOaODD+vOe+seWoJGlQQoTiwkO0/VilyqobtGZHsdbsKFa/uDBdM7z3JdcEAF3BlNAyZ84crVu3TtOnT9frr7/uOz5w4EBFR0fLarUqLi5OH3zwgRnlAW0KsVk1pHfk6SX6Ey96/ph+MbpmeG99uPeEHv/HHj1y81hFOr/8f3al7no9snqXJCkh0qGy6kb99fNj5w0tXq+hv35+TJJ0X9YwfT2jn+qbPMo/VinXB/v1wZ4TWr2tiNACIGiYMhB30aJFevHFF8/73Keffqq8vDwCC7qNH08bIqll0O7EX72n+179XB/uPSFPG1OoL+Q//rZDVfXNGtsvRsu+kSFJenvrcTU0e845d9Ohch09VadIp13Xp7WMewkNsWniwHgtuKplcPE/dhZ3eLsBwzD0eu5R7Sup6nD9AHApTAkt06ZNU1RU1MVPBLqBKYN7aenNYzU4IUL1TV6tyju
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure()\n",
"plt.plot(y)\n",
"plt.yscale(\"log\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 132,
"metadata": {},
"outputs": [],
"source": [
"cat = csiborgtools.read.CSiBORG2Catalogue(16517, 99, \"main\")"
]
},
{
"cell_type": "code",
"execution_count": 136,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([2.9051551e+15, 1.6921947e+15, 1.3596260e+15, ..., 9.9620782e+10,\n",
" 9.9620782e+10, 9.9620782e+10], dtype=float32)"
]
},
"execution_count": 136,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cat[\"totmass\"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 131,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0 99\n",
"383 98\n",
"776 97\n",
"1176 96\n",
"1588 95\n",
"2012 94\n",
"2447 93\n",
"2888 92\n",
"3338 91\n",
"3788 90\n",
"4246 89\n",
"4718 88\n",
"5198 87\n",
"5683 86\n",
"6169 85\n",
"6657 84\n",
"7146 83\n",
"7633 82\n",
"8130 81\n",
"8651 80\n",
"9173 79\n",
"9723 78\n",
"10286 77\n",
"10856 76\n",
"11443 75\n",
"12041 74\n",
"12650 73\n",
"13267 72\n",
"13899 71\n",
"14536 70\n",
"15193 69\n",
"15866 68\n",
"16540 67\n",
"17215 66\n",
"17914 65\n",
"18637 64\n",
"19377 63\n",
"20128 62\n",
"20899 61\n",
"21685 60\n",
"22491 59\n",
"23311 58\n",
"24159 57\n",
"25150 56\n",
"26026 55\n",
"26897 54\n",
"27806 53\n",
"28738 52\n",
"29568 51\n",
"30531 50\n",
"31514 49\n",
"32513 48\n",
"33520 47\n",
"34554 46\n",
"35609 45\n",
"36684 44\n",
"37773 43\n",
"38860 42\n",
"39967 41\n",
"41089 40\n",
"42234 39\n",
"43403 38\n",
"44575 37\n",
"45766 36\n",
"46974 35\n",
"48177 34\n",
"49394 33\n",
"50614 32\n",
"51855 31\n",
"53100 30\n",
"54360 29\n",
"55601 28\n",
"56820 27\n",
"58039 26\n",
"59241 25\n",
"60419 24\n",
"61581 23\n",
"62730 22\n",
"63774 21\n",
"64754 20\n",
"65636 19\n",
"66424 18\n",
"67096 17\n",
"67683 16\n",
"68154 15\n",
"68525 14\n",
"68842 13\n",
"69008 12\n",
"69119 11\n",
"69177 10\n"
]
}
],
"source": [
"d1 = mreader.fof_progenitor(1)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"d1[\"Group_M_Crit200\"]"
]
},
{
"cell_type": "code",
"execution_count": 129,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAi0AAAGdCAYAAADey0OaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABO70lEQVR4nO3dd3hUZd7G8e/MpJFKQkIgBUKHUBJ6E6VEEV0UFMW6iC7rKirKuq/i7sLuWtDVZW1ZsSz2gqgUGwpRigLSTARCJ0AgkBACKRNImZn3j4FAFggEJzkzk/tzXeea5JwzZ37Hwtw85ykmh8PhQERERMTNmY0uQERERORCKLSIiIiIR1BoEREREY+g0CIiIiIeQaFFREREPIJCi4iIiHgEhRYRERHxCAotIiIi4hF8jC7AVex2Ozk5OYSEhGAymYwuR0RERC6Aw+GguLiYmJgYzOaa21K8JrTk5OQQHx9vdBkiIiJyEbKzs4mLi6vxHK8JLSEhIYDzpkNDQw2uRkRERC5EUVER8fHxVd/jNfGa0HLykVBoaKhCi4iIiIe5kK4d6ogrIiIiHkGhRURERDyCQouIiIh4BIUWERER8QgeH1pSU1NJTEykd+/eRpciIiIidcjkcDgcRhfhCkVFRYSFhVFYWKjRQyIiIh6iNt/fHt/SIiIiIg2DQouIiIh4BIUWERER8QgKLSIiIuIRFFpERETEIyi0iIiIiEdQaDmPY+U27n53Le+t2kPx8QqjyxEREWmwFFrOY1XWYb7ZlMtf5m3k2tQfKbCWG12SiIhIg6TQch7tmgbzp+EdiAz2Y9chK2NmruC/P2Tx/ZY8co4eO3VixXGw5htXqIiIiJfTjLgXaEdeCTe/vopDxWVV+8wmGNQuij9fEkz7hbdBwU5oMwyufg4iWru8BhEREW9Tm+9vn3qqyeO1beLP1zdHsva7uRyyVrC6OJKwY3uJ3ZVP2J4fwHTEeeLONHjrN/C7xWCyQEi0sYWLiIh4CYWW89mzEhY+AnlbiLSVceWJ3bcD+J46LdsRxf7LnqPfL3+Fo3thRifwDYJ7V0B4Qv3XLSIi4mXUp+V8fPzgQAbYysAnAFoPhrYpEN4K2qbgaD2UDWGXcUv5Y9y9PJDDw2acem+FFdI/MKx0ERERb6KWlvOJ6gQ3fQhRHZz9VEymaodNQCebnfBXVpC9r5AJyxszp+NILFs+d56QuQCGPFb/dYuIiHgZtbScj18gdLwKmrQ5I7Cc5GMx8+JN3QkN8GH93qNMLv8DtmF/cx48tBn2ra2/ekVERLyUQouLJEQGMfP2nvhaTMzPLOS3W/tT0eEa58E54+HYUUPrExER8XSGhJbRo0cTHh7OmDFjqu1PSEigW7duJCcnM2TIECNK+1UGtInktd/2ItDPwo87DnPbgRuoDEuAwr3w5WTwjtHlIiIihjAktEyaNIl33nnnrMdWrFhBeno633//fT1X5RpDOjTl47v70zTEn5/yLNxd+gccJgts/BT2rTG6PBEREY9lSGgZPHgwISEhRnx0vegSG8Zn9w6gTVQQacUt+IqBANh+1kgiERGRi1Xr0LJs2TJGjhxJTEwMJpOJefPmnXFOamoqCQkJBAQE0LdvX1avXn1B1zaZTFx22WX07t2b999/v7aluZW48EA+nNCPFhGBfFDmDC2sf5ttK780tjAREREPVevQYrVaSUpKIjU19azHZ8+ezeTJk5k2bRrr168nKSmJ4cOHk5eXd95r//DDD6xbt44FCxbw1FNP8csvv5zz3LKyMoqKiqpt7qZpaADfPnQpV19zM1+aLsWCndYLb2Ptu49RWWkzujwRERGPUuvQMmLECJ544glGjx591uMzZsxgwoQJjB8/nsTERGbOnElgYCCzZs0677VjY2MBaN68OVdddRXr168/57nTp08nLCysaouPj6/trdSLAF8Lt/RrycAH32Nzo574mOz02pnK4hnjqLTZjS5PRETEY7i0T0t5eTnr1q0jJSXl1AeYzaSkpLBy5coa32u1WikuLgagpKSE7777js6dO5/z/ClTplBYWFi1ZWdnu+Ym6kjjsDA6PLyY1YmPYXOYuLL0c5bOfd3oskRERDyGS2fEzc/Px2azER1dfZHA6OhotmzZUvV7SkoKGRkZWK1W4uLimDNnDtHR0VWtNzabjQkTJtC7d+9zfpa/vz/+/v6uLL/OmS1m+tz4CJveO0znHa+SvOEJPo8dyIg+ifhYNGWOiIhITQyZxn/x4sVn3Z+RkVHPlRij09jHyX5mIfGVe8j84iX+/ePNPD6qCwPbRhpdmoiIiNty6V/vIyMjsVgs5ObmVtufm5tLs2bNXPlRVVJTU0lMTKyxVcbdmH39aTr8jwDc5LuUXflWbn3jJ/62YBPllernIiIicjYuDS1+fn707NmTtLS0qn12u520tDT69+/vyo+qMnHiRDIzM1mzxrMmbvPvOgqAlhzg7t7hALy1YjejUn9k16ESAysTERFxT7UOLSUlJaSnp5Oeng5AVlYW6enp7N27F4DJkyfz+uuv8/bbb7N582buuecerFYr48ePd2nhHi8gDEKdo6Wm9Lbw33G9CA/0JfNAEePfWoO1rNLgAkVERNxLrUPL2rVr6d69O927dwecIaV79+5MnToVgLFjx/Lcc88xdepUkpOTSU9PZ+HChWd0zhUgqoPzNX8rwzpFs/DBS4kJC2DP4VKmf73Z2NpERETcjMnh8OxV/FJTU0lNTcVms7Ft2zYKCwsJDQ01uqwL8/Wj8NMr0P8+GP4kAD/uyOfWN34CYMF9A+kW19jAAkVEROpWUVERYWFhF/T97fHjbD21TwtwqqXl0Knh4APbRjK6u/Ox0cvf7TCiKhEREbfk8aHFo0V1dL4e2lZt98QhbTGZ4NvMXDYfcL/lCURERIyg0GKkky0thXuh7NSIobZNg7mqa3MAZv2QZURlIiIibsfjQ4snztNSJTACgqKcP+dXb20Z1z8BgIUbD3K8QosrioiIeHxo8eg+LQDhrZyvhdXXTurVMpyYsACKyypZsvX8K2SLiIh4O48PLR4v6MTU/aUF1XabzSZGJscAMD89p76rEhERcTsKLUZrFOF8PVZwxqFrk5yjiNK25OkRkYiINHgKLUYLPBFaSs8MLZ2ahxDga6a80k5eUVk9FyYiIuJeFFqMVkNoMZlMRIX4A3Co5Hh9ViUiIuJ2PD60ePToITj1eKj08FkPRwWfCC3FamkREZGGzeNDi8ePHgps4nw9S58W4FRLi0KLiIg0cB4fWjxe4HlaWqoeD5XXV0UiIiJuSaHFaCdbWs7SpwUgUo+HREREAIUW453s03K8EGyVZxzW4yEREREnhRajNQo/8YMDjh894/DJjrh5xRo9JCIiDZvHhxaPHz1k8YGAMOfPZ3lE1CoyCIAdeSXY7Y76rExERMSteHxo8fjRQ3Bav5YzO+O2igzC38dMabmNPQWl9VyYiIiI+/D40OIVapjK38dipkOzEAA2Hyiqz6pERETcikKLO6ihpQWgU7NQQKFFREQaNoUWd1DDVP7gXIMIIDNHoUVERBouhRZ3cJ5ZcRNjnB111dIiIiINmUKLOzg57Pkcj4c6nmhpySk8ztFSzYwrIiINk8eHFo8f8gwQFOl8tZ49tIQG+BIX3giAjH2F9VWViIiIW/H40OIVQ56Dopyv1rxznjKonfOcd1furoeCRERE3I/HhxavENTU+Vpy6JynTBjUCpMJFm/OY1tucT0VJiIi4j4UWtxB8GktLY6zz3rbOiqYKzs3A2Dmkp31VZmIiIjbUGhxBydbWiqPQ9m5W1HuGdwGgHnp+9mRp9YWERFpWBRa3IFfIPgFO3+2nvsRUbe4xlyeGI3dATMWbaun4kRERNyDQou7ONkZt+TcnXEBHr6iAyYTfLXhIOv2HKmHwkRERNyDQou7CI52vh7eXuNpHZqFcH2POAAmffQzhaUVdV2ZiIiIW1BocRdtU5yvP716zs64J/31N4m0iAhk35FjPPxJBo7znC8iIuINFFrcRe+7wDcIcjfCjsU1nhrWyJf/3NoDP4uZRZm5fLg6u56KFBERMY7
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure()\n",
"plt.plot(d1[\"Redshift\"], d1[\"MainProgenitorMass\"])\n",
"# plt.plot(z1, m1)\n",
"plt.yscale(\"log\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<KeysViewHDF5 ['Config', 'Header', 'Parameters', 'TreeHalos', 'TreeTable', 'TreeTimes']>\n"
]
}
],
"source": [
"f = h5py.File(paths.trees(16517, \"csiborg2_main\"), 'r')\n",
"print(f.keys()) "
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<KeysViewHDF5 ['GroupNr', 'Group_M_Crit200', 'SnapNum', 'SubhaloHalfmassRad', 'SubhaloIDMostbound', 'SubhaloLen', 'SubhaloMass', 'SubhaloNr', 'SubhaloPos', 'SubhaloSpin', 'SubhaloVel', 'SubhaloVelDisp', 'SubhaloVmax', 'SubhaloVmaxRad', 'TreeDescendant', 'TreeFirstDescendant', 'TreeFirstHaloInFOFgroup', 'TreeFirstProgenitor', 'TreeID', 'TreeIndex', 'TreeMainProgenitor', 'TreeNextDescendant', 'TreeNextHaloInFOFgroup', 'TreeNextProgenitor', 'TreeProgenitor']>"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"f[\"TreeHalos\"].keys()"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [],
"source": [
"offset = f[\"TreeTable/StartOffset\"][:]\n",
"length = f[\"TreeTable/Length\"][:]\n",
"\n",
"\n",
"groupnr = f[\"TreeHalos/GroupNr\"][:]\n",
"snapnum = f[\"TreeHalos/SnapNum\"][:]\n",
"treeid = f[\"TreeHalos/TreeID\"][:]\n",
"\n",
"treeid[mask][groupnr[mask] == 300000]\n"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {},
"outputs": [],
"source": [
"treeid = f[\"TreeHalos/TreeID\"][:]"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [],
"source": [
"mask = snapnum==99"
]
},
{
"cell_type": "code",
"execution_count": 58,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([279606])"
]
},
"execution_count": 58,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"treeid[mask][groupnr[mask] == 300000]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<CSiBORG2Catalogue> (nsim = 16517, nsnap = 99, nhalo = 573522)"
]
},
"execution_count": 41,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cat"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"148\n",
"85\n",
"68\n"
]
}
],
"source": [
"\n",
"for n in range(3):\n",
" i = offset[n]\n",
" j = i + length[n]\n",
" \n",
" \n",
" m = snapnum[i:j] == 99\n",
" \n",
" "
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<HDF5 dataset \"GroupNr\": shape (54136877,), type \"<i8\">"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"f[\"TreeHalos/GroupNr\"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 136,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([ 0, 118794, 187990, ..., 54136874, 54136875, 54136876])"
]
},
"execution_count": 136,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"f[\"TreeTable/StartOffset\"][:]"
]
},
{
"cell_type": "code",
"execution_count": 137,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([118794, 69196, 53723, ..., 1, 1, 1], dtype=int32)"
]
},
"execution_count": 137,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"f[\"TreeTable/Length\"][:]"
]
},
{
"cell_type": "code",
"execution_count": 138,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"GroupNr\n",
"Group_M_Crit200\n",
"SnapNum\n",
"SubhaloHalfmassRad\n",
"SubhaloIDMostbound\n",
"SubhaloLen\n",
"SubhaloMass\n",
"SubhaloNr\n",
"SubhaloPos\n",
"SubhaloSpin\n",
"SubhaloVel\n",
"SubhaloVelDisp\n",
"SubhaloVmax\n",
"SubhaloVmaxRad\n",
"TreeDescendant\n",
"TreeFirstDescendant\n",
"TreeFirstHaloInFOFgroup\n",
"TreeFirstProgenitor\n",
"TreeID\n",
"TreeIndex\n",
"TreeMainProgenitor\n",
"TreeNextDescendant\n",
"TreeNextHaloInFOFgroup\n",
"TreeNextProgenitor\n",
"TreeProgenitor\n"
]
}
],
"source": [
"for key in f[\"TreeHalos\"].keys():\n",
" print(key)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 150,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([0.0044236 , 0.02276927, 0. , ..., 0. , 0. ,\n",
" 0. ], dtype=float32)"
]
},
"execution_count": 150,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cat[\"GroupContamination\"]"
]
},
{
"cell_type": "code",
"execution_count": 147,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0 99\n",
"1 99\n",
"2 99\n",
"3 99\n",
"4 99\n",
"5 99\n",
"6 99\n",
"7 99\n",
"8 99\n",
"9 99\n",
"10 99\n",
"11 99\n",
"12 99\n",
"13 99\n",
"14 99\n",
"15 99\n",
"16 99\n",
"17 99\n",
"18 99\n",
"19 99\n",
"20 99\n",
"21 99\n",
"22 99\n",
"23 99\n",
"24 99\n",
"25 99\n",
"26 99\n",
"27 99\n",
"28 99\n",
"29 99\n",
"30 99\n",
"31 99\n",
"32 99\n",
"33 99\n",
"34 99\n",
"35 99\n",
"36 99\n",
"37 99\n",
"38 99\n",
"39 99\n",
"40 99\n",
"41 99\n",
"42 99\n",
"43 99\n",
"44 99\n",
"45 99\n",
"46 99\n",
"47 99\n",
"48 99\n",
"49 99\n",
"50 99\n",
"51 99\n",
"52 99\n",
"53 99\n",
"54 99\n",
"55 99\n",
"56 99\n",
"57 99\n",
"58 99\n",
"59 99\n",
"60 99\n",
"61 99\n",
"62 99\n",
"63 99\n",
"64 99\n",
"65 99\n",
"66 99\n",
"67 99\n",
"68 99\n",
"69 99\n",
"70 99\n",
"71 99\n",
"72 99\n",
"73 99\n",
"74 99\n",
"75 99\n",
"76 99\n",
"77 99\n",
"78 99\n",
"79 99\n",
"80 99\n",
"81 99\n",
"82 99\n",
"83 99\n",
"84 99\n",
"85 99\n",
"86 99\n",
"87 99\n",
"88 99\n",
"89 99\n",
"90 99\n",
"91 99\n",
"92 99\n",
"93 99\n",
"94 99\n",
"95 99\n",
"96 99\n",
"97 99\n",
"98 99\n",
"99 99\n",
"100 99\n",
"101 99\n",
"102 99\n",
"103 99\n",
"104 99\n",
"105 99\n",
"106 99\n",
"107 99\n",
"108 99\n",
"109 99\n",
"110 99\n",
"111 99\n",
"112 99\n",
"113 99\n",
"114 99\n",
"115 99\n",
"116 99\n",
"117 99\n",
"118 99\n",
"119 99\n",
"120 99\n",
"121 99\n",
"122 99\n",
"123 99\n",
"124 99\n",
"125 99\n",
"126 99\n",
"127 99\n",
"128 99\n",
"129 99\n",
"130 99\n",
"131 99\n",
"132 99\n",
"133 99\n",
"134 99\n",
"135 99\n",
"136 99\n",
"137 99\n",
"138 99\n",
"139 99\n",
"140 99\n",
"141 99\n",
"142 99\n",
"143 99\n",
"144 99\n",
"145 99\n",
"146 99\n",
"147 99\n",
"148 99\n",
"149 99\n",
"150 99\n",
"151 99\n",
"152 99\n",
"153 99\n",
"154 99\n",
"155 99\n",
"156 99\n",
"157 99\n",
"158 99\n",
"159 99\n",
"160 99\n",
"161 99\n",
"162 99\n",
"163 99\n",
"164 99\n",
"165 99\n",
"166 99\n",
"167 99\n",
"168 99\n",
"169 99\n",
"170 99\n",
"171 99\n",
"172 99\n",
"173 99\n",
"174 99\n",
"175 99\n",
"176 99\n",
"177 99\n",
"178 99\n",
"179 99\n",
"180 99\n",
"181 99\n",
"182 99\n",
"183 99\n",
"184 99\n",
"185 99\n",
"186 99\n",
"187 99\n",
"188 99\n",
"189 99\n",
"190 99\n",
"191 99\n",
"192 99\n",
"193 99\n",
"194 99\n",
"195 99\n",
"196 99\n",
"197 99\n",
"198 99\n",
"199 99\n",
"200 99\n",
"201 99\n",
"202 99\n",
"203 99\n",
"204 99\n",
"205 99\n",
"206 99\n",
"207 99\n",
"208 99\n",
"209 99\n",
"210 99\n",
"211 99\n",
"212 99\n",
"213 99\n",
"214 99\n",
"215 99\n",
"216 99\n",
"217 99\n",
"218 99\n",
"219 99\n",
"220 99\n",
"221 99\n",
"222 99\n",
"223 99\n",
"224 99\n",
"225 99\n",
"226 99\n",
"227 99\n",
"228 99\n",
"229 99\n",
"230 99\n",
"231 99\n",
"232 99\n",
"233 99\n",
"234 99\n",
"235 99\n",
"236 99\n",
"237 99\n",
"238 99\n",
"239 99\n",
"240 99\n",
"241 99\n",
"242 99\n",
"243 99\n",
"244 99\n",
"245 99\n",
"246 99\n",
"247 99\n",
"248 99\n",
"249 99\n",
"250 99\n",
"251 99\n",
"252 99\n",
"253 99\n",
"254 99\n",
"255 99\n",
"256 99\n",
"257 99\n",
"258 99\n",
"259 99\n",
"260 99\n",
"261 99\n",
"262 99\n",
"263 99\n",
"264 99\n",
"265 99\n",
"266 99\n",
"267 99\n",
"268 99\n",
"269 99\n",
"270 99\n",
"271 99\n",
"272 99\n",
"273 99\n",
"274 99\n",
"275 99\n",
"276 99\n",
"277 99\n",
"278 99\n",
"279 99\n",
"280 99\n",
"281 99\n",
"282 99\n",
"283 99\n",
"284 99\n",
"285 99\n",
"286 99\n",
"287 99\n",
"288 99\n",
"289 99\n",
"290 99\n",
"291 99\n",
"292 99\n",
"293 99\n",
"294 99\n",
"295 99\n",
"296 99\n",
"297 99\n",
"298 99\n",
"299 99\n",
"300 99\n",
"301 99\n",
"302 99\n",
"303 99\n",
"304 99\n",
"305 99\n",
"306 99\n",
"307 99\n",
"308 99\n",
"309 99\n",
"310 99\n",
"311 99\n",
"312 99\n",
"313 99\n",
"314 99\n",
"315 99\n",
"316 99\n",
"317 99\n",
"318 99\n",
"319 99\n",
"320 99\n",
"321 99\n",
"322 99\n",
"323 99\n",
"324 99\n",
"325 99\n",
"326 99\n",
"327 99\n",
"328 99\n",
"329 99\n",
"330 99\n",
"331 99\n",
"332 99\n",
"333 99\n",
"334 99\n",
"335 99\n",
"336 99\n",
"337 99\n",
"338 99\n",
"339 99\n",
"340 99\n",
"341 99\n",
"342 99\n",
"343 99\n",
"344 99\n",
"345 99\n",
"346 99\n",
"347 99\n",
"348 99\n",
"349 99\n",
"350 99\n",
"351 99\n",
"352 99\n",
"353 99\n",
"354 99\n",
"355 99\n",
"356 99\n",
"357 99\n",
"358 99\n",
"359 99\n",
"360 99\n",
"361 99\n",
"362 99\n",
"363 99\n",
"364 99\n",
"365 99\n",
"366 99\n",
"367 99\n",
"368 99\n",
"369 99\n",
"370 99\n",
"371 99\n",
"372 99\n",
"373 99\n",
"374 99\n",
"375 99\n",
"376 99\n",
"377 99\n",
"378 99\n",
"379 99\n",
"380 99\n",
"381 99\n",
"382 99\n",
"383 99\n",
"384 99\n",
"385 99\n",
"386 99\n",
"387 99\n",
"388 99\n",
"389 99\n",
"390 99\n",
"391 99\n",
"392 99\n",
"393 99\n",
"394 99\n",
"395 99\n",
"396 99\n",
"397 99\n",
"398 99\n",
"399 99\n",
"400 99\n",
"401 99\n",
"402 99\n",
"403 99\n",
"404 99\n",
"405 99\n",
"406 99\n",
"407 99\n",
"408 99\n",
"409 99\n",
"410 99\n",
"411 99\n",
"412 99\n",
"413 99\n",
"414 99\n",
"415 99\n",
"416 99\n",
"417 99\n",
"418 99\n",
"419 99\n",
"420 99\n",
"421 99\n",
"422 99\n",
"423 99\n",
"424 99\n",
"425 99\n",
"426 99\n",
"427 99\n",
"428 99\n",
"429 99\n",
"430 99\n",
"431 99\n",
"432 99\n",
"433 99\n",
"434 99\n",
"435 99\n",
"436 99\n",
"437 99\n",
"438 99\n",
"439 99\n",
"440 99\n",
"441 99\n",
"442 99\n",
"443 99\n",
"444 99\n",
"445 99\n",
"446 99\n",
"447 99\n",
"448 99\n",
"449 99\n",
"450 99\n",
"451 99\n",
"452 99\n",
"453 99\n",
"454 99\n",
"455 99\n",
"456 99\n",
"457 99\n",
"458 99\n",
"459 99\n",
"460 99\n",
"461 99\n",
"462 99\n",
"463 99\n",
"464 99\n",
"465 99\n",
"466 99\n",
"467 99\n",
"468 99\n",
"469 99\n",
"470 99\n",
"471 99\n",
"472 99\n",
"473 99\n",
"474 99\n",
"475 99\n",
"476 99\n",
"477 99\n",
"478 99\n",
"479 99\n",
"480 99\n",
"481 99\n",
"482 99\n",
"483 99\n",
"484 99\n",
"485 99\n",
"486 99\n",
"487 99\n",
"488 99\n",
"489 99\n",
"490 99\n",
"491 99\n",
"492 99\n",
"493 99\n",
"494 99\n",
"495 99\n",
"496 99\n",
"497 99\n",
"498 99\n",
"499 99\n",
"500 99\n",
"501 99\n",
"502 99\n",
"503 99\n",
"504 99\n",
"505 99\n",
"506 99\n",
"507 99\n",
"508 99\n",
"509 99\n",
"510 99\n",
"511 99\n",
"512 99\n",
"513 99\n",
"514 99\n",
"515 99\n",
"516 99\n",
"517 99\n",
"518 99\n",
"519 99\n",
"520 99\n",
"521 99\n",
"522 99\n",
"523 99\n",
"524 99\n",
"-1 7\n"
]
}
],
"source": [
"n = 0\n",
"tot = 0\n",
"while True:\n",
" print(n, snap[n])\n",
"\n",
" if n == -1:\n",
" break\n",
" tot += m[n]\n",
" \n",
" n = nexthalo[n]\n"
]
},
{
"cell_type": "code",
"execution_count": 141,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([2.9051551e+15, 1.6921947e+15, 1.3596260e+15, ..., 9.9620782e+10,\n",
" 9.9620782e+10, 9.9620782e+10], dtype=float32)"
]
},
"execution_count": 141,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cat[\"totmass\"]"
]
},
{
"cell_type": "code",
"execution_count": 145,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.9089129421107761"
]
},
"execution_count": 145,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tot * 1e10 / 2.9051551e+15"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 118,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([ 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 920, 920, 920, 920,\n",
" 920, 920, 920, 920, 920, 920, 920, 920,\n",
" 920, 920, 920, 8873, 8873, 8873, 8873, 8873,\n",
" 8873, 8873, 8873, 17862, 17862, 17862, 17862, 17862,\n",
" 17862, 18228, 18228, 27161, 34487, 35365, 35365, 35365,\n",
" 47500, 48049, 50329, 50329, 50329, 58254, 58536, 61800,\n",
" 61800, 61800, 65113, 65114, 68491, 68491, 68491, 79269,\n",
" 86428, 86428, 86428, 90962, 91557, 91766, 91925, 95075,\n",
" 95075, 96564, 97574, 100676, 104544, 121822, 129509, 133645,\n",
" 144461, 147189, 149021, 155739, 156038, 157391, 159351, 164256])"
]
},
"execution_count": 118,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"f[\"TreeHalos/GroupNr\"][:400]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 108,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([ 458, 765, 459, ..., -1, 73894, -1], dtype=int32)"
]
},
"execution_count": 108,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x = f[\"TreeHalos/TreeMainProgenitor\"][:73895]\n",
"s = f[\"TreeHalos/SnapNum\"][:73895]\n",
"x"
]
},
{
"cell_type": "code",
"execution_count": 102,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([ 458, 765, 459, ..., -1, 73894, -1], dtype=int32)"
]
},
"execution_count": 102,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"y = f[\"TreeHalos/TreeFirstProgenitor\"][:73895]\n",
"y"
]
},
{
"cell_type": "code",
"execution_count": 104,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(array([ 5267, 8923, 31233, 34714, 36776, 57800, 57826, 64048, 67037,\n",
" 67200, 68473, 69140, 69301, 70258, 72159]),)"
]
},
"execution_count": 104,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.where(x != y)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([1.4632333e+05, 8.7416617e+04, 1.7587738e+04, ..., 8.7168188e+00,\n",
" 7.7828741e+00, 7.1602445e+00], dtype=float32)"
]
},
"execution_count": 62,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cat[\"Group_M_Crit200\"]"
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([1.8495028e+05, 1.2342685e+05, 1.0729690e+05, ..., 9.9620781e+00,\n",
" 9.9620781e+00, 9.9620781e+00], dtype=float32)"
]
},
"execution_count": 50,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cat[\"totmass\"] * 1e-10"
]
},
{
"cell_type": "code",
"execution_count": 75,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(array([458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470,\n",
" 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483,\n",
" 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496,\n",
" 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509,\n",
" 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522,\n",
" 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535,\n",
" 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548,\n",
" 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561,\n",
" 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574,\n",
" 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587,\n",
" 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600,\n",
" 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613,\n",
" 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626,\n",
" 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639,\n",
" 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652,\n",
" 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665,\n",
" 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678,\n",
" 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691,\n",
" 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704,\n",
" 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717,\n",
" 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730,\n",
" 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743,\n",
" 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756,\n",
" 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769,\n",
" 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782,\n",
" 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795,\n",
" 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808,\n",
" 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821,\n",
" 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834,\n",
" 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847,\n",
" 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860,\n",
" 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873,\n",
" 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886,\n",
" 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899,\n",
" 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 911, 912,\n",
" 913, 914, 915, 916, 917]),)"
]
},
"execution_count": 75,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.where(f[\"TreeHalos\"][\"SnapNum\"][:1000] == 98)"
]
},
{
"cell_type": "code",
"execution_count": 77,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"324"
]
},
"execution_count": 77,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"f[\"TreeHalos\"][\"TreeFirstHaloInFOFgroup\"][:1000][330]"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99,\n",
" 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99,\n",
" 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99,\n",
" 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99,\n",
" 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99,\n",
" 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99],\n",
" dtype=int32)"
]
},
"execution_count": 44,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"f[\"TreeHalos/SnapNum\"][73895:73895+100]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"snap_final = csiborgtools.read.CSiBORG2Snapshot(1, 99, \"varysmall\")\n",
"snap_init = csiborgtools.read.CSiBORG2Snapshot(1, 0, \"varysmall\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"# print(\"Loading final\")\n",
"# pid_final = snap_final.particle_ids()\n",
"\n",
"# print(\"Loading init\")\n",
"# pid_init = snap_init.particle_ids()\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"hid = 7\n",
"pos_final = snap_final.halo_coordinates(hid)"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
"pos_init = snap_init.halo_coordinates(hid)"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(231277, 3)"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pos_final.shape"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGeCAYAAAC+dvpwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZgcB3XvD3+qunrfp2dftcxIGo12eZMtYRvbyODXxsQQX5NACIQLufByzf3BjyU3EMhlyWuei7kh4ZIQCBBAJAaDhG2E7MSOZMvaNZbGI2k0Gs2+9b5W1/r+UdPtGVmyLcCWZNfnefp5pO7q6pruWk6d8z3fI5imaWJjY2NjY2NjcxkhXuoNsLGxsbGxsbE5FztAsbGxsbGxsbnssAMUGxsbGxsbm8sOO0CxsbGxsbGxueywAxQbGxsbGxubyw47QLGxsbGxsbG57LADFBsbGxsbG5vLDjtAsbGxsbGxsbnssAMUGxsbGxsbm8sO6VJvwG+DYRhMTEwQDAYRBOFSb46NjY2NjY3NK8A0TXK5HM3NzYjiy+RIzIvg7//+783Vq1ebwWDQDAaD5nXXXWc++uijC5Z55plnzJtvvtn0+XxmMBg0t2zZYhaLxerrd955p9nW1ma63W6zsbHR/OM//mNzfHz8YjbDHB0dNQH7YT/sh/2wH/bDflyBj9HR0Ze91gum+cpn8ezYsQOHw0FXVxemafL973+fBx54gCNHjtDT08PevXu5/fbb+cxnPsOdd96JJEn09vby9re/HbfbDcDXv/51Nm3aRFNTE+Pj43ziE58A4Jlnnnmlm0EmkyESiTA6OkooFHrF77OxsbGxsbG5dGSzWdra2kin04TD4Zdc9qIClPNRU1PDAw88wAc+8AGuu+46brvtNv76r//6Fb9/+/bt3H333ZTLZZxO5yt6TzabJRwOk8lk7ADFxsbGxsbmCuFirt+/tUhW13W2bdtGoVBg06ZNzMzMsG/fPurr67n++utpaGjgxhtvZM+ePRdcRzKZ5Ec/+hHXX3/9SwYn5XKZbDa74GFjY2NjY2Pz+uWiA5Rjx44RCARwu918+MMf5uGHH2blypWcOXMGgL/6q7/igx/8IL/+9a/ZsGEDt9xyCwMDAwvW8alPfQq/308sFmNkZIRf/vKXL/mZX/nKVwiHw9VHW1vbxW62jY2NjY2NzRXERZd4FEVhZGSETCbDQw89xHe+8x2eeuop0uk0N9xwA5/5zGf48pe/XF1+zZo13HHHHXzlK1+pPhePx0kmkwwPD/OFL3yBcDjMr371qwt25JTLZcrlcvX/lRqWXeKxsbGxsbG5criYEs9Ftxm7XC46OzsB2LhxIwcOHOAb3/gGn/70pwFYuXLlguW7u7sZGRlZ8FxtbS21tbUsW7aM7u5u2traePbZZ9m0adN5P9PtdldFtjY2NjY2Njavf35nozbDMCiXyyxatIjm5mZOnjy54PVTp07R0dHxku8HFmRIbGxsbGxsbN7YXFQG5TOf+QxvfetbaW9vJ5fL8eMf/5gnn3ySnTt3IggCn/zkJ/n85z/P2rVrWbduHd///vc5ceIEDz30EAD79u3jwIEDbN68mWg0yuDgIH/5l3/J0qVLL5g9sbGxsbGxsXnjcVEByszMDO9973uZnJwkHA6zZs0adu7cyW233QbA/fffjyzLfPzjHyeZTLJ27Vp27drF0qVLAfD5fPz85z/n85//PIVCgaamJm6//Xb+5//8n3YJx8bGxsbGxqbK7+yDcimwfVBsbGxsbGyuPF4THxQbGxsbGxsbm1cLO0CxsbGxsbGxueywAxQbGxsbGxubyw47QLGxsbGxsbG57LADFBsbm8uWoqLx8JExiop2qTfFxsbmNcYOUGxsbC4Z8wOQ8wUjO/umSOYVftM3fQm30sbG5lJgByg2NjaXjEoAsqN3gi890s9IosiXH+mvBilbexoJeCRkTbOzKDY2bzDsAMXGxuaSsbWnkVjAjYlJa9TLM2cSpIpWwALgc0m4JJGCrNtZFBubNxh2gGJjY3PJ8Lkk7l7fwl1rW2gKe7ljdSNOh3Vaiudl/uLhY1zVESUWcPOWnoZLvLU2NjavJXaAYmNjc8nxuSTe0tOASxLZtDTGnWub+fquAWayMt9+6gx3r2/B53rlkzlsca2NzZXPRc3isbGxsfl9U1Q0tveOc2AoSUHRCDglTODDNy7h20+d4f7bui56nfPFtXevb/n9b7SNjc2rjh2g2NjYXFJ29k2x93SS4WSBdFEl4nWimSAAGxdF8bkkiorGzr4ptvY0vqJMytaeRn7TN22XhWxsrmDsAMXGxuaSsrWnkbysITkEOusCnJ7Nsa4tiolZzYLM/3clI1LJvIDAXWubq4HLxQYzNjY2lye2BsXGxuaS4nNJBDwSnfUBdp+O01kXJOhxctfalqo4ttLt85aehqq+ZHvvOHtPJ3l2MLGgw8f2TrGxeX0gmKZpXuqNuFguZlyzjY3N5U9R0fjyI/3UBd3M5sp89o7uC2Y/Hj4yRjKvEPC88Pqd52RQKuUdO4NiY3N5cTHXbzuDYmNjc8nxuSQ+e0c3jWEPq1rPf9KqZE62dNUSC7i5pbselyS+KDjZ2TdlByc2Nq8D7ADFxsbmklPRkxweSZEqqOzoneDhI2PE83K1XbhSutkzkODu9S3sHogzkijyZ98/yGiyUC37VMo7dquxjc2VjV3isbGxuWRUAo+yprP3dBLdMIj4XKxqDVOQNYbiBRbX+qv6k9/0TbO5K8bugThbumr52E+OoukGR0dSeFwO2iI+upuCfPqObnYPxEnmFWIBt91qbGNzmWCXeGxsbK4IKlkRAYHrO2NsWVbHZ+/o5q61zcQCbu6/rasanFRcZyuBx56BBP/nvnWcmMqhGJCVdU5M5zg9W2TPQOJFc3zsjIqNzZWFXaS1sbG5ZMz3KznX76SS9Tg3+3Huez584xL+4anTKDq01/jorPNVXzOBvYNJBARckmibt9nYXEHYAYqNjc0lo5IVqWQ3crLGobMpFM3g3qvbX/I9Fd53w2KaIz42d8XYM5Bgc1eM7b0TgImiGQhzy9nmbTY2VxZ2icfGxuaSUyn19E1kEISXXx5e6OoBK8tSG/BUS0B7BxM8O5jELTm4aXl9tdPnYmf62NjYXDrsI9XGxuaSU8lufHJ9M3sGEq8oy1Exajs327K1pxFFM4CF/ig2NjZXFnYGxcbG5pJTmWa8eyB+ER4mAoIAeVnjLx4+RjwvV9d179Xt3Ht1ux2c2NhcwdgBio2NzWXBxVrU37W2mZuW13NqJsdMVubBXQOv8hba2Ni8ltgBio2NzWXB/Hk7r4SKpuSTW5fTEPJw/21dr/IW2tjYvJbYAYqNjc1lQaXMs7Nv6qK8SmoDHv7XO1ZTG/C8iltnY2PzWmMHKDY2NpcN9iRiGxubCnaAYmNjc9G8Wq6sF1vmsbGxef1iByg2NjYXze8z0zE/2LG9SmxsbCrYAYqNjc1F8/vMdNhlHRsbm/NhByg2NjYXzXxBazwvVzMgFyr9vFRJqBLsbO6KvaKy0fnWZQ8CtLF5/SGYpmle6o24WC5mXLONjc3vj6Kisb13HBAAk4KsMxQv0BLxMp4usao1REHWiQXcC+blPHxkjGReedHz84cDVjIp5y5zLudb14XWb2Njc3lxMddvO4NiY2PzslQyFNt7J9h7OsmzgwkEBGIBN/ff1sV4ukRL1IuqmQzFC2zuii14/4VKQvPLO+db5nyZkXOXKyoaZc0g4JFsca2NzesIO0CxsbF5WSqBhKoZSA5wiAK3dNdXh/R99o5umsJenJLA4lo/ewYS1fdWsiQbOyJ8YUcfP9g7VA045gcb5xPInqtPqaxrvh3+zr4pCrKGW3LY4lqbNzSvt1KnHaDY2Ngs4KWyFiYwFC9SVvUFQQiAicmt3Q0vyoJUgoxP/ewYfeNZfn5onC8/0k88L78o2ACI5+XqbJ1zsyU7+6aYSst8+ZH+6vZt6ao9b9bGxub1yEsFIa83wbkdoNjY2Cxg/kmucjIEuHt9Cy5JpDnixeN0IGt69SRZec+egUQ1C1J571UdUU7
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure()\n",
"# plt.scatter(pos_init[:,0], pos_init[:, 1], s=0.1)\n",
"plt.scatter(pos_final[:,0], pos_final[:, 1], s=0.1)\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<KeysViewHDF5 ['GroupAscale', 'GroupFirstSub', 'GroupLen', 'GroupLenPrevMostBnd', 'GroupLenType', 'GroupMass', 'GroupMassType', 'GroupNsubs', 'GroupOffsetType', 'GroupPos', 'GroupVel', 'Group_M_Crit200', 'Group_M_Crit500', 'Group_M_Mean200', 'Group_M_TopHat200', 'Group_R_Crit200', 'Group_R_Crit500', 'Group_R_Mean200', 'Group_R_TopHat200']>\n",
"<KeysViewHDF5 ['GroupAscale', 'GroupFirstSub', 'GroupLen', 'GroupLenPrevMostBnd', 'GroupLenType', 'GroupMass', 'GroupMassType', 'GroupNsubs', 'GroupOffsetType', 'GroupPos', 'GroupVel', 'Group_M_Crit200', 'Group_M_Crit500', 'Group_M_Mean200', 'Group_M_TopHat200', 'Group_R_Crit200', 'Group_R_Crit500', 'Group_R_Mean200', 'Group_R_TopHat200']>\n"
]
}
],
"source": [
"cat = csiborgtools.read.CSiBORG2Catalogue(15617, 99, \"main\", bounds={\"dist\": (None, 120)})"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<KeysViewHDF5 ['GroupAscale', 'GroupFirstSub', 'GroupLen', 'GroupLenPrevMostBnd', 'GroupLenType', 'GroupMass', 'GroupMassType', 'GroupNsubs', 'GroupOffsetType', 'GroupPos', 'GroupVel', 'Group_M_Crit200', 'Group_M_Crit500', 'Group_M_Mean200', 'Group_M_TopHat200', 'Group_R_Crit200', 'Group_R_Crit500', 'Group_R_Mean200', 'Group_R_TopHat200']>\n",
"<KeysViewHDF5 ['GroupAscale', 'GroupFirstSub', 'GroupLen', 'GroupLenPrevMostBnd', 'GroupLenType', 'GroupMass', 'GroupMassType', 'GroupNsubs', 'GroupOffsetType', 'GroupPos', 'GroupVel', 'Group_M_Crit200', 'Group_M_Crit500', 'Group_M_Mean200', 'Group_M_TopHat200', 'Group_R_Crit200', 'Group_R_Crit500', 'Group_R_Mean200', 'Group_R_TopHat200']>\n"
]
}
],
"source": [
"x = cat[\"dist\"]\n",
"y = cat[\"GroupContamination\"]"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGdCAYAAADuR1K7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAjjUlEQVR4nO3deXDU5QH/8c+GkA1XkoaELIGEq1RQLg0SYg8ckzEgU0nBiimVw1SqBUSDFOIB1R6xMipaEOqMSh1AKFaxIsVfDIpaVo4EagHJDxgEBDbhaHa5cpB9fn84bH9bQgjIZsnD+zWzU/L9Pt/d5+G7Zt/9Zjc4jDFGAAAAlogI9wQAAACuJOIGAABYhbgBAABWIW4AAIBViBsAAGAV4gYAAFiFuAEAAFYhbgAAgFUiwz2BcPD7/Tp06JDatWsnh8MR7ukAAIBGMMboxIkTSk5OVkTEha/PXJNxc+jQIaWkpIR7GgAA4DIcOHBAnTt3vuD+azJu2rVrJ+mbv5yYmJgwzwYAADSGz+dTSkpK4HX8Qq7JuDn3o6iYmBjiBgCAZuZibynhDcUAAMAqxA0AALAKcQMAAKxC3AAAAKsQNwAAwCrEDQAAsApxAwAArELcAAAAqxA3AADAKsQNAACwCnEDAACsQtwAAACrEDcAAMAqxA0AALAKcQMAAKxC3AAAAKsQNwAAwCrEDQAAsApxAwAArELcAAAAqxA3AADAKsQNAACwCnEDAACsQtwAAACrEDcAAMAqxA0AALAKcQMAAKxC3AAAAKsQNwAAwCrEDQAAsApxAwAArELcAAAAqxA3AADAKsQNAACwCnEDAACsQtwAAACrEDcAAMAqxA0AALAKcQMAAKxC3AAAAKsQNwAAwCrEDQAAsApxAwAArNIkcTN//nx17dpV0dHRSk9P18aNGxscv2LFCvXq1UvR0dHq27evVq9efcGxDzzwgBwOh+bOnXuFZw0AAJqjkMfN8uXLlZ+fr9mzZ6u0tFT9+/dXdna2Kioq6h2/fv165ebmKi8vT1u2bFFOTo5ycnK0bdu288a+8847+vzzz5WcnBzqZQAAgGYi5HHz/PPP6/7779eECRN0/fXXa+HChWrdurVee+21ese/+OKLGjp0qKZPn67evXvrt7/9rW666SbNmzcvaNzBgwc1ZcoULVmyRC1btgz1MgAAQDMR0ripqalRSUmJsrKy/vuAERHKysqS2+2u9xi32x00XpKys7ODxvv9ft17772aPn26brjhhovOo7q6Wj6fL+gGAADsFNK4OXr0qOrq6pSUlBS0PSkpSR6Pp95jPB7PRcf/8Y9/VGRkpB566KFGzaOwsFCxsbGBW0pKyiWuBAAANBfN7tNSJSUlevHFF7Vo0SI5HI5GHVNQUCCv1xu4HThwIMSzBAAA4RLSuElISFCLFi1UXl4etL28vFwul6veY1wuV4PjP/30U1VUVCg1NVWRkZGKjIzUvn37NG3aNHXt2rXe+3Q6nYqJiQm6AQAAO4U0bqKiopSWlqbi4uLANr/fr+LiYmVkZNR7TEZGRtB4SSoqKgqMv/fee/XFF19o69atgVtycrKmT5+uDz74IHSLAQAAzUJkqB8gPz9f48aN08CBAzVo0CDNnTtXp06d0oQJEyRJY8eOVadOnVRYWChJmjp1qoYMGaLnnntOw4cP17Jly7R582a98sorkqT27durffv2QY/RsmVLuVwuXXfddaFeDgAAuMqFPG5Gjx6tI0eOaNasWfJ4PBowYIDWrFkTeNPw/v37FRHx3wtIt9xyi5YuXaonnnhCjz32mHr27KmVK1eqT58+oZ4qAACwgMMYY8I9iabm8/kUGxsrr9fL+28AAGgmGvv63ew+LQUAANAQ4gYAAFiFuAEAAFYhbgAAgFWIGwAAYBXiBgAAWIW4AQAAViFuAACAVYgbAABgFeIGAABYhbgBAABWIW4AAIBViBsAAGAV4gYAAFiFuAEAAFYhbgAAgFWIGwAAYBXiBgAAWIW4AQAAViFuAACAVYgbAABgFeIGAABYhbgBAABWIW4AAIBViBsAAGAV4gYAAFiFuAEAAFYhbgAAgFWIGwAAYBXiBgAAWIW4AQAAViFuAACAVYgbAABgFeIGAABYhbgBAABWIW4AAIBViBsAAGAV4gYAAFiFuAEAAFYhbgAAgFWIGwAAYBXiBgAAWIW4AQAAViFuAACAVYgbAABgFeIGAABYhbgBAABWIW4AAIBViBsAAGAV4gYAAFiFuAEAAFYhbgAAgFWIGwAAYBXiBgAAWIW4AQAAViFuAACAVZokbubPn6+uXbsqOjpa6enp2rhxY4PjV6xYoV69eik6Olp9+/bV6tWrA/tqa2s1Y8YM9e3bV23atFFycrLGjh2rQ4cOhXoZAACgGQh53Cxfvlz5+fmaPXu2SktL1b9/f2VnZ6uioqLe8evXr1dubq7y8vK0ZcsW5eTkKCcnR9u2bZMknT59WqWlpXryySdVWlqqt99+W2VlZbrzzjtDvRQAANAMOIwxJpQPkJ6erptvvlnz5s2TJPn9fqWkpGjKlCmaOXPmeeNHjx6tU6dOadWqVYFtgwcP1oABA7Rw4cJ6H2PTpk0aNGiQ9u3bp9TU1IvOyefzKTY2Vl6vVzExMZe5MgAA0JQa+/od0is3NTU1KikpUVZW1n8fMCJCWVlZcrvd9R7jdruDxktSdnb2BcdLktfrlcPhUFxcXL37q6ur5fP5gm4AAMBOIY2bo0ePqq6uTklJSUHbk5KS5PF46j3G4/Fc0viqqirNmDFDubm5F6y4wsJCxcbGBm4pKSmXsRoAANAcNOtPS9XW1uruu++WMUYLFiy44LiCggJ5vd7A7cCBA004SwAA0JQiQ3nnCQkJatGihcrLy4O2l5eXy+Vy1XuMy+Vq1PhzYbNv3z6tXbu2wZ+9OZ1OOZ3Oy1wFAABoTkJ65SYqKkppaWkqLi4ObPP7/SouLlZGRka9x2RkZASNl6SioqKg8efCZteuXfrwww/Vvn370CwAAAA0OyG9ciNJ+fn5GjdunAYOHKhBgwZp7ty5OnXqlCZMmCBJGjt2rDp16qTCwkJJ0tSpUzVkyBA999xzGj58uJYtW6bNmzfrlVdekfRN2Nx1110qLS3VqlWrVFdXF3g/Tnx8vKKiokK9JAAAcBULedyMHj1aR44c0axZs+TxeDRgwACtWbMm8Kbh/fv3KyLivxeQbrnlFi1dulRPPPGEHnvsMfXs2VMrV65Unz59JEkHDx7U3//+d0nSgAEDgh7ro48+0q233hrqJQEAgKtYyH/PzdWI33MDAEDzc1X8nhsAAICmRtwAAACrEDcAAMAqxA0AALAKcQMAAKxC3AAAAKsQNwAAwCrEDQAAsApxAwAArELcAAAAqxA3AADAKsQNAACwCnEDAACsQtwAAACrEDcAAMAqxA0AALAKcQMAAKxC3AAAAKsQNwAAwCrEDQAAsApxAwAArELcAAAAqxA3AADAKsQNAACwCnEDAACsQtwAAACrEDcAAMAqxA0AALAKcQMAAKxC3AAAAKsQNwAAwCrEDQAAsApxAwAArELcAAAAqxA3AADAKsQNAACwCnEDAACsQtwAAACrEDcAAMAqxA0AALAKcQMAAKxC3AAAAKsQNwAAwCrEDQAAsApxAwAArELcAAAAqxA3AADAKsQNAACwCnEDAACsQtwAAACrEDcAAMAqxA0AALAKcQMAAKxC3AAAAKsQNwAAwCrEDQAAsEqTxM38+fPVtWtXRUdHKz09XRs3bmxw/IoVK9SrVy9FR0erb9++Wr16ddB+Y4xmzZqljh07qlWrVsrKytKuXbtCuQQAANBMhDxuli9frvz8fM2ePVulpaXq37+/srOzVVFRUe/49evXKzc3V3l5edqyZYtycnKUk5Ojbdu2BcY8++yzeumll7Rw4UJt2LBBbdq0UXZ2tqqqqkK9HAAAcJVzGGNMKB8gPT1dN998s+bNmydJ8vv9SklJ0ZQpUzRz5szzxo8ePVqnTp3SqlWrAtsGDx6sAQMGaOHChTLGKDk5WdOmTdOjjz4qSfJ6vUpKStKiRYt0zz33XHROPp9
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure()\n",
"plt.scatter(x / 0.676, y, s=0.1)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['cartesian_pos',\n",
" 'spherical_pos',\n",
" 'dist',\n",
" 'cartesian_redshiftspace_pos',\n",
" 'spherical_redshiftspace_pos',\n",
" 'redshiftspace_dist',\n",
" 'cartesian_vel',\n",
" 'particle_offsetnpart',\n",
" 'totmass',\n",
" 'index',\n",
" 'lagpatch_coordinates',\n",
" 'lagpatch_radius']"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cat.keys()"
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"168736"
]
},
"execution_count": 56,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(cat)"
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {},
"outputs": [
{
"ename": "AttributeError",
"evalue": "'CSiBORG1Catalogue' object has no attribute 'data'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[55], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mcat\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mm200c\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\n",
"File \u001b[0;32m~/csiborgtools/csiborgtools/read/catalogue.py:486\u001b[0m, in \u001b[0;36mBaseCatalogue.__getitem__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 484\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m key \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_custom_keys:\n\u001b[1;32m 485\u001b[0m out \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mgetattr\u001b[39m(\u001b[38;5;28mself\u001b[39m, key)\n\u001b[0;32m--> 486\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m key \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdata\u001b[49m[\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcatalogue_name]\u001b[38;5;241m.\u001b[39mkeys():\n\u001b[1;32m 487\u001b[0m out \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdata[\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcatalogue_name\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m/\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mkey\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m][:]\n\u001b[1;32m 488\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n",
"\u001b[0;31mAttributeError\u001b[0m: 'CSiBORG1Catalogue' object has no attribute 'data'"
]
}
],
"source": [
"cat[\"m200c\"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([ 1, 2, 3, ..., 168734, 168735, 168736], dtype=int32)"
]
},
"execution_count": 46,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cat[\"index\"]"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [
{
"ename": "ValueError",
"evalue": "FoF catalogue key 'xx' not available. Available keys are: ['GroupOffset', 'index', 'm200c', 'totpartmass', 'x', 'y', 'z']",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[43], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mcat\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_read_fof_catalogue\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mxx\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/csiborgtools/csiborgtools/read/catalogue.py:566\u001b[0m, in \u001b[0;36mCSiBORG1Catalogue._read_fof_catalogue\u001b[0;34m(self, kind)\u001b[0m\n\u001b[1;32m 564\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m File(fpath, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mr\u001b[39m\u001b[38;5;124m'\u001b[39m) \u001b[38;5;28;01mas\u001b[39;00m f:\n\u001b[1;32m 565\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m kind \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m f\u001b[38;5;241m.\u001b[39mkeys():\n\u001b[0;32m--> 566\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mFoF catalogue key \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mkind\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m not available. Available keys are: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mlist\u001b[39m(f\u001b[38;5;241m.\u001b[39mkeys())\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m) \u001b[38;5;66;03m# noqa\u001b[39;00m\n\u001b[1;32m 567\u001b[0m out \u001b[38;5;241m=\u001b[39m f[kind][\u001b[38;5;241m.\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;241m.\u001b[39m]\n\u001b[1;32m 568\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m out\n",
"\u001b[0;31mValueError\u001b[0m: FoF catalogue key 'xx' not available. Available keys are: ['GroupOffset', 'index', 'm200c', 'totpartmass', 'x', 'y', 'z']"
]
}
],
"source": [
"cat._read_fof_catalogue(\"xx\")"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([165, 341, 189, ..., 524, 281, 606], dtype=uint32)"
]
},
"execution_count": 49,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"getattr(cat, \"npart\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([3.12599134e+09, 3.11626524e+09, 3.12360110e+09, ...,\n",
" 3.56968138e+09, 3.11820731e+09, 6.41428993e+09])"
]
},
"execution_count": 42,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cat[\"totmass\"] / cat[\"npart\"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[246.23767, 248.68051, 246.8038 ],\n",
" [245.89716, 248.3562 , 246.68607],\n",
" [251.61401, 249.80145, 251.0754 ],\n",
" ...,\n",
" [239.69035, 436.81116, 251.61401],\n",
" [238.87607, 435.89465, 251.42436],\n",
" [239.18134, 437.3216 , 250.3281 ]], dtype=float32)"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cat[\"cartesian_pos\"]"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<KeysViewHDF5 ['GroupOffset', 'index', 'm200c', 'totpartmass', 'x', 'y', 'z']>\n"
]
},
{
"data": {
"text/plain": [
"array([246.23767, 245.89716, 251.61401, ..., 239.69035, 238.87607,\n",
" 239.18134], dtype=float32)"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cat._read_fof_catalogue(\"x\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['spherical_pos', 'cartesian_pos']"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cat.cache_keys()"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [],
"source": [
"x = np.arange(10)"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(20, 1)"
]
},
"execution_count": 41,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.vstack([x.reshape(-1, 1), x.reshape(-1, 1)]).shape"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(20,)"
]
},
"execution_count": 45,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.hstack([x, x]).shape"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(38733704, 3)"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.vstack([x, x]).shape"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"ename": "ValueError",
"evalue": "Halo `0` not found.",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[11], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m x \u001b[38;5;241m=\u001b[39m \u001b[43msnapshot\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mhalo_coordinates\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/csiborgtools/csiborgtools/read/snapshot.py:255\u001b[0m, in \u001b[0;36mCSiBORG1Snapshot.halo_coordinates\u001b[0;34m(self, halo_id, is_group)\u001b[0m\n\u001b[1;32m 252\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m is_group:\n\u001b[1;32m 253\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mThere is no subhalo catalogue for CSiBORG1.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 255\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_get_halo_particles\u001b[49m\u001b[43m(\u001b[49m\u001b[43mhalo_id\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mCoordinates\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/csiborgtools/csiborgtools/read/snapshot.py:245\u001b[0m, in \u001b[0;36mCSiBORG1Snapshot._get_halo_particles\u001b[0;34m(self, halo_id, kind)\u001b[0m\n\u001b[1;32m 242\u001b[0m i, j \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhid2offset\u001b[38;5;241m.\u001b[39mget(halo_id, (\u001b[38;5;28;01mNone\u001b[39;00m, \u001b[38;5;28;01mNone\u001b[39;00m))\n\u001b[1;32m 244\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m i \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m--> 245\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mHalo `\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mhalo_id\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m` not found.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 247\u001b[0m x \u001b[38;5;241m=\u001b[39m f[kind][i:j \u001b[38;5;241m+\u001b[39m \u001b[38;5;241m1\u001b[39m]\n\u001b[1;32m 249\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m x\n",
"\u001b[0;31mValueError\u001b[0m: Halo `0` not found."
]
}
],
"source": [
"x = snapshot.halo_coordinates(0)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[396.24 , 662.408, 314.148],\n",
" [398.16 , 661.776, 314.764],\n",
" [398.04 , 660.472, 313.024],\n",
" ...,\n",
" [396.26 , 661.08 , 314.384],\n",
" [396.052, 661.296, 313.964],\n",
" [397.068, 662.008, 312.492]], dtype=float32)"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09, 3.0900434e+09, 3.0900434e+09,\n",
" 3.0900434e+09, 3.0900434e+09], dtype=float32)"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"snapshot.hid2offset"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"d = {i: (j, k) for i, j, k in offset}"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(295030069, 295030234)"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"d[1]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"ids = snapshot.particle_ids()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<KeysViewHDF5 ['Coordinates', 'Header', 'Masses', 'ParticleIDs', 'Velocities']>\n"
]
}
],
"source": [
"from h5py import File\n",
"\n",
"\n",
"with File(\"/mnt/extraspace/rstiskalek/csiborg1/chain_7516/snapshot_00946.hdf5\", 'r') as f:\n",
" print(f.keys())\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<bound method CSiBORG1Snapshot.particle_ids of <csiborgtools.read.snapshot.CSiBORG1Snapshot object at 0x7f924a96d9d0>>"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ids"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(22478, 7)"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"d1[\"val\"].shape"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(17737, 7)"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"d2[\"val\"].shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"WARNING: VerifyWarning: It is strongly recommended that column names contain only upper and lower-case ASCII letters, digits, or underscores for maximum compatibility with other software (got '#AGC'). [astropy.io.fits.column]\n",
"WARNING: VerifyWarning: It is strongly recommended that column names contain only upper and lower-case ASCII letters, digits, or underscores for maximum compatibility with other software (got '#AGCNr'). [astropy.io.fits.column]\n",
"/mnt/zfsusers/rstiskalek/csiborgtools/csiborgtools/read/obs.py:368: UserWarning: Key `IN_DR7_LSS` found in both `routine_keys` and `fits_keys`. Returning `routine_keys` value.\n",
" warn(f\"Key `{key}` found in both `routine_keys` and `fits_keys`. \"\n"
]
}
],
"source": [
"surv = csiborgtools.SDSSxALFALFA()(apply_selection=True)"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"22478"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"surv.selection_mask.size"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'x' is not defined",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[1], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mx\u001b[49m\n",
"\u001b[0;31mNameError\u001b[0m: name 'x' is not defined"
]
}
],
"source": [
"x"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(17737, 7)"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"d[\"val\"].shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([0, 1])"
]
},
"execution_count": 43,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"paths.get_ics(\"quijote\")"
]
},
{
"cell_type": "code",
"execution_count": 78,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"True\n"
]
},
{
"data": {
"text/plain": [
"['ics', 4]"
]
},
"execution_count": 78,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"paths.get_snapshots(1, \"quijote\")"
]
},
{
"cell_type": "code",
"execution_count": 82,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'ICs'"
]
},
"execution_count": 82,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"str(\"ICs\").zfill(3)"
]
},
{
"cell_type": "code",
"execution_count": 80,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'/mnt/extraspace/rstiskalek/csiborg1/chain_7444/snapshot_00980.hdf5'"
]
},
"execution_count": 80,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"paths.snapshot(980, 7444, \"csiborg\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"with h5py.File(\"/mnt/extraspace/rstiskalek/quijote/fiducial_processed/chain_0/fof_004.hdf5\", 'r') as f:\n",
" print(f.keys())"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[9.9994348e+02, 2.3538021e+01, 1.3582062e+01],\n",
" [1.2109435e+02, 9.1827988e+01, 4.8249097e+02],\n",
" [1.2107726e+02, 9.1833275e+01, 4.8052374e+02],\n",
" ...,\n",
" [9.9808612e+02, 9.7062708e+02, 9.3360345e+02],\n",
" [2.6784971e-02, 9.7256281e+02, 9.3554065e+02],\n",
" [9.9810071e+02, 9.6868726e+02, 9.3552893e+02]], dtype=float32)"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pos0"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"Omega0 0.307000011205673\n",
"OmegaBaryon 0.0\n",
"OmegaLambda 0.693000018596649"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.693000018596649"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"box._omega_l"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.307000011205673"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"box.Om0"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"67682.75228061239"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"box.box2vel(1)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"2.654327164967911e+19"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([15517, 15617, 15717, 15817, 15917, 16017, 16117, 16217, 16317,\n",
" 16417, 16517, 16617, 16717, 16817, 16917, 17117, 17217, 17317,\n",
" 17417])"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"paths.get_ics(\"csiborg2_main\")"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,\n",
" 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,\n",
" 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,\n",
" 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,\n",
" 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,\n",
" 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99])"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"paths.get_snapshots(15517, \"csiborg2_main\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"bak-subhalo_treelink_000.hdf5\t snapshot-prevmostboundonly_045.hdf5\n",
"bak-subhalo_treelink_001.hdf5\t snapshot-prevmostboundonly_046.hdf5\n",
"bak-subhalo_treelink_002.hdf5\t snapshot-prevmostboundonly_047.hdf5\n",
"bak-subhalo_treelink_003.hdf5\t snapshot-prevmostboundonly_048.hdf5\n",
"bak-subhalo_treelink_004.hdf5\t snapshot-prevmostboundonly_049.hdf5\n",
"bak-subhalo_treelink_005.hdf5\t snapshot-prevmostboundonly_050.hdf5\n",
"bak-subhalo_treelink_006.hdf5\t snapshot-prevmostboundonly_051.hdf5\n",
"bak-subhalo_treelink_007.hdf5\t snapshot-prevmostboundonly_052.hdf5\n",
"bak-subhalo_treelink_008.hdf5\t snapshot-prevmostboundonly_053.hdf5\n",
"bak-subhalo_treelink_009.hdf5\t snapshot-prevmostboundonly_054.hdf5\n",
"bak-subhalo_treelink_010.hdf5\t snapshot-prevmostboundonly_055.hdf5\n",
"bak-subhalo_treelink_011.hdf5\t snapshot-prevmostboundonly_056.hdf5\n",
"bak-subhalo_treelink_012.hdf5\t snapshot-prevmostboundonly_057.hdf5\n",
"bak-subhalo_treelink_013.hdf5\t snapshot-prevmostboundonly_058.hdf5\n",
"bak-subhalo_treelink_014.hdf5\t snapshot-prevmostboundonly_059.hdf5\n",
"bak-subhalo_treelink_015.hdf5\t snapshot-prevmostboundonly_060.hdf5\n",
"bak-subhalo_treelink_016.hdf5\t snapshot-prevmostboundonly_061.hdf5\n",
"bak-subhalo_treelink_017.hdf5\t snapshot-prevmostboundonly_062.hdf5\n",
"bak-subhalo_treelink_018.hdf5\t snapshot-prevmostboundonly_063.hdf5\n",
"bak-subhalo_treelink_019.hdf5\t snapshot-prevmostboundonly_064.hdf5\n",
"bak-subhalo_treelink_020.hdf5\t snapshot-prevmostboundonly_065.hdf5\n",
"bak-subhalo_treelink_021.hdf5\t snapshot-prevmostboundonly_066.hdf5\n",
"bak-subhalo_treelink_022.hdf5\t snapshot-prevmostboundonly_067.hdf5\n",
"bak-subhalo_treelink_023.hdf5\t snapshot-prevmostboundonly_068.hdf5\n",
"bak-subhalo_treelink_024.hdf5\t snapshot-prevmostboundonly_069.hdf5\n",
"bak-subhalo_treelink_025.hdf5\t snapshot-prevmostboundonly_070.hdf5\n",
"bak-subhalo_treelink_026.hdf5\t snapshot-prevmostboundonly_071.hdf5\n",
"bak-subhalo_treelink_027.hdf5\t snapshot-prevmostboundonly_072.hdf5\n",
"bak-subhalo_treelink_028.hdf5\t snapshot-prevmostboundonly_073.hdf5\n",
"bak-subhalo_treelink_029.hdf5\t snapshot-prevmostboundonly_074.hdf5\n",
"bak-subhalo_treelink_030.hdf5\t snapshot-prevmostboundonly_075.hdf5\n",
"bak-subhalo_treelink_031.hdf5\t snapshot-prevmostboundonly_076.hdf5\n",
"bak-subhalo_treelink_032.hdf5\t snapshot-prevmostboundonly_077.hdf5\n",
"bak-subhalo_treelink_033.hdf5\t snapshot-prevmostboundonly_078.hdf5\n",
"bak-subhalo_treelink_034.hdf5\t snapshot-prevmostboundonly_079.hdf5\n",
"bak-subhalo_treelink_035.hdf5\t snapshot-prevmostboundonly_080.hdf5\n",
"bak-subhalo_treelink_036.hdf5\t snapshot-prevmostboundonly_081.hdf5\n",
"bak-subhalo_treelink_037.hdf5\t snapshot-prevmostboundonly_082.hdf5\n",
"bak-subhalo_treelink_038.hdf5\t snapshot-prevmostboundonly_083.hdf5\n",
"bak-subhalo_treelink_039.hdf5\t snapshot-prevmostboundonly_084.hdf5\n",
"bak-subhalo_treelink_040.hdf5\t snapshot-prevmostboundonly_085.hdf5\n",
"bak-subhalo_treelink_041.hdf5\t snapshot-prevmostboundonly_086.hdf5\n",
"bak-subhalo_treelink_042.hdf5\t snapshot-prevmostboundonly_087.hdf5\n",
"bak-subhalo_treelink_043.hdf5\t snapshot-prevmostboundonly_088.hdf5\n",
"bak-subhalo_treelink_044.hdf5\t snapshot-prevmostboundonly_089.hdf5\n",
"bak-subhalo_treelink_045.hdf5\t snapshot-prevmostboundonly_090.hdf5\n",
"bak-subhalo_treelink_046.hdf5\t snapshot-prevmostboundonly_091.hdf5\n",
"bak-subhalo_treelink_047.hdf5\t snapshot-prevmostboundonly_092.hdf5\n",
"bak-subhalo_treelink_048.hdf5\t snapshot-prevmostboundonly_093.hdf5\n",
"bak-subhalo_treelink_049.hdf5\t snapshot-prevmostboundonly_094.hdf5\n",
"bak-subhalo_treelink_050.hdf5\t snapshot-prevmostboundonly_095.hdf5\n",
"bak-subhalo_treelink_051.hdf5\t snapshot-prevmostboundonly_096.hdf5\n",
"bak-subhalo_treelink_052.hdf5\t snapshot-prevmostboundonly_097.hdf5\n",
"bak-subhalo_treelink_053.hdf5\t snapshot-prevmostboundonly_098.hdf5\n",
"bak-subhalo_treelink_054.hdf5\t snapshot-prevmostboundonly_099.hdf5\n",
"bak-subhalo_treelink_055.hdf5\t subhalo_desc_000.hdf5\n",
"bak-subhalo_treelink_056.hdf5\t subhalo_desc_001.hdf5\n",
"bak-subhalo_treelink_057.hdf5\t subhalo_desc_002.hdf5\n",
"bak-subhalo_treelink_058.hdf5\t subhalo_desc_003.hdf5\n",
"bak-subhalo_treelink_059.hdf5\t subhalo_desc_004.hdf5\n",
"bak-subhalo_treelink_060.hdf5\t subhalo_desc_005.hdf5\n",
"bak-subhalo_treelink_061.hdf5\t subhalo_desc_006.hdf5\n",
"bak-subhalo_treelink_062.hdf5\t subhalo_desc_007.hdf5\n",
"bak-subhalo_treelink_063.hdf5\t subhalo_desc_008.hdf5\n",
"bak-subhalo_treelink_064.hdf5\t subhalo_desc_009.hdf5\n",
"bak-subhalo_treelink_065.hdf5\t subhalo_desc_010.hdf5\n",
"bak-subhalo_treelink_066.hdf5\t subhalo_desc_011.hdf5\n",
"bak-subhalo_treelink_067.hdf5\t subhalo_desc_012.hdf5\n",
"bak-subhalo_treelink_068.hdf5\t subhalo_desc_013.hdf5\n",
"bak-subhalo_treelink_069.hdf5\t subhalo_desc_014.hdf5\n",
"bak-subhalo_treelink_070.hdf5\t subhalo_desc_015.hdf5\n",
"bak-subhalo_treelink_071.hdf5\t subhalo_desc_016.hdf5\n",
"bak-subhalo_treelink_072.hdf5\t subhalo_desc_017.hdf5\n",
"bak-subhalo_treelink_073.hdf5\t subhalo_desc_018.hdf5\n",
"bak-subhalo_treelink_074.hdf5\t subhalo_desc_019.hdf5\n",
"bak-subhalo_treelink_075.hdf5\t subhalo_desc_020.hdf5\n",
"bak-subhalo_treelink_076.hdf5\t subhalo_desc_021.hdf5\n",
"bak-subhalo_treelink_077.hdf5\t subhalo_desc_022.hdf5\n",
"bak-subhalo_treelink_078.hdf5\t subhalo_desc_023.hdf5\n",
"bak-subhalo_treelink_079.hdf5\t subhalo_desc_024.hdf5\n",
"bak-subhalo_treelink_080.hdf5\t subhalo_desc_025.hdf5\n",
"bak-subhalo_treelink_081.hdf5\t subhalo_desc_026.hdf5\n",
"bak-subhalo_treelink_082.hdf5\t subhalo_desc_027.hdf5\n",
"bak-subhalo_treelink_083.hdf5\t subhalo_desc_028.hdf5\n",
"bak-subhalo_treelink_084.hdf5\t subhalo_desc_029.hdf5\n",
"bak-subhalo_treelink_085.hdf5\t subhalo_desc_030.hdf5\n",
"bak-subhalo_treelink_086.hdf5\t subhalo_desc_031.hdf5\n",
"bak-subhalo_treelink_087.hdf5\t subhalo_desc_032.hdf5\n",
"bak-subhalo_treelink_088.hdf5\t subhalo_desc_033.hdf5\n",
"bak-subhalo_treelink_089.hdf5\t subhalo_desc_034.hdf5\n",
"bak-subhalo_treelink_090.hdf5\t subhalo_desc_035.hdf5\n",
"bak-subhalo_treelink_091.hdf5\t subhalo_desc_036.hdf5\n",
"bak-subhalo_treelink_092.hdf5\t subhalo_desc_037.hdf5\n",
"bak-subhalo_treelink_093.hdf5\t subhalo_desc_038.hdf5\n",
"bak-subhalo_treelink_094.hdf5\t subhalo_desc_039.hdf5\n",
"bak-subhalo_treelink_095.hdf5\t subhalo_desc_040.hdf5\n",
"bak-subhalo_treelink_096.hdf5\t subhalo_desc_041.hdf5\n",
"bak-subhalo_treelink_097.hdf5\t subhalo_desc_042.hdf5\n",
"bak-subhalo_treelink_098.hdf5\t subhalo_desc_043.hdf5\n",
"bak-subhalo_treelink_099.hdf5\t subhalo_desc_044.hdf5\n",
"bak-trees.hdf5\t\t\t subhalo_desc_045.hdf5\n",
"balance.txt\t\t\t subhalo_desc_046.hdf5\n",
"cpu.csv\t\t\t\t subhalo_desc_047.hdf5\n",
"cpu.txt\t\t\t\t subhalo_desc_048.hdf5\n",
"density.txt\t\t\t subhalo_desc_049.hdf5\n",
"domain.txt\t\t\t subhalo_desc_050.hdf5\n",
"energy.txt\t\t\t subhalo_desc_051.hdf5\n",
"fof_subhalo_tab_000.hdf5\t subhalo_desc_052.hdf5\n",
"fof_subhalo_tab_001.hdf5\t subhalo_desc_053.hdf5\n",
"fof_subhalo_tab_002.hdf5\t subhalo_desc_054.hdf5\n",
"fof_subhalo_tab_003.hdf5\t subhalo_desc_055.hdf5\n",
"fof_subhalo_tab_004.hdf5\t subhalo_desc_056.hdf5\n",
"fof_subhalo_tab_005.hdf5\t subhalo_desc_057.hdf5\n",
"fof_subhalo_tab_006.hdf5\t subhalo_desc_058.hdf5\n",
"fof_subhalo_tab_007.hdf5\t subhalo_desc_059.hdf5\n",
"fof_subhalo_tab_008.hdf5\t subhalo_desc_060.hdf5\n",
"fof_subhalo_tab_009.hdf5\t subhalo_desc_061.hdf5\n",
"fof_subhalo_tab_010.hdf5\t subhalo_desc_062.hdf5\n",
"fof_subhalo_tab_011.hdf5\t subhalo_desc_063.hdf5\n",
"fof_subhalo_tab_012.hdf5\t subhalo_desc_064.hdf5\n",
"fof_subhalo_tab_013.hdf5\t subhalo_desc_065.hdf5\n",
"fof_subhalo_tab_014.hdf5\t subhalo_desc_066.hdf5\n",
"fof_subhalo_tab_015.hdf5\t subhalo_desc_067.hdf5\n",
"fof_subhalo_tab_016.hdf5\t subhalo_desc_068.hdf5\n",
"fof_subhalo_tab_017.hdf5\t subhalo_desc_069.hdf5\n",
"fof_subhalo_tab_018.hdf5\t subhalo_desc_070.hdf5\n",
"fof_subhalo_tab_019.hdf5\t subhalo_desc_071.hdf5\n",
"fof_subhalo_tab_020.hdf5\t subhalo_desc_072.hdf5\n",
"fof_subhalo_tab_021.hdf5\t subhalo_desc_073.hdf5\n",
"fof_subhalo_tab_022.hdf5\t subhalo_desc_074.hdf5\n",
"fof_subhalo_tab_023.hdf5\t subhalo_desc_075.hdf5\n",
"fof_subhalo_tab_024.hdf5\t subhalo_desc_076.hdf5\n",
"fof_subhalo_tab_025.hdf5\t subhalo_desc_077.hdf5\n",
"fof_subhalo_tab_026.hdf5\t subhalo_desc_078.hdf5\n",
"fof_subhalo_tab_027.hdf5\t subhalo_desc_079.hdf5\n",
"fof_subhalo_tab_028.hdf5\t subhalo_desc_080.hdf5\n",
"fof_subhalo_tab_029.hdf5\t subhalo_desc_081.hdf5\n",
"fof_subhalo_tab_030.hdf5\t subhalo_desc_082.hdf5\n",
"fof_subhalo_tab_031.hdf5\t subhalo_desc_083.hdf5\n",
"fof_subhalo_tab_032.hdf5\t subhalo_desc_084.hdf5\n",
"fof_subhalo_tab_033.hdf5\t subhalo_desc_085.hdf5\n",
"fof_subhalo_tab_034.hdf5\t subhalo_desc_086.hdf5\n",
"fof_subhalo_tab_035.hdf5\t subhalo_desc_087.hdf5\n",
"fof_subhalo_tab_036.hdf5\t subhalo_desc_088.hdf5\n",
"fof_subhalo_tab_037.hdf5\t subhalo_desc_089.hdf5\n",
"fof_subhalo_tab_038.hdf5\t subhalo_desc_090.hdf5\n",
"fof_subhalo_tab_039.hdf5\t subhalo_desc_091.hdf5\n",
"fof_subhalo_tab_040.hdf5\t subhalo_desc_092.hdf5\n",
"fof_subhalo_tab_041.hdf5\t subhalo_desc_093.hdf5\n",
"fof_subhalo_tab_042.hdf5\t subhalo_desc_094.hdf5\n",
"fof_subhalo_tab_043.hdf5\t subhalo_desc_095.hdf5\n",
"fof_subhalo_tab_044.hdf5\t subhalo_desc_096.hdf5\n",
"fof_subhalo_tab_045.hdf5\t subhalo_desc_097.hdf5\n",
"fof_subhalo_tab_046.hdf5\t subhalo_desc_098.hdf5\n",
"fof_subhalo_tab_047.hdf5\t subhalo_prog_001.hdf5\n",
"fof_subhalo_tab_048.hdf5\t subhalo_prog_002.hdf5\n",
"fof_subhalo_tab_049.hdf5\t subhalo_prog_003.hdf5\n",
"fof_subhalo_tab_050.hdf5\t subhalo_prog_004.hdf5\n",
"fof_subhalo_tab_051.hdf5\t subhalo_prog_005.hdf5\n",
"fof_subhalo_tab_052.hdf5\t subhalo_prog_006.hdf5\n",
"fof_subhalo_tab_053.hdf5\t subhalo_prog_007.hdf5\n",
"fof_subhalo_tab_054.hdf5\t subhalo_prog_008.hdf5\n",
"fof_subhalo_tab_055.hdf5\t subhalo_prog_009.hdf5\n",
"fof_subhalo_tab_056.hdf5\t subhalo_prog_010.hdf5\n",
"fof_subhalo_tab_057.hdf5\t subhalo_prog_011.hdf5\n",
"fof_subhalo_tab_058.hdf5\t subhalo_prog_012.hdf5\n",
"fof_subhalo_tab_059.hdf5\t subhalo_prog_013.hdf5\n",
"fof_subhalo_tab_060.hdf5\t subhalo_prog_014.hdf5\n",
"fof_subhalo_tab_061.hdf5\t subhalo_prog_015.hdf5\n",
"fof_subhalo_tab_062.hdf5\t subhalo_prog_016.hdf5\n",
"fof_subhalo_tab_063.hdf5\t subhalo_prog_017.hdf5\n",
"fof_subhalo_tab_064.hdf5\t subhalo_prog_018.hdf5\n",
"fof_subhalo_tab_065.hdf5\t subhalo_prog_019.hdf5\n",
"fof_subhalo_tab_066.hdf5\t subhalo_prog_020.hdf5\n",
"fof_subhalo_tab_067.hdf5\t subhalo_prog_021.hdf5\n",
"fof_subhalo_tab_068.hdf5\t subhalo_prog_022.hdf5\n",
"fof_subhalo_tab_069.hdf5\t subhalo_prog_023.hdf5\n",
"fof_subhalo_tab_070.hdf5\t subhalo_prog_024.hdf5\n",
"fof_subhalo_tab_071.hdf5\t subhalo_prog_025.hdf5\n",
"fof_subhalo_tab_072.hdf5\t subhalo_prog_026.hdf5\n",
"fof_subhalo_tab_073.hdf5\t subhalo_prog_027.hdf5\n",
"fof_subhalo_tab_074.hdf5\t subhalo_prog_028.hdf5\n",
"fof_subhalo_tab_075.hdf5\t subhalo_prog_029.hdf5\n",
"fof_subhalo_tab_076.hdf5\t subhalo_prog_030.hdf5\n",
"fof_subhalo_tab_077.hdf5\t subhalo_prog_031.hdf5\n",
"fof_subhalo_tab_078.hdf5\t subhalo_prog_032.hdf5\n",
"fof_subhalo_tab_079.hdf5\t subhalo_prog_033.hdf5\n",
"fof_subhalo_tab_080.hdf5\t subhalo_prog_034.hdf5\n",
"fof_subhalo_tab_081.hdf5\t subhalo_prog_035.hdf5\n",
"fof_subhalo_tab_082.hdf5\t subhalo_prog_036.hdf5\n",
"fof_subhalo_tab_083.hdf5\t subhalo_prog_037.hdf5\n",
"fof_subhalo_tab_084.hdf5\t subhalo_prog_038.hdf5\n",
"fof_subhalo_tab_085.hdf5\t subhalo_prog_039.hdf5\n",
"fof_subhalo_tab_086.hdf5\t subhalo_prog_040.hdf5\n",
"fof_subhalo_tab_087.hdf5\t subhalo_prog_041.hdf5\n",
"fof_subhalo_tab_088.hdf5\t subhalo_prog_042.hdf5\n",
"fof_subhalo_tab_089.hdf5\t subhalo_prog_043.hdf5\n",
"fof_subhalo_tab_090.hdf5\t subhalo_prog_044.hdf5\n",
"fof_subhalo_tab_091.hdf5\t subhalo_prog_045.hdf5\n",
"fof_subhalo_tab_092.hdf5\t subhalo_prog_046.hdf5\n",
"fof_subhalo_tab_093.hdf5\t subhalo_prog_047.hdf5\n",
"fof_subhalo_tab_094.hdf5\t subhalo_prog_048.hdf5\n",
"fof_subhalo_tab_095.hdf5\t subhalo_prog_049.hdf5\n",
"fof_subhalo_tab_096.hdf5\t subhalo_prog_050.hdf5\n",
"fof_subhalo_tab_097.hdf5\t subhalo_prog_051.hdf5\n",
"fof_subhalo_tab_098.hdf5\t subhalo_prog_052.hdf5\n",
"fof_subhalo_tab_099.hdf5\t subhalo_prog_053.hdf5\n",
"hydro.txt\t\t\t subhalo_prog_054.hdf5\n",
"info.txt\t\t\t subhalo_prog_055.hdf5\n",
"memory_ghostranks.txt\t\t subhalo_prog_056.hdf5\n",
"memory.txt\t\t\t subhalo_prog_057.hdf5\n",
"parameters-usedvalues\t\t subhalo_prog_058.hdf5\n",
"snapshot_000_cut.hdf5\t\t subhalo_prog_059.hdf5\n",
"snapshot_001_cut.hdf5\t\t subhalo_prog_060.hdf5\n",
"snapshot_002_cut.hdf5\t\t subhalo_prog_061.hdf5\n",
"snapshot_003_cut.hdf5\t\t subhalo_prog_062.hdf5\n",
"snapshot_004_cut.hdf5\t\t subhalo_prog_063.hdf5\n",
"snapshot_005_cut.hdf5\t\t subhalo_prog_064.hdf5\n",
"snapshot_006_cut.hdf5\t\t subhalo_prog_065.hdf5\n",
"snapshot_007_cut.hdf5\t\t subhalo_prog_066.hdf5\n",
"snapshot_008_cut.hdf5\t\t subhalo_prog_067.hdf5\n",
"snapshot_009_cut.hdf5\t\t subhalo_prog_068.hdf5\n",
"snapshot_010_cut.hdf5\t\t subhalo_prog_069.hdf5\n",
"snapshot_011_cut.hdf5\t\t subhalo_prog_070.hdf5\n",
"snapshot_012_cut.hdf5\t\t subhalo_prog_071.hdf5\n",
"snapshot_013_cut.hdf5\t\t subhalo_prog_072.hdf5\n",
"snapshot_014_cut.hdf5\t\t subhalo_prog_073.hdf5\n",
"snapshot_015_cut.hdf5\t\t subhalo_prog_074.hdf5\n",
"snapshot_016_cut.hdf5\t\t subhalo_prog_075.hdf5\n",
"snapshot_017_cut.hdf5\t\t subhalo_prog_076.hdf5\n",
"snapshot_018_cut.hdf5\t\t subhalo_prog_077.hdf5\n",
"snapshot_019_cut.hdf5\t\t subhalo_prog_078.hdf5\n",
"snapshot_020_cut.hdf5\t\t subhalo_prog_079.hdf5\n",
"snapshot_021_cut.hdf5\t\t subhalo_prog_080.hdf5\n",
"snapshot_022_cut.hdf5\t\t subhalo_prog_081.hdf5\n",
"snapshot_023_cut.hdf5\t\t subhalo_prog_082.hdf5\n",
"snapshot_024_cut.hdf5\t\t subhalo_prog_083.hdf5\n",
"snapshot_025_cut.hdf5\t\t subhalo_prog_084.hdf5\n",
"snapshot_026_cut.hdf5\t\t subhalo_prog_085.hdf5\n",
"snapshot_027_cut.hdf5\t\t subhalo_prog_086.hdf5\n",
"snapshot_028_cut.hdf5\t\t subhalo_prog_087.hdf5\n",
"snapshot_029_cut.hdf5\t\t subhalo_prog_088.hdf5\n",
"snapshot_030_cut.hdf5\t\t subhalo_prog_089.hdf5\n",
"snapshot_031_cut.hdf5\t\t subhalo_prog_090.hdf5\n",
"snapshot_032_cut.hdf5\t\t subhalo_prog_091.hdf5\n",
"snapshot_033_cut.hdf5\t\t subhalo_prog_092.hdf5\n",
"snapshot_034_cut.hdf5\t\t subhalo_prog_093.hdf5\n",
"snapshot_035_cut.hdf5\t\t subhalo_prog_094.hdf5\n",
"snapshot_036_cut.hdf5\t\t subhalo_prog_095.hdf5\n",
"snapshot_037_cut.hdf5\t\t subhalo_prog_096.hdf5\n",
"snapshot_038_cut.hdf5\t\t subhalo_prog_097.hdf5\n",
"snapshot_039_cut.hdf5\t\t subhalo_prog_098.hdf5\n",
"snapshot_040_cut.hdf5\t\t subhalo_prog_099.hdf5\n",
"snapshot_041_cut.hdf5\t\t subhalo_treelink_000.hdf5\n",
"snapshot_042_cut.hdf5\t\t subhalo_treelink_001.hdf5\n",
"snapshot_043_cut.hdf5\t\t subhalo_treelink_002.hdf5\n",
"snapshot_044_cut.hdf5\t\t subhalo_treelink_003.hdf5\n",
"snapshot_045_cut.hdf5\t\t subhalo_treelink_004.hdf5\n",
"snapshot_046_cut.hdf5\t\t subhalo_treelink_005.hdf5\n",
"snapshot_047_cut.hdf5\t\t subhalo_treelink_006.hdf5\n",
"snapshot_048_cut.hdf5\t\t subhalo_treelink_007.hdf5\n",
"snapshot_049_cut.hdf5\t\t subhalo_treelink_008.hdf5\n",
"snapshot_050_cut.hdf5\t\t subhalo_treelink_009.hdf5\n",
"snapshot_051_cut.hdf5\t\t subhalo_treelink_010.hdf5\n",
"snapshot_052_cut.hdf5\t\t subhalo_treelink_011.hdf5\n",
"snapshot_053_cut.hdf5\t\t subhalo_treelink_012.hdf5\n",
"snapshot_054_cut.hdf5\t\t subhalo_treelink_013.hdf5\n",
"snapshot_055_cut.hdf5\t\t subhalo_treelink_014.hdf5\n",
"snapshot_056_cut.hdf5\t\t subhalo_treelink_015.hdf5\n",
"snapshot_057_cut.hdf5\t\t subhalo_treelink_016.hdf5\n",
"snapshot_058_cut.hdf5\t\t subhalo_treelink_017.hdf5\n",
"snapshot_059_cut.hdf5\t\t subhalo_treelink_018.hdf5\n",
"snapshot_060_cut.hdf5\t\t subhalo_treelink_019.hdf5\n",
"snapshot_061_cut.hdf5\t\t subhalo_treelink_020.hdf5\n",
"snapshot_062_cut.hdf5\t\t subhalo_treelink_021.hdf5\n",
"snapshot_063_cut.hdf5\t\t subhalo_treelink_022.hdf5\n",
"snapshot_064_cut.hdf5\t\t subhalo_treelink_023.hdf5\n",
"snapshot_065_cut.hdf5\t\t subhalo_treelink_024.hdf5\n",
"snapshot_066_cut.hdf5\t\t subhalo_treelink_025.hdf5\n",
"snapshot_067_cut.hdf5\t\t subhalo_treelink_026.hdf5\n",
"snapshot_068_cut.hdf5\t\t subhalo_treelink_027.hdf5\n",
"snapshot_069_cut.hdf5\t\t subhalo_treelink_028.hdf5\n",
"snapshot_070_cut.hdf5\t\t subhalo_treelink_029.hdf5\n",
"snapshot_071_cut.hdf5\t\t subhalo_treelink_030.hdf5\n",
"snapshot_072_cut.hdf5\t\t subhalo_treelink_031.hdf5\n",
"snapshot_073_cut.hdf5\t\t subhalo_treelink_032.hdf5\n",
"snapshot_074_cut.hdf5\t\t subhalo_treelink_033.hdf5\n",
"snapshot_075_cut.hdf5\t\t subhalo_treelink_034.hdf5\n",
"snapshot_076_cut.hdf5\t\t subhalo_treelink_035.hdf5\n",
"snapshot_077_cut.hdf5\t\t subhalo_treelink_036.hdf5\n",
"snapshot_078_cut.hdf5\t\t subhalo_treelink_037.hdf5\n",
"snapshot_079_cut.hdf5\t\t subhalo_treelink_038.hdf5\n",
"snapshot_080_cut.hdf5\t\t subhalo_treelink_039.hdf5\n",
"snapshot_081_cut.hdf5\t\t subhalo_treelink_040.hdf5\n",
"snapshot_082_cut.hdf5\t\t subhalo_treelink_041.hdf5\n",
"snapshot_083_cut.hdf5\t\t subhalo_treelink_042.hdf5\n",
"snapshot_084_cut.hdf5\t\t subhalo_treelink_043.hdf5\n",
"snapshot_085_cut.hdf5\t\t subhalo_treelink_044.hdf5\n",
"snapshot_086_cut.hdf5\t\t subhalo_treelink_045.hdf5\n",
"snapshot_087_cut.hdf5\t\t subhalo_treelink_046.hdf5\n",
"snapshot_088_cut.hdf5\t\t subhalo_treelink_047.hdf5\n",
"snapshot_089_cut.hdf5\t\t subhalo_treelink_048.hdf5\n",
"snapshot_090_cut.hdf5\t\t subhalo_treelink_049.hdf5\n",
"snapshot_091_cut.hdf5\t\t subhalo_treelink_050.hdf5\n",
"snapshot_092_cut.hdf5\t\t subhalo_treelink_051.hdf5\n",
"snapshot_093_cut.hdf5\t\t subhalo_treelink_052.hdf5\n",
"snapshot_094_cut.hdf5\t\t subhalo_treelink_053.hdf5\n",
"snapshot_095_cut.hdf5\t\t subhalo_treelink_054.hdf5\n",
"snapshot_096_cut.hdf5\t\t subhalo_treelink_055.hdf5\n",
"snapshot_097_cut.hdf5\t\t subhalo_treelink_056.hdf5\n",
"snapshot_098_cut.hdf5\t\t subhalo_treelink_057.hdf5\n",
"snapshot_099_full.hdf5\t\t subhalo_treelink_058.hdf5\n",
"snapshot-prevmostboundonly_000.hdf5 subhalo_treelink_059.hdf5\n",
"snapshot-prevmostboundonly_001.hdf5 subhalo_treelink_060.hdf5\n",
"snapshot-prevmostboundonly_002.hdf5 subhalo_treelink_061.hdf5\n",
"snapshot-prevmostboundonly_003.hdf5 subhalo_treelink_062.hdf5\n",
"snapshot-prevmostboundonly_004.hdf5 subhalo_treelink_063.hdf5\n",
"snapshot-prevmostboundonly_005.hdf5 subhalo_treelink_064.hdf5\n",
"snapshot-prevmostboundonly_006.hdf5 subhalo_treelink_065.hdf5\n",
"snapshot-prevmostboundonly_007.hdf5 subhalo_treelink_066.hdf5\n",
"snapshot-prevmostboundonly_008.hdf5 subhalo_treelink_067.hdf5\n",
"snapshot-prevmostboundonly_009.hdf5 subhalo_treelink_068.hdf5\n",
"snapshot-prevmostboundonly_010.hdf5 subhalo_treelink_069.hdf5\n",
"snapshot-prevmostboundonly_011.hdf5 subhalo_treelink_070.hdf5\n",
"snapshot-prevmostboundonly_012.hdf5 subhalo_treelink_071.hdf5\n",
"snapshot-prevmostboundonly_013.hdf5 subhalo_treelink_072.hdf5\n",
"snapshot-prevmostboundonly_014.hdf5 subhalo_treelink_073.hdf5\n",
"snapshot-prevmostboundonly_015.hdf5 subhalo_treelink_074.hdf5\n",
"snapshot-prevmostboundonly_016.hdf5 subhalo_treelink_075.hdf5\n",
"snapshot-prevmostboundonly_017.hdf5 subhalo_treelink_076.hdf5\n",
"snapshot-prevmostboundonly_018.hdf5 subhalo_treelink_077.hdf5\n",
"snapshot-prevmostboundonly_019.hdf5 subhalo_treelink_078.hdf5\n",
"snapshot-prevmostboundonly_020.hdf5 subhalo_treelink_079.hdf5\n",
"snapshot-prevmostboundonly_021.hdf5 subhalo_treelink_080.hdf5\n",
"snapshot-prevmostboundonly_022.hdf5 subhalo_treelink_081.hdf5\n",
"snapshot-prevmostboundonly_023.hdf5 subhalo_treelink_082.hdf5\n",
"snapshot-prevmostboundonly_024.hdf5 subhalo_treelink_083.hdf5\n",
"snapshot-prevmostboundonly_025.hdf5 subhalo_treelink_084.hdf5\n",
"snapshot-prevmostboundonly_026.hdf5 subhalo_treelink_085.hdf5\n",
"snapshot-prevmostboundonly_027.hdf5 subhalo_treelink_086.hdf5\n",
"snapshot-prevmostboundonly_028.hdf5 subhalo_treelink_087.hdf5\n",
"snapshot-prevmostboundonly_029.hdf5 subhalo_treelink_088.hdf5\n",
"snapshot-prevmostboundonly_030.hdf5 subhalo_treelink_089.hdf5\n",
"snapshot-prevmostboundonly_031.hdf5 subhalo_treelink_090.hdf5\n",
"snapshot-prevmostboundonly_032.hdf5 subhalo_treelink_091.hdf5\n",
"snapshot-prevmostboundonly_033.hdf5 subhalo_treelink_092.hdf5\n",
"snapshot-prevmostboundonly_034.hdf5 subhalo_treelink_093.hdf5\n",
"snapshot-prevmostboundonly_035.hdf5 subhalo_treelink_094.hdf5\n",
"snapshot-prevmostboundonly_036.hdf5 subhalo_treelink_095.hdf5\n",
"snapshot-prevmostboundonly_037.hdf5 subhalo_treelink_096.hdf5\n",
"snapshot-prevmostboundonly_038.hdf5 subhalo_treelink_097.hdf5\n",
"snapshot-prevmostboundonly_039.hdf5 subhalo_treelink_098.hdf5\n",
"snapshot-prevmostboundonly_040.hdf5 subhalo_treelink_099.hdf5\n",
"snapshot-prevmostboundonly_041.hdf5 timebins.txt\n",
"snapshot-prevmostboundonly_042.hdf5 timings.txt\n",
"snapshot-prevmostboundonly_043.hdf5 trees.hdf5\n",
"snapshot-prevmostboundonly_044.hdf5\n"
]
}
],
"source": [
"!ls /mnt/extraspace/rstiskalek/csiborg2_main/chain_15517/output"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2023-11-16 12:14:34.150916: opening `/mnt/extraspace/rstiskalek/CSiBORG/processed_output/parts_FOF_07444.hdf5`.\n"
]
}
],
"source": [
"cat = csiborgtools.read.CSiBORGCatalogue(7444, paths, catalogue_name=\"halo_catalogue\", halo_finder=\"FOF\",\n",
" bounds={\"dist\": (0, 50)})"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"d = np.load(paths.field(\"density\", \"PCS\", 512, 7444, False, None))"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"over = d / d.mean() - 1"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"import Pk_library as PKL"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Computing power spectrum of the field...\n",
"Time to complete loop = 8.22\n",
"Time taken = 15.66 seconds\n"
]
}
],
"source": [
"Pk = PKL.Pk(over, 677.6, 0, \"PCS\", 1, True)\n",
"\n",
"\n",
"# 3D P(k)\n",
"k = Pk.k3D\n",
"Pk0 = Pk.Pk[:,0] #monopole\n",
"Pk2 = Pk.Pk[:,1] #quadrupole\n",
"Pk4 = Pk.Pk[:,2] #hexadecapole\n",
"Pkphase = Pk.Pkphase #power spectrum of the phases\n",
"Nmodes = Pk.Nmodes3D"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAAGhCAYAAAC6URSFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA8mUlEQVR4nO3dd3hUZeL+//vMTArphJAAIfRmQBIISagKmBXdFRdU7Iio6CJW1FW/+1Pcj/rx44qISCyIimJDWEHXrgiCFIFA6C3UUJIQAqmkzczvDzDCgkLIJGfK+3VduUxmTs650XMxt+c853kMp9PpFAAAgJuwmB0AAADgZJQTAADgVignAADArVBOAACAW6GcAAAAt0I5AQAAboVyAgAA3IrN7AC15XA4dODAAYWGhsowDLPjAACAc+B0OlVcXKwWLVrIYvnjayMeV04OHDiguLg4s2MAAIDzkJ2drZYtW/7hNh5XTkJDQyUd/8OFhYWZnAYAAJyLoqIixcXF1XyO/xGPKye/3soJCwujnAAA4GHOZUgGA2IBAIBboZwAAAC3QjkBAABuhXICAADcCuUEAAC4FcoJAABwK5QTAADgVignAADArVBOAACAW/GYcpKenq74+HglJyebHQUAANQjw+l0Os0OURtFRUUKDw9XYWEh09cDAOAhavP57TFXTgAAgG/wuIX/6ktBaaXyissVGuin0ECbQvxtsljOvjgRAABwLcrJCd9syNH/m7u+5mfDkEL8bQoNtNUUllO/P/7PsDO8VvN9AAUHAIDaopycYBhSk2B/FZdXq9LukNMpFVdUq7iiWiosP+/9hgTYfrfYHC83JxWagP8qPo38FBJgk5WCAwDwIQyIPYPyKruKy6tVXF514p+/fV90hteKK059rai8WpXVDpfl+e+Cc3Gnprp3cAcZBqUFAOAZavP5zZWTMwj0syrQz6qmoQHnvY+KavvpJeZEcfnv137drui/tvu14JRUVKukoloHC4/vO2PPEQX5W3XHgHau+OMCAOBWKCf1JMBmVUCIVVEhri04y3Yc1tQFWXr+my1KaRup7i0jXBcaAAA3QDlxY2cqOH3bN9GOQyX6ekOO7vlwjb64r7/CAv1MTAkAgGsxz4mHMQxD/3d1d8VGNNLegjI9/ul6ediwIQAA/hDlxAOFN/LTKzf2kM1i6Mt1B/XRimyzIwEA4DKUEw/Vs1VjPTKksyTpn//ZqC05RSYnAgDANSgnHmzMgHYa2LmpKqoduufDNSqrrDY7EgAAdUY58WAWi6EXRyQoOjRAWXkleurzjWZHAgCgzignHq5JSIAmX58ow5A+WbVP89bsNzsSAAB1QjnxAn3bR+m+wR0lSf+Yu1678ktNTgQAwPmjnHiJ+y7pqNS2kSqttOueD1erotpudiQAAM4L5cRLWC2GXr6+hyKD/bXxQJGe+2qL2ZEAADgvlBMv0iw8UC+OSJAkzVi6W99uzDE5EQAAtUc58TKDukRrzIC2kqRHZq/VviNlJicCAKB2PKacpKenKz4+XsnJyWZHcXuPDOmihLgIFZVX676P1qjK7jA7EgAA58xwetjCLEVFRQoPD1dhYaHCwsLMjuO2sgvK9Ocpi1VcXq2xA9vr0cu6mB0JAODDavP57TFXTlA7cZFBev7q7pKk1xbu0KJth0xOBADAuaGceLE/X9hcN6W2kiSN/yRTeUXlJicCAODsKCde7okr4tWlWajySyr1wKxM2R0edRcPAOCDKCdeLtDPqqk39lQjP6uW7jisVxdkmR0JAIA/RDnxAR2iQ/T0sG6SpJd+2KYVuwpMTgQAwO+jnPiIa5Ja6qoesXI4pfs/XqMjpZVmRwIA4IwoJz7k6WHd1C4qWAcLy/Xw7LXysKfIAQA+gnLiQ4IDbHrlxh7yt1k0f0ue3vp5l9mRAAA4DeXEx3RtEa4n/nKBJOn5b7Zo3b6j5gYCAOC/UE580M29W+vybs1UZXfqng/XqKi8yuxIAADUsJkdAA3PMAz939XdtW5fofYWlOnxT9dr6g09ZBhGvR97d36ptuQU/ZrkRJ6Tf1JNjt9+PnkbQwF+FqW2bSKrpf7zAgAaHuXER4U38tMrN/bQta8v05frDqpf+yjdeGI22fqwJadIr/yYpa/WH5QrxuH27xCld0Yny8/KxT8A8DYs/Ofj3vhph577eosCbBZ9dk8/dWnm2n+nG/YXasr87fpuU27Na91bhivAZpHTKf168v16Gv7282/f67/e25ZbrPIqh27u3UpP/7Vbg1zxAQDUTW0+v7ly4uPGDGinZTsPa+HWQ7rnwzX6/J5+CvKv+2mxeu8RvTJ/uxZsPb7goGFIf+7WXPcM7qALmtetAH2/KVd3zlyl95fvVcfoUI3q26bOeQEA7oMrJ9Dhkgpd/vJi5RVX6NpeLfWvaxLOe1+/7DysV37M0s9Z+ZIkiyFdmdBC9wzuoA7Roa6KXHPFx2JIM0an6KJOTV22bwCA69Xm85tyAknS0h35umn6L3I6pcnXJWpYj9hz/l2n06klWYc15cftNVPj2yyGhveI1d2DOqhtVLDL8zqdTj0yZ53mZOxTaKBNc+/u69LyAwBwLcoJzsuk77dpyvztCva36ov7Bpy1VDidTi3cekhTftyuNXuPSpL8rRZd06ulxl7cXnGRQfWat6Larpun/6KVu4+odZMgzbu7nxoH+9frMQEA54dygvNidzh145vL9cuuAnVtEaZP7+6rAJv1tO0cDqe+35yrqT9maf3+QklSgM2iG1Ja6a6L26l5eKMGy3y4pEJ/TV+ifUeOKbVtpGbenip/G0/wAIC7oZzgvOUUluvPUxaroLRSt/Zto6eu7Frznt3h1NcbDmrqj1naklMsSWrkZ9XIPq11x4C2ig4NNCXz1pxiXf3aUpVUVOuGlDj97/ALeYIHANwM5QR1smBLnkbPWClJemNkki7pEq3P1x5Q+oIs7ThUKkkKCbBpVN/Wur1/O0W6wa2UBVvydPu7K+VwSk9cEa/b+7c1OxIA4CSUE9TZs19u0puLdyks0KbGwf7ac7hMkhQWaNNt/dtqdN+2Cg/yMznlqaYv3qlnvtwsiyG9NSpZg7pEmx0JAHBCbT6/uTmPM3pkSBclxEWoqLxaew6XKTLYX48M6awljw3WA2md3K6YSNLt/dvq+uQ4OZzSvR+t0dYTt54AAJ6FKyf4XfuPHtPzX2/RhbHhuql3K5dMzlbfKqsdGvnWL/plV4FaNm6kz8b1U5OQALNjAYDP47YOfNqR0koNe3WJ9hwuU3Kbxnr/jtQzPnUEAGg43NaBT2sc7K+3RvVSaIBNK3cf0T/mbpCHdXAA8GmUE3ilDtGhmnpTT1kMaU7GPk1btNPsSACAc0Q5gde6uFNTPXlFvCTp/77Zors/yNDMZbu1PbeYKykA4Mbcf4QjUAej+rbRzvxSvbdsj75an6Ov1udIkpoE+yu1XaR6t2ui3u2aqGN0CBO3AYCbYEAsvJ7T6dTqvUe0bMdhLd9ZoFV7ClRe5ThlmybB/kpp+1tZ6RRDWQEAV/KIp3XKysp0wQUXaMSIEZo4ceI5/x7lBHVVWe3Qun1HtXzn75eVIV1j9PrNSRQUAHCR2nx+m3Zb59lnn1Xv3r3NOjx8mL/Nol5tItWrTaTuGXy8rKzff1TLdxacKCyH9e3GXH28Mls3pLQyOy4A+BxTBsRu375dW7Zs0eWXX27G4YFT+NssSmodqXGDOmjm7al69LIukqT//WqzcovKTU4HAL6n1uVk0aJFGjp0qFq0aCHDMDRv3rzTtklPT1ebNm0UGBio1NRUrVix4pT3H374YT333HPnHRqoT6P7tVVCy3AVl1friXnMkQIADa3W5aS0tFQJCQlKT08/4/uzZs3S+PHjNWHCBK1evVoJCQkaMmSI8vLyJEmfffaZOnXqpE6dOtUtOVBPrBZD/3d1d9kshr7blKuvN+SYHQkAfEqdBsQahqG5c+dq2LBhNa+lpqYqOTlZU6dOlSQ5HA7FxcXp3nvv1WOPPabHH39c77//vqxWq0pKSlRVVaWHHnpITz755BmPUVFRoYqKipqfi4qKFBcXx4B
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure()\n",
"plt.plot(k, Pk0, label='monopole')\n",
"plt.xscale('log')\n",
"plt.yscale('log')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/tmp/ipykernel_1249/2763035238.py:2: RuntimeWarning: divide by zero encountered in log10\n",
" plt.imshow(np.log10(over[0, :, :] + 1))\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfMAAAGiCAYAAADz3S8ZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9edBuW37Xh332Wnve+xnf+czn3KlvD1K3RpBskEtEciplF6myQ0LiApJy7CpJMbTNIBEjgWMNYGQlgZBKJQG7KsS4CJgUEEVGZjBIaonW0OPtvsOZzzs/0573Xmvt/LH2+9xuhBDS7W7pVt5f1anu897zPO8z7L1+03dw+r7vuY7ruI7ruI7ruI73bYjf6hdwHddxHddxHddxHe8trpP5dVzHdVzHdVzH+zyuk/l1XMd1XMd1XMf7PK6T+XVcx3Vcx3Vcx/s8rpP5dVzHdVzHdVzH+zyuk/l1XMd1XMd1XMf7PK6T+XVcx3Vcx3Vcx/s8rpP5dVzHdVzHdVzH+zyuk/l1XMd1XMd1XMf7PK6T+XVcx3Vcx3Vcx/s8fsuS+V/8i3+Re/fuEYYh3/qt38rP//zP/1a9lOu4juu4juu4jvd1/JYk87/21/4aH//4x/nBH/xBfvEXf5Gv//qv57u/+7s5Ozv7rXg513Ed13Ed13Ed7+twfiuMVr71W7+Vb/7mb+Yv/IW/AIAxhtu3b/N93/d9/Ik/8Se+1i/nOq7jOq7jOq7jfR3u1/oXtm3LJz/5Sb7/+79/+zMhBL/n9/wefvZnf/af+5imaWiaZvt3YwyLxYKdnR0cx/mqv+bruI7ruI7r+MpG3/dkWcaNGzcQ4qszJK7rmrZtvyLP5fs+YRh+RZ7rqxFf82R+cXGB1pqDg4Mv+/nBwQFvvPHGP/cxP/IjP8Kf/tN/+mvx8q7jOq7jOq7jaxhPnz7l1q1bX/Hnreua+3dTTs70V+T5Dg8Pefjw4W/bhP41T+a/mfj+7/9+Pv7xj2//vl6vuXPnDj/03307T8VNLruYUvm8ebJLmjQUlc/93QWOA4fhBtULzuuUSnk0yuXmaM2eX+CLjuf1lFa7CMdQKY/OSEzvELkdAAdhxlkzInZbsjZgEtQ8XO1wc7Ti7cUubSMRsicKOrQRHKQZmyYk9ltSr6VUHofxhs9dHNJ0Lv/03/j+L3tv3/J3fhhjHITo+caDp2xUiDISgGebCaOg4e5oQWtcYtlyXI0Z+Q2nxYjT1QitJK/fPGE3yBGOQTo9nZEs2piy83l4toPOfAg0NBKnEUzurciyCPk4pN3ReJMaxwHpGhwH2tplNKrIsogg6hBOT9NKxknDjXSNLzVnZUrdeZydTrh3+5xGubTaZS/JyZoAKQydltwerZh4FRO3ojI+b+e7hLLjtBixKiMmcUVWhxyN7PcUuoqy8zj5xA12vukU0zs0yuXV+Tk7fkEiGwod8PNnd6k7F2Mc6sInSlv2Rxmp1xK7La2RfObZDbxAUV3E+Gcu3d2a6axgNy5IvJbWuKRuw9NsSuK13IjX1MbjcxcHVKXP7b0lN5I1LobS+LiOYeTWZCrkrEopOw9jBLOo5MVmgnB6HKdnHpeErkIbh1lQkXcBsdsy8Soa7VIaH2UEby12uTdd4kvF2K1pe0lrXM7KlEa5ZHWIMfDJf9NeMx/7z/4COuwRRxUvHV5wGG7IdYAvFC+KCasqoih9Xjm8IGsCRkGDNg57YU6uAuZ+gXTsVs0Xmki0jIfvZaMiAFojOW+Ge0W7hK5CaUHe+XjCcJEnOA5UhQ/GoTcOOD1eoOgKHxl36Fayv7dhP8npjGBVR9wcrXmeTWi1JMsidqY5ReuzmxQ0ymUS1mRNwCysEI7BlxqBfa0XdcKyihgFDR+ZHSMw/MzpA2KvpVEuy03MS4cXtFpyL70kkorHxZxnmwmO0zOLKtZ1RPbpObJwMD4Yv8dfOYyeaJYfkBz8jhcUbcBekuM6BtULsibgpfEFx9WY28mSjYoYuxW18XAxbFRIKBWqF7iOwfQOE69C9w6tcclVgOnfnRw22rXXnXYJh/PFF4pS+fhCs25DJn7NnWhBY1x+eXGL8yxhf5zTaUnitVyUCY7TIxxYbSJmk5KL8xGO7Hn5xhlS9LiO4aKK8YQhb+33VnYeo6ChM5L9JMf0zvYaOd6MKSuPIFQAeFKzvBjx2t1jLqsEbRy+7fARY7dioyIq7VLqAN9RGBwM9v2um5CTbEzgKXaigpHfsG5C3nqxT99IvLRBXUQ4kxbX17i64Iv/q/89o9HoK54zwE6BT840Dz95l/HovXX+m8xw/xsf07btdTK/it3dXaSUnJ6eftnPT09POTw8/Oc+JggCgiD4VT+/9HdxgoA8m6KEQNdTmlGFcV102LAoYvYizWGwYWZyABZtzNTviAREEp6QsK5ilBH2MNUujtOTxGv2o4y8mxB5AikcehmzIqbzErykxGQx9w9XALz15hFy1PEkHzNKK/ZmFQ9Xe+ylBUt2EFHIzd2S8XgMwO/+6f+IiV/z6i0I3Y5VEzEaCb4lfszczfl7yw+yEoI7o5qJ7/D2ZsbTJuT8rV2c/ZpXj87IHEmehYwmDpMAMhWzUT6bNuRxPqe+iHj87/1RAL7x7/5Jitqh2vh85M6KJ5nD6djjaFTyofkJyzZiUSecZwm9CagdDyeW3DnMmAYVpndQRqD6CE2P00fsTRpaT/Pk/DYyVnieZu14hKnC9A5Tr0UG9rmkG2B6wY5raI2P7/iYLsZLDLenDXtRx6YLCSWYxiPsQmQS4PQOugpZSc08NoyDlqoNkXHA7ahECsPxxuUj+2c8yeb0nmQat6w7j29+/YxlHfMsDmgOBLEvKNoZWiU4ukc6PXO/xE1cHsxWXDYTLqqUD91Zk3cB86DhvNqlUh6vz04YuzUAUvU4seKyDmiUSxy6lJdT4lHDJK4YRQLTB3zj9BkTt+R5M6PSHp7jkbcJTRewqiNuHbSMQgfT+4S+IqtTLqoUEzpcXkzoFz7OvN1eM04c4jrAecTFfs+NpGUMPMoOUIFkFhk2xZhT5aAdgetWXOQJOsww0iHwPULZIZ2evWjBvpeT65C380O8wBDJDq19PNcnEoaTIkJ6LZ7TI7TAEz3TWQGAMhW+1LZw0pLY7XiSzbiVrnhnvYMvXWo54iDKyDYBz9UhnSfpHIkT+WyMh+pdNvj2Z6ImdwKECAlcRd477IQFrjDsRIbRpCF1G5JI8Lya03kJwahHdx5CB3iJj9Eu80nPYZDzyNwk6D18qTkv9yhWMdx0MLXAxBqZKPSjgMu7Pb0Dx+UhQhjGnoORmp2wINEdnUyZhz3CjWjqEY3n4QCO0BzKDtMLlm3ITpjTGYknfBrt0msPR/l02sWXGl8oni932B+dIrUklD334ktGsmatIk6bMTe9NcpIxr7DUgVEyiWRkjDxGAmNcFwi16XpXOrOpVcxi/Mxo8OCvVHBNITH6x3yMqCtXYTsCcKOKKoZA7En2QkLlk3CnWTJozxBSgh6jz506bqA/UlO3oSIKGQ+6znuUuovTnhxWLOXPuOG07DsJFkZU/QOM78C4NHygItsRBB2FEow8gU6cHl0fgNHStxdhV5NEQeKj96/4JffuUPbeva6/iqvSscj8Z6T+fshvubJ3Pd9vvEbv5Gf/umf5vf+3t8L2B34T//0T/O93/u9v6HnelzOmXs9gauYuS0PY83BJOMiT7jIE4oyoJx5rERM4jaM3RpXaEzvcFxPmPoVB2HG1C95Y3FApyVSGG5PVyzriEa7TPwaXyqE0+MJTd87KCX59LObqEby2Mzs+5rVzMcFp2cTlBH80qPb7O1kHMUbzuuUg1HGoop59a//GbrnCeMHEX3v0GjJB2Zn7I4K9vyM2/4lh3LNYpQi6Ilkx5NyRtH5aCNIHwrU7Y7Ua1BasLeTEckOz7EHxpN6xiwoEcLAl9wjF6djhK9xLzx+9uc/AAZMojlvJb/QeiRBS14HVEUAG48WYOnzpt7n5v6KwFV4QhNK21FIYZj6FeswZHSr4c5oyXmd4glNpTxa5VK0CXkbkPoNCydGOD2dlgSuYh6WVKnHblT
"text/plain": [
"<Figure size 640x480 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure()\n",
"plt.imshow(np.log10(over[0, :, :] + 1))\n",
"plt.colorbar()\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"pos = cat[\"snapshot_final/pos\"]"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"pos = pos[:]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"totmass = numpy.sum(cat[\"snapshot_final/mass\"][:])"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"284.507446985742"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"totmass / (677.7 * 1000)**3 / 0.3"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'RA': 186.75, 'DEC': 12.717, 'dist': 11.28}\n"
]
}
],
"source": [
"virgo = csiborgtools.virgo\n",
"\n",
"print(virgo)\n",
"X = np.array([virgo[\"dist\"], virgo[\"RA\"], virgo[\"DEC\"]]).reshape(-1, 3)\n",
"\n",
"\n",
"dist, indxs = cat.angular_neighbours(X, False, 20, radial_tolerance=5)\n",
"dist, indxs = dist[0], indxs[0]"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([], dtype=float64)"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dist"
]
},
{
"cell_type": "code",
"execution_count": 308,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"14.294649\n"
]
}
],
"source": [
"k = np.argmax(cat[\"mtot\"])\n",
"\n",
"k = np.argsort(cat[\"mtot\"])[::-1][8]\n",
"\n",
"c = cat[\"cartesian_pos\"][k]\n",
"\n",
"print(np.log10(cat[\"mtot\"][k]))"
]
},
{
"cell_type": "code",
"execution_count": 309,
"metadata": {},
"outputs": [],
"source": [
"indx1 = cat.select_in_box(c, 20)\n",
"pos1 = cat[\"cartesian_pos\"][indx1]\n",
"\n",
"indx2 = pcat.select_in_box(c, 20)\n",
"pos2 = pcat[\"cartesian_pos\"][indx2]\n",
"\n",
"m1 = cat[\"mtot\"][indx1]\n",
"m2 = pcat[\"summed_mass\"][indx2]"
]
},
{
"cell_type": "code",
"execution_count": 311,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiUAAAGdCAYAAADNHANuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddXwU1xqGn9nduAeCBAhBg1ugEKy4e3EtUKRYL7SlpYJroRQKFGmxFihWrBSH4u5BiycQQgghrrsz948lmyxxIcZ57m9+tztn5sy3ZHfnnXPe7zuSoigKAoFAIBAIBNmMKrsDEAgEAoFAIAAhSgQCgUAgEOQQhCgRCAQCgUCQIxCiRCAQCAQCQY5AiBKBQCAQCAQ5AiFKBAKBQCAQ5AiEKBEIBAKBQJAjEKJEIBAIBAJBjkCT3QFkFbIs4+Pjg42NDZIkZXc4AoFAIMjBKIpCSEgIzs7OqFTv7vk9MjKS6OjoDPdjamqKubl5JkSUvbw3osTHx4dixYpldxgCgUAgyEV4e3tTtGjRd9J3ZGQkJYpb4+uny3BfhQoV4tGjR7lemLw3osTGxgbQf8BsbW2zORqBQCAQ5GSCg4MpVqyY4d7xLoiOjsbXT8ejS8WxtUn/aExwiEwJ9ydER0enWpQcP36cuXPncunSJZ4/f8727dvp1KlToscOHz6c5cuX89NPP/G///0vyT4nT57MlClTjPa5ublx586d1L6V90eUxE7Z2NraClEiEAgEglSRFdP9tjaqDImS9BAWFkbVqlUZNGgQXbp0SfK47du3c/bsWZydnVPVb8WKFTl06JDhtUaTNpnx3ogSgUAgEAhyIjpFRpeBpXF1ipzmc1q3bk3r1q2TPebZs2eMHj2a/fv307Zt21T1q9FoKFSoUJrjiUVk3wgEAoFAkI3IKBneQD/lFH+LiopKf0yyTL9+/fjyyy+pWLFiqs+7d+8ezs7OlCxZkj59+uDl5ZWm6wpRIhAIBAJBNiJnwv8AihUrhp2dnWGbNWtWumOaM2cOGo2GMWPGpPqc2rVrs2bNGvbt28fSpUt59OgRDRo0ICQkJNV9iOkbgUAgEAjyAG8ncpiZmaWrn0uXLrFw4UIuX76cJk9N/OmgKlWqULt2bYoXL87mzZsZPHhwqvoQIyUCgUAgEGQjOkXJ8AZxiRyxW3pFyYkTJ/Dz88PFxQWNRoNGo+HJkyd8/vnnuLq6profe3t7ypYty/3791N9jhgpEQgEAoEgG4nvC0nv+ZlJv379aNasmdG+li1b0q9fPwYOHJjqfkJDQ3nw4AH9+vVL9TlClAgEAoFA8J4RGhpqNILx6NEjrl69iqOjIy4uLuTLl8/oeBMTEwoVKoSbm5thX9OmTencuTOjRo0C4IsvvqB9+/YUL14cHx8fJk2ahFqtplevXqmOS4gSgUAgEAiyERkFXRaPlFy8eJHGjRsbXo8bNw6AAQMGsGbNmlT18eDBA/z9/Q2vnz59Sq9evXj16hVOTk7Ur1+fs2fP4uTklOq4hCgRCASCNPLw0UvuP3iBiYka9+qu2NpaZHdIglxMdkzfNGrUCEVJ/XmPHz9Ocd/GjRvTHMfbCFEiEAhyNLIsc2LbBXYtO8BDT29MzU1o0LkWnUa2pGiZwlkai/fTAGbP+4dbt30M+zQaFR3aVmf4kMaYmKizNB6BIK8hsm8EAkGORZZl5n6ynJn9FnPr7H3CgyMI9Avmn5X/MrzWt1z592aWxfLyZTCjx63jzt3nhn2qsCh0wZFs33WZWXN3Gx1/8K8LeD94kWXxCXIvmZV9kxcQokQgEORY9qz8lyN/ngZA1sWV0pa1MtoYLVN6LCA8JCJLYtm09TyhIZHIsv4GIEVEY+ITiOmz1xAWxb/H7hgEy54NZ5j/xZ981esXAl4GZ0l8gtyLnAlbXiFNomTp0qVUqVLFkAPt4eHB3r17De3Dhg2jVKlSWFhY4OTkRMeOHROsDihJUoItpXmogIAA+vTpg62tLfb29gwePJjQ0NC0hC4QCHIZiqKwffF+kqrdpMgKESGRHNl4Okti2XvAE50c90SqmJkgW5giKWD67DWaqBgOHLrBng1nWPTtFgAadaiBQ/53t8qsQJDXSJMoKVq0KLNnz+bSpUtcvHiRJk2a0LFjR27e1A+huru7s3r1am7fvs3+/ftRFIUWLVqg0+mM+lm9ejXPnz83bEktlxxLnz59uHnzJgcPHmT37t0cP36coUOHpu2dCgSCXEVkWBRP/3tOciPTKrWKO+dTX5gpvWi1MuHh0W9dXCLG2R6dpV6YqL0COL/9okGQdB78IUO+7ZAlq8wKcje6N9k3GdnyCmkyurZv397o9YwZM1i6dClnz56lYsWKRkLB1dWV6dOnU7VqVR4/fkypUqUMbfb29qleRfD27dvs27ePCxcuULNmTQAWLVpEmzZtmDdvXqqXUxYIBLkLlTrlZyZJArXm3ZtLNRoVVlZmhIW9tcDZG2GCTyDq8GhePXgJCEEiSBs6hQyuEpx5sWQ36faU6HQ6Nm7cSFhYGB4eHgnaw8LCWL16NSVKlKBYsWJGbSNHjiR//vx88MEHrFq1Ktm0pDNnzmBvb28QJADNmjVDpVJx7ty59IYvEAhyOGYWppSvXRqVKukbu04rU71JpXcWQ0hYJJdueXP17jNaNq+UeCwqCdnKuJx3nWYVhSARpBrhKYkjzSnBnp6eeHh4EBkZibW1Ndu3b6dChQqG9l9++YXx48cTFhaGm5sbBw8exNTU1NA+depUmjRpgqWlJQcOHGDEiBGEhoYmuRKhr68vBQoUMA5ao8HR0RFfX98k44yKijJatjk4WJjNBILcRvdxbZnSY2GibSq1inyF7anXsWai7RkhPDKaRRuOs/v4TWK0+ulnc40GCzMN0VFag9kVQB0YjslL41VQJw76jWmrh1C5dikEAkHqSfNIiZubG1evXuXcuXN8+umnDBgwgFu3bhna+/Tpw5UrVzh27Bhly5ale/fuREZGGtq///576tWrR/Xq1fnqq68YP348c+fOzZx3E49Zs2YZLeH89miNQCDI+dTtUJOBU7sBoNbof64kCZDALr8NM/8ej4lp5pZbio7RMmbWX+w86mkQJACRWi2BlgpWDnGF0tSB4Zj46QVJx4EN2XF7Nu4N3YiKiOb7gb/iee5Bstf67fgFjt99lGC/LCvM2XOMWz5+mfSuBDkZGQldBjaZvDMql2ZRYmpqSunSpXF3d2fWrFlUrVqVhQvjnmTs7OwoU6YMDRs2ZOvWrdy5c4ft27cn2V/t2rV5+vSp0ahGfAoVKoSfn/EXU6vVEhAQkKwvZcKECQQFBRk2b2/vNL5TgUCQE+j5ZQeWX5xJm8FNqFCnNNUaV2TUggGs8pyLS7kiAGyYv4djOy4mOFenk1ny9UZunEu9GXbvydvcePDcaDQkFkUl4aeKYeyXrRncrbZBkHQe/CHDvu+ImbkpE1cMMgiTiYN+TTIl+MCNe8zff5LR6/82EiayrDBpxyHWnrrM0DXbCIuKTvT895XXL4K4fvx2om1ed3146OmVxRFlHFnJ+JZXyPAjhizLSQoKRVFQFCXJdoCrV6/i4OCQ5BLLHh4eBAYGcunSJdzd3QE4cuQIsixTu3btJPs1MzNL97LNAoEgZ+FasRijFgxItO3Mvmv88cNugzH2w0766RydTmbB2HUc2nyWo9svsPr8NKztLFO81o4j15Ekksz6UakkTno+YvZn7Xl1/wUW1uZGplZTMxMmrhjE1KGrqN20Io5Oton207h8SZpXLM3Bm/cZvf5vFvVpT/0yrkzacYi/Lt1AJUlMaNsIKzPTRM9/HwnyD2F8qxn4PvJj8pZxuDevYmjzuuvD+BbTkXUyPxz4DtcKRbMxUkF6SZMomTBhAq1bt8bFxYWQkBA2bNjA0aNH2b9/Pw8fPmTTpk20aNECJycnnj59yuzZs7GwsKBNmzYA/P3337x48YI6depgbm7OwYMHmTlzJl988YXhGufPn6d///4cPnyYIkWKUL58eVq1asWQIUNYtmwZMTExjBo1ip49e4rMG4FAwAfNK9O8Rx0ObjrLDyPXAFC
"text/plain": [
"<Figure size 640x480 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure()\n",
"plt.scatter(pos1[:, 0], pos1[:, 1], c=np.log10(m1))\n",
"plt.colorbar()\n",
"plt.scatter(pos2[:, 0], pos2[:, 1], marker=\"x\", c=np.log10(m2))\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 293,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'RA': 195, 'DEC': 28, 'dist': 70.5}\n"
]
}
],
"source": [
"virgo = csiborgtools.virgo\n",
"\n",
"print(virgo)\n",
"X = np.array([virgo[\"dist\"], virgo[\"RA\"], virgo[\"DEC\"]]).reshape(-1, 3)\n",
"\n",
"\n",
"dist, indxs = cat.angular_neighbours(X, False, 20, radial_tolerance=5)\n",
"dist, indxs = dist[0], indxs[0]"
]
},
{
"cell_type": "code",
"execution_count": 294,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[]\n"
]
},
{
"ename": "ValueError",
"evalue": "attempt to get argmax of an empty sequence",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
"\u001b[1;32m/mnt/zfsusers/rstiskalek/csiborgtools/notebooks/test.ipynb Cell 9\u001b[0m line \u001b[0;36m3\n\u001b[1;32m <a href='vscode-notebook-cell://ssh-remote%2Bglamdring.physics.ox.ac.uk/mnt/zfsusers/rstiskalek/csiborgtools/notebooks/test.ipynb#Y234sdnNjb2RlLXJlbW90ZQ%3D%3D?line=0'>1</a>\u001b[0m \u001b[39mprint\u001b[39m(cat[\u001b[39m\"\u001b[39m\u001b[39mmtot\u001b[39m\u001b[39m\"\u001b[39m][indxs])\n\u001b[0;32m----> <a href='vscode-notebook-cell://ssh-remote%2Bglamdring.physics.ox.ac.uk/mnt/zfsusers/rstiskalek/csiborgtools/notebooks/test.ipynb#Y234sdnNjb2RlLXJlbW90ZQ%3D%3D?line=2'>3</a>\u001b[0m k \u001b[39m=\u001b[39m np\u001b[39m.\u001b[39;49margmax(cat[\u001b[39m\"\u001b[39;49m\u001b[39mmtot\u001b[39;49m\u001b[39m\"\u001b[39;49m][indxs])\n\u001b[1;32m <a href='vscode-notebook-cell://ssh-remote%2Bglamdring.physics.ox.ac.uk/mnt/zfsusers/rstiskalek/csiborgtools/notebooks/test.ipynb#Y234sdnNjb2RlLXJlbW90ZQ%3D%3D?line=3'>4</a>\u001b[0m kk \u001b[39m=\u001b[39m indxs[k]\n\u001b[1;32m <a href='vscode-notebook-cell://ssh-remote%2Bglamdring.physics.ox.ac.uk/mnt/zfsusers/rstiskalek/csiborgtools/notebooks/test.ipynb#Y234sdnNjb2RlLXJlbW90ZQ%3D%3D?line=4'>5</a>\u001b[0m dist[k], np\u001b[39m.\u001b[39mlog10(cat[\u001b[39m\"\u001b[39m\u001b[39mmtot\u001b[39m\u001b[39m\"\u001b[39m][indxs[k]]), cat[\u001b[39m\"\u001b[39m\u001b[39mindex\u001b[39m\u001b[39m\"\u001b[39m][indxs[k]]\n",
"File \u001b[0;32m<__array_function__ internals>:200\u001b[0m, in \u001b[0;36margmax\u001b[0;34m(*args, **kwargs)\u001b[0m\n",
"File \u001b[0;32m~/csiborgtools/venv_csiborg/lib/python3.11/site-packages/numpy/core/fromnumeric.py:1242\u001b[0m, in \u001b[0;36margmax\u001b[0;34m(a, axis, out, keepdims)\u001b[0m\n\u001b[1;32m 1155\u001b[0m \u001b[39m\u001b[39m\u001b[39m\"\"\"\u001b[39;00m\n\u001b[1;32m 1156\u001b[0m \u001b[39mReturns the indices of the maximum values along an axis.\u001b[39;00m\n\u001b[1;32m 1157\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 1239\u001b[0m \u001b[39m(2, 1, 4)\u001b[39;00m\n\u001b[1;32m 1240\u001b[0m \u001b[39m\"\"\"\u001b[39;00m\n\u001b[1;32m 1241\u001b[0m kwds \u001b[39m=\u001b[39m {\u001b[39m'\u001b[39m\u001b[39mkeepdims\u001b[39m\u001b[39m'\u001b[39m: keepdims} \u001b[39mif\u001b[39;00m keepdims \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m np\u001b[39m.\u001b[39m_NoValue \u001b[39melse\u001b[39;00m {}\n\u001b[0;32m-> 1242\u001b[0m \u001b[39mreturn\u001b[39;00m _wrapfunc(a, \u001b[39m'\u001b[39;49m\u001b[39margmax\u001b[39;49m\u001b[39m'\u001b[39;49m, axis\u001b[39m=\u001b[39;49maxis, out\u001b[39m=\u001b[39;49mout, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwds)\n",
"File \u001b[0;32m~/csiborgtools/venv_csiborg/lib/python3.11/site-packages/numpy/core/fromnumeric.py:57\u001b[0m, in \u001b[0;36m_wrapfunc\u001b[0;34m(obj, method, *args, **kwds)\u001b[0m\n\u001b[1;32m 54\u001b[0m \u001b[39mreturn\u001b[39;00m _wrapit(obj, method, \u001b[39m*\u001b[39margs, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwds)\n\u001b[1;32m 56\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[0;32m---> 57\u001b[0m \u001b[39mreturn\u001b[39;00m bound(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwds)\n\u001b[1;32m 58\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mTypeError\u001b[39;00m:\n\u001b[1;32m 59\u001b[0m \u001b[39m# A TypeError occurs if the object does have such a method in its\u001b[39;00m\n\u001b[1;32m 60\u001b[0m \u001b[39m# class, but its signature is not identical to that of NumPy's. This\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 64\u001b[0m \u001b[39m# Call _wrapit from within the except clause to ensure a potential\u001b[39;00m\n\u001b[1;32m 65\u001b[0m \u001b[39m# exception has a traceback chain.\u001b[39;00m\n\u001b[1;32m 66\u001b[0m \u001b[39mreturn\u001b[39;00m _wrapit(obj, method, \u001b[39m*\u001b[39margs, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwds)\n",
"\u001b[0;31mValueError\u001b[0m: attempt to get argmax of an empty sequence"
]
}
],
"source": [
"print(cat[\"mtot\"][indxs])\n",
"\n",
"k = np.argmax(cat[\"mtot\"][indxs])\n",
"kk = indxs[k]\n",
"dist[k], np.log10(cat[\"mtot\"][indxs[k]]), cat[\"index\"][indxs[k]]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 234,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[87053 61697 53097 80742 84525 4223 22315 1717 46519 23735]\n"
]
}
],
"source": [
"print(np.argsort(pcat[\"summed_mass\"])[::-1][:10])\n",
" \n",
"k = 46519"
]
},
{
"cell_type": "code",
"execution_count": 163,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(15.115513, 70.65002323342219, True, 11506838)"
]
},
"execution_count": 163,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.log10(pcat[\"summed_mass\"][k]), pcat[\"dist\"][k], pcat[\"is_main\"][k], pcat[\"index\"][k]"
]
},
{
"cell_type": "code",
"execution_count": 235,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Clump 3947225 (193): : 24it [00:06, 3.58it/s] \n"
]
}
],
"source": [
"data = merger_reader.walk_main_progenitor(20520136, 951, True)"
]
},
{
"cell_type": "code",
"execution_count": 236,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Tracking halo: 100%|██████████| 651/651 [00:53<00:00, 12.16it/s]\n"
]
}
],
"source": [
"# pos, mass, x = csiborgtools.read.track_halo_manually(cats, 21344979, maxdist=5, max_dlogm=1)\n",
"hist = csiborgtools.read.track_halo_manually(cats, 20520136, maxdist=0.25, max_dlogm=0.5)"
]
},
{
"cell_type": "code",
"execution_count": 237,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([(951., 275.3906 , 323.64114, 375.0767 , 1.6992810e+15, nan),\n",
" (950., 275.3763 , 323.63602, 375.09222, 1.6949284e+15, 0.02171533),\n",
" (949., nan, nan, nan, nan, nan),\n",
" (948., nan, nan, nan, nan, nan),\n",
" (947., nan, nan, nan, nan, nan),\n",
" (946., 275.3962 , 323.66205, 375.0974 , 1.6972969e+15, 0.03317323),\n",
" (945., 275.38544, 323.63733, 375.10263, 1.6828855e+15, 0.02746497),\n",
" (944., nan, nan, nan, nan, nan),\n",
" (943., 275.3182 , 323.42926, 375.11832, 1.6848843e+15, 0.21922271),\n",
" (942., 275.40613, 323.66183, 375.09247, 1.6838351e+15, 0.24997829),\n",
" (941., nan, nan, nan, nan, nan),\n",
" (940., nan, nan, nan, nan, nan),\n",
" (939., 275.4062 , 323.67218, 375.10422, 1.6796080e+15, 0.01565495),\n",
" (938., 275.41653, 323.6784 , 375.1182 , 1.6778127e+15, 0.01847009),\n",
" (937., 275.41656, 323.6723 , 375.10312, 1.6801732e+15, 0.01626438),\n",
" (936., 275.41644, 323.6785 , 375.10773, 1.6768492e+15, 0.00772197),\n",
" (935., 275.40656, 323.68253, 375.10254, 1.6768536e+15, 0.01187051),\n",
" (934., 275.4118 , 323.68808, 375.11337, 1.6766885e+15, 0.01325788),\n",
" (933., 275.40176, 323.69287, 375.10986, 1.6758714e+15, 0.01166534),\n",
" (932., 275.4113 , 323.69806, 375.10876, 1.6753592e+15, 0.01089866),\n",
" (931., 275.40616, 323.688 , 375.11325, 1.6729041e+15, 0.0121586 ),\n",
" (930., nan, nan, nan, nan, nan),\n",
" (929., 275.40662, 323.70328, 375.10873, 1.6784032e+15, 0.01594905),\n",
" (928., 275.4029 , 323.70837, 375.114 , 1.6702815e+15, 0.00822855),\n",
" (927., nan, nan, nan, nan, nan),\n",
" (926., nan, nan, nan, nan, nan),\n",
" (925., 275.40613, 323.7088 , 375.11807, 1.6753509e+15, 0.00520779),\n",
" (924., nan, nan, nan, nan, nan),\n",
" (923., nan, nan, nan, nan, nan),\n",
" (922., nan, nan, nan, nan, nan),\n",
" (921., nan, nan, nan, nan, nan),\n",
" (920., nan, nan, nan, nan, nan),\n",
" (919., nan, nan, nan, nan, nan),\n",
" (918., nan, nan, nan, nan, nan),\n",
" (917., nan, nan, nan, nan, nan),\n",
" (916., 275.42737, 323.76526, 375.12524, 1.6692198e+15, 0.06074563),\n",
" (915., 275.42163, 323.76016, 375.12943, 1.6662816e+15, 0.00873901),\n",
" (914., 275.4565 , 323.9011 , 375.04697, 1.6648903e+15, 0.1669654 ),\n",
" (913., 275.44412, 323.87256, 375.06506, 1.6669104e+15, 0.03598888),\n",
" (912., 275.4463 , 323.85443, 375.0858 , 1.6663322e+15, 0.0276166 ),\n",
" (911., 275.4364 , 323.81332, 375.10388, 1.6690872e+15, 0.04598984),\n",
" (910., 275.44257, 323.79114, 375.12875, 1.6643460e+15, 0.03389455),\n",
" (909., 275.43716, 323.7563 , 375.1497 , 1.6618427e+15, 0.04101282),\n",
" (908., 275.44235, 323.72913, 375.16998, 1.6647001e+15, 0.03429971),\n",
" (907., 275.4527 , 323.6882 , 375.18622, 1.6636756e+15, 0.04522604),\n",
" (906., 275.4528 , 323.66183, 375.20285, 1.6558421e+15, 0.03117472),\n",
" (905., 275.46817, 323.636 , 375.22156, 1.6558695e+15, 0.03542135),\n",
" (904., 275.46817, 323.59464, 375.23706, 1.6531395e+15, 0.04416189),\n",
" (903., nan, nan, nan, nan, nan),\n",
" (902., nan, nan, nan, nan, nan),\n",
" (901., 275.49405, 323.5119 , 375.268 , 1.6528571e+15, 0.09204388),\n",
" (900., nan, nan, nan, nan, nan),\n",
" (899., nan, nan, nan, nan, nan),\n",
" (898., nan, nan, nan, nan, nan),\n",
" (897., nan, nan, nan, nan, nan),\n",
" (896., nan, nan, nan, nan, nan),\n",
" (895., nan, nan, nan, nan, nan),\n",
" (894., nan, nan, nan, nan, nan),\n",
" (893., 275.5768 , 323.3052 , 375.3415 , 1.6435312e+15, 0.23446347),\n",
" (892., nan, nan, nan, nan, nan),\n",
" (891., nan, nan, nan, nan, nan),\n",
" (890., nan, nan, nan, nan, nan),\n",
" (889., nan, nan, nan, nan, nan),\n",
" (888., nan, nan, nan, nan, nan),\n",
" (887., nan, nan, nan, nan, nan),\n",
" (886., nan, nan, nan, nan, nan),\n",
" (885., nan, nan, nan, nan, nan),\n",
" (884., nan, nan, nan, nan, nan),\n",
" (883., nan, nan, nan, nan, nan),\n",
" (882., nan, nan, nan, nan, nan),\n",
" (881., nan, nan, nan, nan, nan),\n",
" (880., nan, nan, nan, nan, nan),\n",
" (879., nan, nan, nan, nan, nan),\n",
" (878., nan, nan, nan, nan, nan),\n",
" (877., nan, nan, nan, nan, nan),\n",
" (876., nan, nan, nan, nan, nan),\n",
" (875., nan, nan, nan, nan, nan),\n",
" (874., nan, nan, nan, nan, nan),\n",
" (873., nan, nan, nan, nan, nan),\n",
" (872., nan, nan, nan, nan, nan),\n",
" (871., nan, nan, nan, nan, nan),\n",
" (870., nan, nan, nan, nan, nan),\n",
" (869., nan, nan, nan, nan, nan),\n",
" (868., nan, nan, nan, nan, nan),\n",
" (867., nan, nan, nan, nan, nan),\n",
" (866., nan, nan, nan, nan, nan),\n",
" (865., nan, nan, nan, nan, nan),\n",
" (864., nan, nan, nan, nan, nan),\n",
" (863., nan, nan, nan, nan, nan),\n",
" (862., nan, nan, nan, nan, nan),\n",
" (861., nan, nan, nan, nan, nan),\n",
" (860., nan, nan, nan, nan, nan),\n",
" (859., nan, nan, nan, nan, nan),\n",
" (858., nan, nan, nan, nan, nan),\n",
" (857., nan, nan, nan, nan, nan),\n",
" (856., nan, nan, nan, nan, nan),\n",
" (855., nan, nan, nan, nan, nan),\n",
" (854., nan, nan, nan, nan, nan),\n",
" (853., nan, nan, nan, nan, nan),\n",
" (852., nan, nan, nan, nan, nan),\n",
" (851., nan, nan, nan, nan, nan),\n",
" (850., nan, nan, nan, nan, nan),\n",
" (849., nan, nan, nan, nan, nan),\n",
" (848., nan, nan, nan, nan, nan),\n",
" (847., nan, nan, nan, nan, nan),\n",
" (846., nan, nan, nan, nan, nan),\n",
" (845., nan, nan, nan, nan, nan),\n",
" (844., nan, nan, nan, nan, nan),\n",
" (843., nan, nan, nan, nan, nan),\n",
" (842., nan, nan, nan, nan, nan),\n",
" (841., nan, nan, nan, nan, nan),\n",
" (840., nan, nan, nan, nan, nan),\n",
" (839., nan, nan, nan, nan, nan),\n",
" (838., nan, nan, nan, nan, nan),\n",
" (837., nan, nan, nan, nan, nan),\n",
" (836., nan, nan, nan, nan, nan),\n",
" (835., nan, nan, nan, nan, nan),\n",
" (834., nan, nan, nan, nan, nan),\n",
" (833., nan, nan, nan, nan, nan),\n",
" (832., nan, nan, nan, nan, nan),\n",
" (831., nan, nan, nan, nan, nan),\n",
" (830., nan, nan, nan, nan, nan),\n",
" (829., nan, nan, nan, nan, nan),\n",
" (828., nan, nan, nan, nan, nan),\n",
" (827., nan, nan, nan, nan, nan),\n",
" (826., nan, nan, nan, nan, nan),\n",
" (825., nan, nan, nan, nan, nan),\n",
" (824., nan, nan, nan, nan, nan),\n",
" (823., nan, nan, nan, nan, nan),\n",
" (822., nan, nan, nan, nan, nan),\n",
" (821., nan, nan, nan, nan, nan),\n",
" (820., nan, nan, nan, nan, nan),\n",
" (819., nan, nan, nan, nan, nan),\n",
" (818., nan, nan, nan, nan, nan),\n",
" (817., nan, nan, nan, nan, nan),\n",
" (816., nan, nan, nan, nan, nan),\n",
" (815., nan, nan, nan, nan, nan),\n",
" (814., nan, nan, nan, nan, nan),\n",
" (813., nan, nan, nan, nan, nan),\n",
" (812., nan, nan, nan, nan, nan),\n",
" (811., nan, nan, nan, nan, nan),\n",
" (810., nan, nan, nan, nan, nan),\n",
" (809., nan, nan, nan, nan, nan),\n",
" (808., nan, nan, nan, nan, nan),\n",
" (807., nan, nan, nan, nan, nan),\n",
" (806., nan, nan, nan, nan, nan),\n",
" (805., nan, nan, nan, nan, nan),\n",
" (804., nan, nan, nan, nan, nan),\n",
" (803., nan, nan, nan, nan, nan),\n",
" (802., nan, nan, nan, nan, nan),\n",
" (801., nan, nan, nan, nan, nan),\n",
" (800., nan, nan, nan, nan, nan),\n",
" (799., nan, nan, nan, nan, nan),\n",
" (798., nan, nan, nan, nan, nan),\n",
" (797., nan, nan, nan, nan, nan),\n",
" (796., nan, nan, nan, nan, nan),\n",
" (795., nan, nan, nan, nan, nan),\n",
" (794., nan, nan, nan, nan, nan),\n",
" (793., nan, nan, nan, nan, nan),\n",
" (792., nan, nan, nan, nan, nan),\n",
" (791., nan, nan, nan, nan, nan),\n",
" (790., nan, nan, nan, nan, nan),\n",
" (789., nan, nan, nan, nan, nan),\n",
" (788., nan, nan, nan, nan, nan),\n",
" (787., nan, nan, nan, nan, nan),\n",
" (786., nan, nan, nan, nan, nan),\n",
" (785., nan, nan, nan, nan, nan),\n",
" (784., nan, nan, nan, nan, nan),\n",
" (783., nan, nan, nan, nan, nan),\n",
" (782., nan, nan, nan, nan, nan),\n",
" (781., nan, nan, nan, nan, nan),\n",
" (780., nan, nan, nan, nan, nan),\n",
" (779., nan, nan, nan, nan, nan),\n",
" (778., nan, nan, nan, nan, nan),\n",
" (777., nan, nan, nan, nan, nan),\n",
" (776., nan, nan, nan, nan, nan),\n",
" (775., nan, nan, nan, nan, nan),\n",
" (774., nan, nan, nan, nan, nan),\n",
" (773., nan, nan, nan, nan, nan),\n",
" (772., nan, nan, nan, nan, nan),\n",
" (771., nan, nan, nan, nan, nan),\n",
" (770., nan, nan, nan, nan, nan),\n",
" (769., nan, nan, nan, nan, nan),\n",
" (768., nan, nan, nan, nan, nan),\n",
" (767., nan, nan, nan, nan, nan),\n",
" (766., nan, nan, nan, nan, nan),\n",
" (765., nan, nan, nan, nan, nan),\n",
" (764., nan, nan, nan, nan, nan),\n",
" (763., nan, nan, nan, nan, nan),\n",
" (762., nan, nan, nan, nan, nan),\n",
" (761., nan, nan, nan, nan, nan),\n",
" (760., nan, nan, nan, nan, nan),\n",
" (759., nan, nan, nan, nan, nan),\n",
" (758., nan, nan, nan, nan, nan),\n",
" (757., nan, nan, nan, nan, nan),\n",
" (756., nan, nan, nan, nan, nan),\n",
" (755., nan, nan, nan, nan, nan),\n",
" (754., nan, nan, nan, nan, nan),\n",
" (753., nan, nan, nan, nan, nan),\n",
" (752., nan, nan, nan, nan, nan),\n",
" (751., nan, nan, nan, nan, nan),\n",
" (750., nan, nan, nan, nan, nan),\n",
" (749., nan, nan, nan, nan, nan),\n",
" (748., nan, nan, nan, nan, nan),\n",
" (747., nan, nan, nan, nan, nan),\n",
" (746., nan, nan, nan, nan, nan),\n",
" (745., nan, nan, nan, nan, nan),\n",
" (744., nan, nan, nan, nan, nan),\n",
" (743., nan, nan, nan, nan, nan),\n",
" (742., nan, nan, nan, nan, nan),\n",
" (741., nan, nan, nan, nan, nan),\n",
" (740., nan, nan, nan, nan, nan),\n",
" (739., nan, nan, nan, nan, nan),\n",
" (738., nan, nan, nan, nan, nan),\n",
" (737., nan, nan, nan, nan, nan),\n",
" (736., nan, nan, nan, nan, nan),\n",
" (735., nan, nan, nan, nan, nan),\n",
" (734., nan, nan, nan, nan, nan),\n",
" (733., nan, nan, nan, nan, nan),\n",
" (732., nan, nan, nan, nan, nan),\n",
" (731., nan, nan, nan, nan, nan),\n",
" (730., nan, nan, nan, nan, nan),\n",
" (729., nan, nan, nan, nan, nan),\n",
" (728., nan, nan, nan, nan, nan),\n",
" (727., nan, nan, nan, nan, nan),\n",
" (726., nan, nan, nan, nan, nan),\n",
" (725., nan, nan, nan, nan, nan),\n",
" (724., nan, nan, nan, nan, nan),\n",
" (723., nan, nan, nan, nan, nan),\n",
" (722., nan, nan, nan, nan, nan),\n",
" (721., nan, nan, nan, nan, nan),\n",
" (720., nan, nan, nan, nan, nan),\n",
" (719., nan, nan, nan, nan, nan),\n",
" (718., nan, nan, nan, nan, nan),\n",
" (717., nan, nan, nan, nan, nan),\n",
" (716., nan, nan, nan, nan, nan),\n",
" (715., nan, nan, nan, nan, nan),\n",
" (714., nan, nan, nan, nan, nan),\n",
" (713., nan, nan, nan, nan, nan),\n",
" (712., nan, nan, nan, nan, nan),\n",
" (711., nan, nan, nan, nan, nan),\n",
" (710., nan, nan, nan, nan, nan),\n",
" (709., nan, nan, nan, nan, nan),\n",
" (708., nan, nan, nan, nan, nan),\n",
" (707., nan, nan, nan, nan, nan),\n",
" (706., nan, nan, nan, nan, nan),\n",
" (705., nan, nan, nan, nan, nan),\n",
" (704., nan, nan, nan, nan, nan),\n",
" (703., nan, nan, nan, nan, nan),\n",
" (702., nan, nan, nan, nan, nan),\n",
" (701., nan, nan, nan, nan, nan),\n",
" (700., nan, nan, nan, nan, nan),\n",
" (699., nan, nan, nan, nan, nan),\n",
" (698., nan, nan, nan, nan, nan),\n",
" (697., nan, nan, nan, nan, nan),\n",
" (696., nan, nan, nan, nan, nan),\n",
" (695., nan, nan, nan, nan, nan),\n",
" (694., nan, nan, nan, nan, nan),\n",
" (693., nan, nan, nan, nan, nan),\n",
" (692., nan, nan, nan, nan, nan),\n",
" (691., nan, nan, nan, nan, nan),\n",
" (690., nan, nan, nan, nan, nan),\n",
" (689., nan, nan, nan, nan, nan),\n",
" (688., nan, nan, nan, nan, nan),\n",
" (687., nan, nan, nan, nan, nan),\n",
" (686., nan, nan, nan, nan, nan),\n",
" (685., nan, nan, nan, nan, nan),\n",
" (684., nan, nan, nan, nan, nan),\n",
" (683., nan, nan, nan, nan, nan),\n",
" (682., nan, nan, nan, nan, nan),\n",
" (681., nan, nan, nan, nan, nan),\n",
" (680., nan, nan, nan, nan, nan),\n",
" (679., nan, nan, nan, nan, nan),\n",
" (678., nan, nan, nan, nan, nan),\n",
" (677., nan, nan, nan, nan, nan),\n",
" (676., nan, nan, nan, nan, nan),\n",
" (675., nan, nan, nan, nan, nan),\n",
" (674., nan, nan, nan, nan, nan),\n",
" (673., nan, nan, nan, nan, nan),\n",
" (672., nan, nan, nan, nan, nan),\n",
" (671., nan, nan, nan, nan, nan),\n",
" (670., nan, nan, nan, nan, nan),\n",
" (669., nan, nan, nan, nan, nan),\n",
" (668., nan, nan, nan, nan, nan),\n",
" (667., nan, nan, nan, nan, nan),\n",
" (666., nan, nan, nan, nan, nan),\n",
" (665., nan, nan, nan, nan, nan),\n",
" (664., nan, nan, nan, nan, nan),\n",
" (663., nan, nan, nan, nan, nan),\n",
" (662., nan, nan, nan, nan, nan),\n",
" (661., nan, nan, nan, nan, nan),\n",
" (660., nan, nan, nan, nan, nan),\n",
" (659., nan, nan, nan, nan, nan),\n",
" (658., nan, nan, nan, nan, nan),\n",
" (657., nan, nan, nan, nan, nan),\n",
" (656., nan, nan, nan, nan, nan),\n",
" (655., nan, nan, nan, nan, nan),\n",
" (654., nan, nan, nan, nan, nan),\n",
" (653., nan, nan, nan, nan, nan),\n",
" (652., nan, nan, nan, nan, nan),\n",
" (651., nan, nan, nan, nan, nan),\n",
" (650., nan, nan, nan, nan, nan),\n",
" (649., nan, nan, nan, nan, nan),\n",
" (648., nan, nan, nan, nan, nan),\n",
" (647., nan, nan, nan, nan, nan),\n",
" (646., nan, nan, nan, nan, nan),\n",
" (645., nan, nan, nan, nan, nan),\n",
" (644., nan, nan, nan, nan, nan),\n",
" (643., nan, nan, nan, nan, nan),\n",
" (642., nan, nan, nan, nan, nan),\n",
" (641., nan, nan, nan, nan, nan),\n",
" (640., nan, nan, nan, nan, nan),\n",
" (639., nan, nan, nan, nan, nan),\n",
" (638., nan, nan, nan, nan, nan),\n",
" (637., nan, nan, nan, nan, nan),\n",
" (636., nan, nan, nan, nan, nan),\n",
" (635., nan, nan, nan, nan, nan),\n",
" (634., nan, nan, nan, nan, nan),\n",
" (633., nan, nan, nan, nan, nan),\n",
" (632., nan, nan, nan, nan, nan),\n",
" (631., nan, nan, nan, nan, nan),\n",
" (630., nan, nan, nan, nan, nan),\n",
" (629., nan, nan, nan, nan, nan),\n",
" (628., nan, nan, nan, nan, nan),\n",
" (627., nan, nan, nan, nan, nan),\n",
" (626., nan, nan, nan, nan, nan),\n",
" (625., nan, nan, nan, nan, nan),\n",
" (624., nan, nan, nan, nan, nan),\n",
" (623., nan, nan, nan, nan, nan),\n",
" (622., nan, nan, nan, nan, nan),\n",
" (621., nan, nan, nan, nan, nan),\n",
" (620., nan, nan, nan, nan, nan),\n",
" (619., nan, nan, nan, nan, nan),\n",
" (618., nan, nan, nan, nan, nan),\n",
" (617., nan, nan, nan, nan, nan),\n",
" (616., nan, nan, nan, nan, nan),\n",
" (615., nan, nan, nan, nan, nan),\n",
" (614., nan, nan, nan, nan, nan),\n",
" (613., nan, nan, nan, nan, nan),\n",
" (612., nan, nan, nan, nan, nan),\n",
" (611., nan, nan, nan, nan, nan),\n",
" (610., nan, nan, nan, nan, nan),\n",
" (609., nan, nan, nan, nan, nan),\n",
" (608., nan, nan, nan, nan, nan),\n",
" (607., nan, nan, nan, nan, nan),\n",
" (606., nan, nan, nan, nan, nan),\n",
" (605., nan, nan, nan, nan, nan),\n",
" (604., nan, nan, nan, nan, nan),\n",
" (603., nan, nan, nan, nan, nan),\n",
" (602., nan, nan, nan, nan, nan),\n",
" (601., nan, nan, nan, nan, nan),\n",
" (600., nan, nan, nan, nan, nan),\n",
" (599., nan, nan, nan, nan, nan),\n",
" (598., nan, nan, nan, nan, nan),\n",
" (597., nan, nan, nan, nan, nan),\n",
" (596., nan, nan, nan, nan, nan),\n",
" (595., nan, nan, nan, nan, nan),\n",
" (594., nan, nan, nan, nan, nan),\n",
" (593., nan, nan, nan, nan, nan),\n",
" (592., nan, nan, nan, nan, nan),\n",
" (591., nan, nan, nan, nan, nan),\n",
" (590., nan, nan, nan, nan, nan),\n",
" (589., nan, nan, nan, nan, nan),\n",
" (588., nan, nan, nan, nan, nan),\n",
" (587., nan, nan, nan, nan, nan),\n",
" (586., nan, nan, nan, nan, nan),\n",
" (585., nan, nan, nan, nan, nan),\n",
" (584., nan, nan, nan, nan, nan),\n",
" (583., nan, nan, nan, nan, nan),\n",
" (582., nan, nan, nan, nan, nan),\n",
" (581., nan, nan, nan, nan, nan),\n",
" (580., nan, nan, nan, nan, nan),\n",
" (579., nan, nan, nan, nan, nan),\n",
" (578., nan, nan, nan, nan, nan),\n",
" (577., nan, nan, nan, nan, nan),\n",
" (576., nan, nan, nan, nan, nan),\n",
" (575., nan, nan, nan, nan, nan),\n",
" (574., nan, nan, nan, nan, nan),\n",
" (573., nan, nan, nan, nan, nan),\n",
" (572., nan, nan, nan, nan, nan),\n",
" (571., nan, nan, nan, nan, nan),\n",
" (570., nan, nan, nan, nan, nan),\n",
" (569., nan, nan, nan, nan, nan),\n",
" (568., nan, nan, nan, nan, nan),\n",
" (567., nan, nan, nan, nan, nan),\n",
" (566., nan, nan, nan, nan, nan),\n",
" (565., nan, nan, nan, nan, nan),\n",
" (564., nan, nan, nan, nan, nan),\n",
" (563., nan, nan, nan, nan, nan),\n",
" (562., nan, nan, nan, nan, nan),\n",
" (561., nan, nan, nan, nan, nan),\n",
" (560., nan, nan, nan, nan, nan),\n",
" (559., nan, nan, nan, nan, nan),\n",
" (558., nan, nan, nan, nan, nan),\n",
" (557., nan, nan, nan, nan, nan),\n",
" (556., nan, nan, nan, nan, nan),\n",
" (555., nan, nan, nan, nan, nan),\n",
" (554., nan, nan, nan, nan, nan),\n",
" (553., nan, nan, nan, nan, nan),\n",
" (552., nan, nan, nan, nan, nan),\n",
" (551., nan, nan, nan, nan, nan),\n",
" (550., nan, nan, nan, nan, nan),\n",
" (549., nan, nan, nan, nan, nan),\n",
" (548., nan, nan, nan, nan, nan),\n",
" (547., nan, nan, nan, nan, nan),\n",
" (546., nan, nan, nan, nan, nan),\n",
" (545., nan, nan, nan, nan, nan),\n",
" (544., nan, nan, nan, nan, nan),\n",
" (543., nan, nan, nan, nan, nan),\n",
" (542., nan, nan, nan, nan, nan),\n",
" (541., nan, nan, nan, nan, nan),\n",
" (540., nan, nan, nan, nan, nan),\n",
" (539., nan, nan, nan, nan, nan),\n",
" (538., nan, nan, nan, nan, nan),\n",
" (537., nan, nan, nan, nan, nan),\n",
" (536., nan, nan, nan, nan, nan),\n",
" (535., nan, nan, nan, nan, nan),\n",
" (534., nan, nan, nan, nan, nan),\n",
" (533., nan, nan, nan, nan, nan),\n",
" (532., nan, nan, nan, nan, nan),\n",
" (531., nan, nan, nan, nan, nan),\n",
" (530., nan, nan, nan, nan, nan),\n",
" (529., nan, nan, nan, nan, nan),\n",
" (528., nan, nan, nan, nan, nan),\n",
" (527., nan, nan, nan, nan, nan),\n",
" (526., nan, nan, nan, nan, nan),\n",
" (525., nan, nan, nan, nan, nan),\n",
" (524., nan, nan, nan, nan, nan),\n",
" (523., nan, nan, nan, nan, nan),\n",
" (522., nan, nan, nan, nan, nan),\n",
" (521., nan, nan, nan, nan, nan),\n",
" (520., nan, nan, nan, nan, nan),\n",
" (519., nan, nan, nan, nan, nan),\n",
" (518., nan, nan, nan, nan, nan),\n",
" (517., nan, nan, nan, nan, nan),\n",
" (516., nan, nan, nan, nan, nan),\n",
" (515., nan, nan, nan, nan, nan),\n",
" (514., nan, nan, nan, nan, nan),\n",
" (513., nan, nan, nan, nan, nan),\n",
" (512., nan, nan, nan, nan, nan),\n",
" (511., nan, nan, nan, nan, nan),\n",
" (510., nan, nan, nan, nan, nan),\n",
" (509., nan, nan, nan, nan, nan),\n",
" (508., nan, nan, nan, nan, nan),\n",
" (507., nan, nan, nan, nan, nan),\n",
" (506., nan, nan, nan, nan, nan),\n",
" (505., nan, nan, nan, nan, nan),\n",
" (504., nan, nan, nan, nan, nan),\n",
" (503., nan, nan, nan, nan, nan),\n",
" (502., nan, nan, nan, nan, nan),\n",
" (501., nan, nan, nan, nan, nan),\n",
" (500., nan, nan, nan, nan, nan),\n",
" (499., nan, nan, nan, nan, nan),\n",
" (498., nan, nan, nan, nan, nan),\n",
" (497., nan, nan, nan, nan, nan),\n",
" (496., nan, nan, nan, nan, nan),\n",
" (495., nan, nan, nan, nan, nan),\n",
" (494., nan, nan, nan, nan, nan),\n",
" (493., nan, nan, nan, nan, nan),\n",
" (492., nan, nan, nan, nan, nan),\n",
" (491., nan, nan, nan, nan, nan),\n",
" (490., nan, nan, nan, nan, nan),\n",
" (489., nan, nan, nan, nan, nan),\n",
" (488., nan, nan, nan, nan, nan),\n",
" (487., nan, nan, nan, nan, nan),\n",
" (486., nan, nan, nan, nan, nan),\n",
" (485., nan, nan, nan, nan, nan),\n",
" (484., nan, nan, nan, nan, nan),\n",
" (483., nan, nan, nan, nan, nan),\n",
" (482., nan, nan, nan, nan, nan),\n",
" (481., nan, nan, nan, nan, nan),\n",
" (480., nan, nan, nan, nan, nan),\n",
" (479., nan, nan, nan, nan, nan),\n",
" (478., nan, nan, nan, nan, nan),\n",
" (477., nan, nan, nan, nan, nan),\n",
" (476., nan, nan, nan, nan, nan),\n",
" (475., nan, nan, nan, nan, nan),\n",
" (474., nan, nan, nan, nan, nan),\n",
" (473., nan, nan, nan, nan, nan),\n",
" (472., nan, nan, nan, nan, nan),\n",
" (471., nan, nan, nan, nan, nan),\n",
" (470., nan, nan, nan, nan, nan),\n",
" (469., nan, nan, nan, nan, nan),\n",
" (468., nan, nan, nan, nan, nan),\n",
" (467., nan, nan, nan, nan, nan),\n",
" (466., nan, nan, nan, nan, nan),\n",
" (465., nan, nan, nan, nan, nan),\n",
" (464., nan, nan, nan, nan, nan),\n",
" (463., nan, nan, nan, nan, nan),\n",
" (462., nan, nan, nan, nan, nan),\n",
" (461., nan, nan, nan, nan, nan),\n",
" (460., nan, nan, nan, nan, nan),\n",
" (459., nan, nan, nan, nan, nan),\n",
" (458., nan, nan, nan, nan, nan),\n",
" (457., nan, nan, nan, nan, nan),\n",
" (456., nan, nan, nan, nan, nan),\n",
" (455., nan, nan, nan, nan, nan),\n",
" (454., nan, nan, nan, nan, nan),\n",
" (453., nan, nan, nan, nan, nan),\n",
" (452., nan, nan, nan, nan, nan),\n",
" (451., nan, nan, nan, nan, nan),\n",
" (450., nan, nan, nan, nan, nan),\n",
" (449., nan, nan, nan, nan, nan),\n",
" (448., nan, nan, nan, nan, nan),\n",
" (447., nan, nan, nan, nan, nan),\n",
" (446., nan, nan, nan, nan, nan),\n",
" (445., nan, nan, nan, nan, nan),\n",
" (444., nan, nan, nan, nan, nan),\n",
" (443., nan, nan, nan, nan, nan),\n",
" (442., nan, nan, nan, nan, nan),\n",
" (441., nan, nan, nan, nan, nan),\n",
" (440., nan, nan, nan, nan, nan),\n",
" (439., nan, nan, nan, nan, nan),\n",
" (438., nan, nan, nan, nan, nan),\n",
" (437., nan, nan, nan, nan, nan),\n",
" (436., nan, nan, nan, nan, nan),\n",
" (435., nan, nan, nan, nan, nan),\n",
" (434., nan, nan, nan, nan, nan),\n",
" (433., nan, nan, nan, nan, nan),\n",
" (432., nan, nan, nan, nan, nan),\n",
" (431., nan, nan, nan, nan, nan),\n",
" (430., nan, nan, nan, nan, nan),\n",
" (429., nan, nan, nan, nan, nan),\n",
" (428., nan, nan, nan, nan, nan),\n",
" (427., nan, nan, nan, nan, nan),\n",
" (426., nan, nan, nan, nan, nan),\n",
" (425., nan, nan, nan, nan, nan),\n",
" (424., nan, nan, nan, nan, nan),\n",
" (423., nan, nan, nan, nan, nan),\n",
" (422., nan, nan, nan, nan, nan),\n",
" (421., nan, nan, nan, nan, nan),\n",
" (420., nan, nan, nan, nan, nan),\n",
" (419., nan, nan, nan, nan, nan),\n",
" (418., nan, nan, nan, nan, nan),\n",
" (417., nan, nan, nan, nan, nan),\n",
" (416., nan, nan, nan, nan, nan),\n",
" (415., nan, nan, nan, nan, nan),\n",
" (414., nan, nan, nan, nan, nan),\n",
" (413., nan, nan, nan, nan, nan),\n",
" (412., nan, nan, nan, nan, nan),\n",
" (411., nan, nan, nan, nan, nan),\n",
" (410., nan, nan, nan, nan, nan),\n",
" (409., nan, nan, nan, nan, nan),\n",
" (408., nan, nan, nan, nan, nan),\n",
" (407., nan, nan, nan, nan, nan),\n",
" (406., nan, nan, nan, nan, nan),\n",
" (405., nan, nan, nan, nan, nan),\n",
" (404., nan, nan, nan, nan, nan),\n",
" (403., nan, nan, nan, nan, nan),\n",
" (402., nan, nan, nan, nan, nan),\n",
" (401., nan, nan, nan, nan, nan),\n",
" (400., nan, nan, nan, nan, nan),\n",
" (399., nan, nan, nan, nan, nan),\n",
" (398., nan, nan, nan, nan, nan),\n",
" (397., nan, nan, nan, nan, nan),\n",
" (396., nan, nan, nan, nan, nan),\n",
" (395., nan, nan, nan, nan, nan),\n",
" (394., nan, nan, nan, nan, nan),\n",
" (393., nan, nan, nan, nan, nan),\n",
" (392., nan, nan, nan, nan, nan),\n",
" (391., nan, nan, nan, nan, nan),\n",
" (390., nan, nan, nan, nan, nan),\n",
" (389., nan, nan, nan, nan, nan),\n",
" (388., nan, nan, nan, nan, nan),\n",
" (387., nan, nan, nan, nan, nan),\n",
" (386., nan, nan, nan, nan, nan),\n",
" (385., nan, nan, nan, nan, nan),\n",
" (384., nan, nan, nan, nan, nan),\n",
" (383., nan, nan, nan, nan, nan),\n",
" (382., nan, nan, nan, nan, nan),\n",
" (381., nan, nan, nan, nan, nan),\n",
" (380., nan, nan, nan, nan, nan),\n",
" (379., nan, nan, nan, nan, nan),\n",
" (378., nan, nan, nan, nan, nan),\n",
" (377., nan, nan, nan, nan, nan),\n",
" (376., nan, nan, nan, nan, nan),\n",
" (375., nan, nan, nan, nan, nan),\n",
" (374., nan, nan, nan, nan, nan),\n",
" (373., nan, nan, nan, nan, nan),\n",
" (372., nan, nan, nan, nan, nan),\n",
" (371., nan, nan, nan, nan, nan),\n",
" (370., nan, nan, nan, nan, nan),\n",
" (369., nan, nan, nan, nan, nan),\n",
" (368., nan, nan, nan, nan, nan),\n",
" (367., nan, nan, nan, nan, nan),\n",
" (366., nan, nan, nan, nan, nan),\n",
" (365., nan, nan, nan, nan, nan),\n",
" (364., nan, nan, nan, nan, nan),\n",
" (363., nan, nan, nan, nan, nan),\n",
" (362., nan, nan, nan, nan, nan),\n",
" (361., nan, nan, nan, nan, nan),\n",
" (360., nan, nan, nan, nan, nan),\n",
" (359., nan, nan, nan, nan, nan),\n",
" (358., nan, nan, nan, nan, nan),\n",
" (357., nan, nan, nan, nan, nan),\n",
" (356., nan, nan, nan, nan, nan),\n",
" (355., nan, nan, nan, nan, nan),\n",
" (354., nan, nan, nan, nan, nan),\n",
" (353., nan, nan, nan, nan, nan),\n",
" (352., nan, nan, nan, nan, nan),\n",
" (351., nan, nan, nan, nan, nan),\n",
" (350., nan, nan, nan, nan, nan),\n",
" (349., nan, nan, nan, nan, nan),\n",
" (348., nan, nan, nan, nan, nan),\n",
" (347., nan, nan, nan, nan, nan),\n",
" (346., nan, nan, nan, nan, nan),\n",
" (345., nan, nan, nan, nan, nan),\n",
" (344., nan, nan, nan, nan, nan),\n",
" (343., nan, nan, nan, nan, nan),\n",
" (342., nan, nan, nan, nan, nan),\n",
" (341., nan, nan, nan, nan, nan),\n",
" (340., nan, nan, nan, nan, nan),\n",
" (339., nan, nan, nan, nan, nan),\n",
" (338., nan, nan, nan, nan, nan),\n",
" (337., nan, nan, nan, nan, nan),\n",
" (336., nan, nan, nan, nan, nan),\n",
" (335., nan, nan, nan, nan, nan),\n",
" (334., nan, nan, nan, nan, nan),\n",
" (333., nan, nan, nan, nan, nan),\n",
" (332., nan, nan, nan, nan, nan),\n",
" (331., nan, nan, nan, nan, nan),\n",
" (330., nan, nan, nan, nan, nan),\n",
" (329., nan, nan, nan, nan, nan),\n",
" (328., nan, nan, nan, nan, nan),\n",
" (327., nan, nan, nan, nan, nan),\n",
" (326., nan, nan, nan, nan, nan),\n",
" (325., nan, nan, nan, nan, nan),\n",
" (324., nan, nan, nan, nan, nan),\n",
" (323., nan, nan, nan, nan, nan),\n",
" (322., nan, nan, nan, nan, nan),\n",
" (321., nan, nan, nan, nan, nan),\n",
" (320., nan, nan, nan, nan, nan),\n",
" (319., nan, nan, nan, nan, nan),\n",
" (318., nan, nan, nan, nan, nan),\n",
" (317., nan, nan, nan, nan, nan),\n",
" (316., nan, nan, nan, nan, nan),\n",
" (315., nan, nan, nan, nan, nan),\n",
" (314., nan, nan, nan, nan, nan),\n",
" (313., nan, nan, nan, nan, nan),\n",
" (312., nan, nan, nan, nan, nan),\n",
" (311., nan, nan, nan, nan, nan),\n",
" (310., nan, nan, nan, nan, nan),\n",
" (309., nan, nan, nan, nan, nan),\n",
" (308., nan, nan, nan, nan, nan),\n",
" (307., nan, nan, nan, nan, nan),\n",
" (306., nan, nan, nan, nan, nan),\n",
" (305., nan, nan, nan, nan, nan),\n",
" (304., nan, nan, nan, nan, nan),\n",
" (303., nan, nan, nan, nan, nan),\n",
" (302., nan, nan, nan, nan, nan),\n",
" (301., nan, nan, nan, nan, nan),\n",
" (300., nan, nan, nan, nan, nan)],\n",
" dtype=[('snapshot_index', '<f4'), ('x', '<f4'), ('y', '<f4'), ('z', '<f4'), ('mass', '<f4'), ('desc_dist', '<f4')])"
]
},
"execution_count": 237,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"hist"
]
},
{
"cell_type": "code",
"execution_count": 238,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAGdCAYAAADqsoKGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABGAUlEQVR4nO3de1xUdf4/8Nc5AwwzwoygqFwGMTXMXPKyZmR+rVZEs8Kv3dZN2Ta/+aWfl13bdZNv67eL7eoubn1zW11XTW3NtcV0JfNSWWh2UfNSiImXQMkBUZAZ5DIMcz6/P4gpghkYbjNzeD0fDx4PONf3OY8D8+Kcz/l8JCGEABEREZGfk71dABEREVFHYKghIiIiVWCoISIiIlVgqCEiIiJVYKghIiIiVWCoISIiIlVgqCEiIiJVYKghIiIiVQjwdgFdRVEUmM1mhIaGQpIkb5dDRERErSCEQEVFBaKioiDL7u/FdJtQYzabYTKZvF0GERERtUFhYSFiYmLcLtNtQk1oaCiA+pNiMBi8XA0RERG1htVqhclkcn6Ou9NtQk3DIyeDwcBQQ0RE5Gda03SEDYWJiIhIFRhqiIiISBUYaoiIiEgVGGqIiIhIFRhqiIiISBUYaoiIiEgVGGqIiIhIFRhqiIiISBW6Ted7RETNuXDlGnIuFEMjSfjxoBhEGEO8XRIRtRFDDRF1SyWW6/jfzXvxad5F5zRZknDPqCF45qG7odcGebE6ImoLjx4/rVq1CgkJCc6hBhITE7F7924AQFlZGebNm4f4+HjodDrExsZi/vz5sFgszvVLS0sxadIkREVFQavVwmQyYe7cubBarW73e+zYMSQlJaFnz57o1asXZs+ejevXr7fhcImIAGtVDR575U0cPlvYaLoiBHYdPY25f98Bh6J4qToiaiuPQk1MTAyWLVuGo0eP4vPPP8fdd9+NlJQU5Obmwmw2w2w2Y/ny5Th58iQ2bNiAPXv2YNasWd/tTJaRkpKCrKwsnDlzBhs2bMD777+PtLQ0l/s0m82YMGECBg0ahEOHDmHPnj3Izc3FY4891uaDJqLubesnOSi6VgGHIprMU4TA0fPf4KNT+V6ojIjaQxJCNP2t9kB4eDgyMjIahZcGmZmZmDFjBiorKxEQ0PyTrhUrViAjIwOFhYXNzv/73/+OxYsXo6ioCLJcn8FycnKQkJCAs2fPYtCgQa2q02q1wmg0wmKxcEBLom7uvhfX4+LVcpfzZVnCXcMG4qXH7+u6ooioWZ58fre5TY3D4UBmZiYqKyuRmJjY7DINBbgKNGazGdu2bcP48eNd7sdmsyEoKMgZaABAp9MBAA4ePOgy1NhsNthsNufPLT3iIqLuo7Siyu18RREosfARN5G/8fiV7pycHISEhECr1SItLQ3bt2/H0KFDmyx39epVLFmyBLNnz24yb/r06dDr9YiOjobBYMDatWtd7u/uu+9GcXExMjIyUFtbi2vXrmHRokUAgKKiIpfrLV26FEaj0fllMpk8PVQiUqkIYw+38zWyhH5hoV1UDRF1FI9DTXx8PE6cOIFDhw7hySefxM9//nOcOnWq0TJWqxVTpkzB0KFD8dxzzzXZxssvv4xjx45hx44dOH/+PJ566imX+7v55puxceNG/PnPf4Zer0e/fv0wYMAA9O3bt9Hdmx9KT0+HxWJxfrl6vEVE3c+0xB9BklzPdygCU2+9uesKIqIO0e42NRMmTMDAgQOxevVqAEBFRQWSk5Oh1+uxc+dOBAcHu13/4MGDGDduHMxmMyIjI90ue/nyZfTo0QOSJMFgMGDLli146KGHWlUn29QQUYPKmlo8+tJmXLxa3qSxsCRJuD0+Fq/O/k/IspvkQ0RdwpPP73b3KKwoirPtitVqxcSJExEUFISsrKwWA03D+gAatX9xpW/fvggJCcGbb76J4OBgJCUlta94IuqWegQHYf38R3DnsIGN7tgEBmjw8NgEvDzrfgYaIj/kUUPh9PR0TJ48GbGxsaioqMDmzZuRnZ2NvXv3OgNNVVUVNm3aBKvV6mycGxERAY1Gg127duHy5csYPXo0QkJCkJubi4ULF2Ls2LGIi4sDABw+fBipqanYt28foqOjAQCvvvoqbr/9doSEhOC9997DwoULsWzZMvTs2bNDTwYRdR9hITq89Ph9uFxegdyLl6HRyBgxIAoGfcv/jBGRb/Io1JSUlCA1NRVFRUUwGo1ISEjA3r17kZSUhOzsbBw6dAgAmryRlJ+fj7i4OOh0OqxZswYLFiyAzWaDyWTCtGnTnA1/AaCqqgp5eXmw2+3OaYcPH8azzz6L69evY8iQIVi9ejVmzpzZnuMmIgIA9O0Zir492SiYSA3a3abGX7BNDRERkf/p0jY1RERERL6AoYaIiIhUgaGGiIiIVKHNwyQQEXUlh6LgZEExrtfUIjaiJ0wRPb1dEhH5GIYaIvJ5//70JP668xNcsVQ6p/14cAz+55G7cUO/Xl6sjIh8CR8/EZFP+8cHx/DcG+81CjQAcPz8JaQu34ILl695qTIi8jUMNUTks8qvV2PFjo+anedQBKpr7fjL2x93cVVE5KsYaojIZ+05moe6b4dSaY5DEfjgi3OwVNZ0YVVE5KsYaojIZ10ur4BGdv9nShECV62Vbpchou6BoYaIfFZYiB6K0nKn52Ehui6ohoh8HUMNEfms5JE3up0vSxJui49FeKi+iyoiIl/GUENEPqtvWChm3DWy2XmyJEGWJcy57/YuroqIfBX7qSEin/arqeMQFKjBxn1HYa9zOKf36RmCJTOT8aO4SC9WR0S+hKN0E5FfsFbV4KPcfFR+26PwrTfGorbOAUVRoNMGQpIkb5dIRJ3Ak89v3qkhIr9g0AdjyuibAADZJ87j8Yw38eXXRQCA2D498eiEkXhgXAJkmeGGqLtiqCEiv7JhzxGs2H4Q8vfuzBSWlGPp5g9w/OwlvPj4ZAYbom6KDYWJyG+cN1/Fiu0HAdT3T9Og4bs9R/Lw7ud5XqiMiHwBQw0R+Y23DuRA4+YujCxJ2PLhia4riIh8CkMNEfmN04UlcLjpjE8RAucuXe3CiojIlzDUEJHf0AUFoqWXnLSBbCpI1F0x1BCR37hr+EC464RCI0v4ycjBXVcQEfkUhhoi8hv3jLkJEcYezbarkSRAlmVM/8kIL1RGRL6AoYaI/IY+OAirn3oQET1DAAAaWXYGHJ02EK/MScGAfuHeLJGIvIg9ChOR37E7HMg+cR6f5l6AQ1HwowH9MHnMTegRHOTt0oiog7FHYSJStUCNBkmjbkTSKPejeBNR98LHT0RERKQKDDVERESkCgw1REREpAoMNURERKQKDDVERESkCgw1REREpAoMNURERKQKDDVERESkCgw1REREpAoMNURERKQKDDVERESkCgw1REREpAoc0JKIutSRry7izX3HkZt/GYEBMsaPGIRH7h6OmD49vV0aEfk5SQghvF1EV/Bk6HIi6hyvvvURNuw6Ao0swaHU/+nRyBI0GhkvzU3BbcPivFsgEfkcTz6/+fiJiLpE9rFz2LDrCAA4A03D9/Y6B37z1yyUX6/2VnlEpAIMNUTUJd549yhkWWp2nhCAzV6HnR/ndnFVRKQmDDVE1OmEEPjivBmK4vpptxDA8TOXurAqIlIbhhoi6hKy1PxdmgaSBJd3coiIWoOhhog6nSRJGBkfA4270CKAHw8xdV1RRKQ6DDVE1CVmJv+4UQPh75MlCT10QZiSOLSLqyIiNfEo1KxatQoJCQkwGAwwGAxITEzE7t27AQBlZWWYN28e4uPjodPpEBsbi/nz58NisTjXLy0txaRJkxAVFQWtVguTyYS5c+fCarW63e+ZM2eQkpKC3r17w2Aw4I477sCHH37YhsMlIm9JHBaHuQ/cAQCN7tjIkoTgoAD83y//EyF6rbfKIyIV8KjzvZiYGCxbtgyDBw+GEAIbN25ESkoKjh8/DiEEzGYzli9fjqFDh+LChQtIS0uD2WzG1q1bAQCyLCMlJQUvvvgiIiIicO7cOcyZMwdlZWXYvHmzy/3ee++9GDx4MD744APodDr83//9H+69916cP38e/fr
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAGdCAYAAADKXt17AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABHeklEQVR4nO3deXxUVZ7//3dlD4RAWBISIAlBFIIQkE1AB4G0ig4q06ItrURQHJ18f9pkcJl2pumZ7k4P0+MyoxkYGEQaUaPTyCCCCAHFQBBICEhHgbCvgbBkhyRV5/cHpiSdrapIpSrJ6/l45GHn1r3nfup0mXp777nnWIwxRgAAAGh2Pp4uAAAAoK0iaAEAALgJQQsAAMBNCFoAAABuQtACAABwE4IWAACAmxC0AAAA3ISgBQAA4CZ+ni6gvbPZbDp9+rQ6deoki8Xi6XIAAIADjDEqKSlRVFSUfHwavm5F0PKw06dPq0+fPp4uAwAAuODEiRPq3bt3g68TtDysU6dOkq79HxUaGurhagAAgCOKi4vVp08f+/d4QwhaHlZzuzA0NJSgBQBAK9PUsB8GwwMAALgJQQsAAMBNCFoAAABuQtBywdSpUxUWFqaHH3641vbY2FgNGTJEQ4cO1YQJEzxUHQAA8BYMhnfBCy+8oFmzZmnZsmV1Xtu2bZtCQkI8UBUAAPA2XNFywV133dXk45wAAABuC1pbtmzRlClTFBUVJYvFolWrVjW6f2xsrCwWS52f5OTkFq8pLS1NsbGxCgoK0ujRo7Vjxw6H2rdYLBo/frxGjhypFStWNFvdAACgdXJb0CorK1NCQoLS0tIc2n/nzp06c+aM/WfDhg2SpGnTptW7/9atW1VVVVVne15engoKClyuKT09XSkpKZo3b55ycnKUkJCge+65R+fOnWvyPWRmZio7O1urV69Wamqq9u7d2+QxAACg7XJb0Jo8ebJ++9vfaurUqQ7t36NHD/Xs2dP+s2bNGvXr10/jx4+vs6/NZlNycrKmT58uq9Vq375//35NnDix3rFTjtb0+uuva/bs2Zo5c6bi4+O1cOFCdejQQe+8806T76FXr16SpMjISN13333Kyclp8hgAANB2eeUYrcrKSr333nuaNWtWvTOu+vj4aO3atdq9e7dmzJghm82mQ4cOaeLEiXrooYf00ksvuXze7OxsJSYm1jpXYmKisrKyGj22rKxMJSUlkqTS0lJt2rRJgwYNanD/tLQ0xcfHa+TIkS7VCgAAvJ9XPnW4atUqXb58WU8++WSD+0RFRWnTpk268847NX36dGVlZSkxMVELFixw+byFhYWyWq2KiIiotT0iIkLff/+9/ffExETt2bNHZWVl6t27tz7++GNFRETYr5RZrVbNnj270RCVnJys5ORkFRcXq3Pnzi7XDAAAvJdXBq0lS5Zo8uTJioqKanS/6OhoLV++XOPHj1dcXJyWLFnS5JpDzWHjxo31bt+zZ4/bzw0AAFoPr7t1eOzYMW3cuFFPP/10k/sWFBTomWee0ZQpU1ReXq45c+bc0Lm7d+8uX1/fOoPpCwoK1LNnzxtqGwAAtKx3tx7R7z7L0/6zJR6rweuC1tKlSxUeHq7777+/0f0KCws1adIkDRw4UCtXrlRGRobS09M1d+5cl88dEBCg4cOHKyMjw77NZrMpIyNDY8aMcbldAADQ8j7YcUKLvz6ivDNFHqvBbbcOS0tLlZ+fb//9yJEjys3NVdeuXRUdHa23335bn3zySZ1Qs3TpUiUlJcnPr+HSbDabJk+erJiYGKWnp8vPz0/x8fHasGGDJk6cqF69etV7daupmiQpJSVFSUlJGjFihEaNGqU333xTZWVlmjlzZnN0CwAAaAEnLpZrf0GJfCzSXTeHe6wOtwWtXbt21VrvLyUlRZKUlJSkd999V4WFhTp06FCtYzZu3Kjjx49r1qxZjbbt4+Oj1NRU3XnnnQoICLBvT0hI0MaNG9WjRw+XapKkRx99VOfPn9evfvUrnT17VkOHDtXnn39eZ4A8AADwXhnfXRsGNCKmq8I6BjSxt/tYjDHGY2eH/anDoqIihYaGerocAADahCeWfKOvDxbql/cN0DN/1a/Z23f0+9vrxmgBAADciJIrVdp++IIkadJAz96RImgBAIA25euDhaqyGvXt3lH9eoR4tBaCFgAAaFM2/jA+a9IAzw2Cr0HQAgAAbYbVZvTl/vOSPH/bUCJoAQCANmT38Uu6WFap0CA/jYgN83Q5BC0AANB2bPzunCTprlvC5e/r+Zjj+QoAAACaSc38WZMGen58lkTQAgAAN+D1DQc05a1M/Sn7pKdL0fEL5Tp4rlS+PhaPzgZ/PYIWAABwWf65En17qkglV6o8XYr9acORsWHq3MHfw9VcQ9ACAAAuKyyplCR17xTo4UqkjO+vBa1EL3jasAZBCwAAuKyw9KokqXuIZ4NW8ZUqfXP4oiTvmNahBkELAAC47HyJdwStLQfOq9pmFNejo/p27+jRWq5H0AIAAC65UmVVydVqSVIPD986zPhhWgdvum0oEbQAAICLam4bBvj6KDTIz2N1VFtt2rz/WtDyhmV3rkfQAgAALiks/WEgfEiALBaLx+rIOX5Zl8ur1DnYX8NjPD8b/PUIWgAAwCWFNeOzPHzbsGZahwm39JCfF8wGfz3vqgYAALQa3vLE4Ub7bPDeNT5LImgBAAAX/fjEYYDHajhSWKbD58vk52PR+Ft6eKyOhhC0AACAS2quaHnyicOatQ1H9e2q0CDvmA3+egQtAADgkh8Hw3suaHnzbUOJoAUAAFx03sNjtIrKq7Tz6CVJUuJA75rWoQZBCwAAuMTTg+G/PHBOVptR//AQxXTzntngr0fQAgAALqmZ3qFHJ88Mhq+ZDd5bbxtKkuemcQUAAK3WlSqriq9cW37HU1e0Xr1/oG6P6+Z1k5Rej6AFAACcdqHs2kB4f1+LOgd75mm/iNAgTR8d7ZFzO4pbhwAAwGn2WeFDAj26/I63I2gBAACneXogfGtB0AIAAE77MWh5blb41oCgBQAAnOYNk5W2BgQtAADgNPs6hx5cfqc1IGgBAACn1cwK34MrWo0iaAEAAKcVckXLIQQtAADgNAbDO4agBQAAnFYzGJ5bh40jaAEAAKdcrbaqqKJKEk8dNoWgBQAAnHLhh6tZfj6eW36ntSBoAQAAp1w/K7yPD8vvNIagBQAAnGIPWp0YCN8UghYAAHBKYQmzwjuKoAUAAJxyngWlHUbQAgAATikkaDmMoAUAAJxiX+eQyUqbRNACAABOqbmi1YPld5pE0AIAAE5hVnjHEbQAAIBTfpzegaDVFIIWAABwWJXVpsvlLL/jKIKWC6ZOnaqwsDA9/PDDtbbHxsZqyJAhGjp0qCZMmOCh6gAAcJ+a5Xd8fSzqwvI7TfLzdAGt0QsvvKBZs2Zp2bJldV7btm2bQkJCPFAVAADuV/PEYbeOASy/4wCuaLngrrvuUqdOnTxdBgAALY4nDp3jdNDasmWLpkyZoqioKFksFq1atcqh406dOqXHH39c3bp1U3BwsAYPHqxdu3bZXy8pKdEvfvELxcTEKDg4WGPHjtXOnTudLa9Zak9LS1NsbKyCgoI0evRo7dixw6H2LRaLxo8fr5EjR2rFihXNWDkAAN6BWeGd43TQKisrU0JCgtLS0hw+5tKlSxo3bpz8/f21bt065eXl6bXXXlNYWJh9n6efflobNmzQ8uXL9e233+ruu+9WYmKiTp06VW+bW7duVVVVVZ3teXl5KigocLn29PR0paSkaN68ecrJyVFCQoLuuecenTt3rsn3mZmZqezsbK1evVqpqanau3dvk8cAANCaMCu8k8wNkGQ++eSTJvd7+eWXzR133NHg6+Xl5cbX19esWbOm1vbbbrvNvPrqq3X2t1qtJiEhwTz88MOmurravv377783ERERZv78+S7XPmrUKJOcnFzrXFFRUeb3v/99rf02b95sfvrTnzbY/ty5c83SpUubrKOoqMhIMkVFRU3uCwCAp/3z6j+bmJfXmNS1eZ4uxaMc/f5ukTFaq1ev1ogRIzRt2jSFh4dr2LBhWrx4sf3
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure()\n",
"plt.scatter(hist[\"x\"], hist[\"y\"], c=hist[\"snapshot_index\"])\n",
"plt.show()\n",
"\n",
"plt.figure()\n",
"plt.plot(hist[\"snapshot_index\"], hist[\"mass\"])\n",
"# m = data[\"desc_snapshot_index\"] > 0\n",
"# plt.plot(data[\"desc_snapshot_index\"][m], data[\"desc_mass\"][m])\n",
"plt.yscale(\"log\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 222,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAGdCAYAAABQEQrmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB0GklEQVR4nO3deVwU9f8H8NfMLrccAiKg4H0faIp4h+FFal5laamp2fFDy+hSO7T6lt3aYXZZdplWHpklpaKieaN4Jgqi4oGKKJdy7Xx+f6CLG7vAsifL6/l4zEN35jMz7x2Rfe/nlIQQAkRERERmJNs6ACIiInI8TDCIiIjI7JhgEBERkdkxwSAiIiKzY4JBREREZscEg4iIiMyOCQYRERGZHRMMIiIiMju1rQOoDkVRcP78eXh6ekKSJFuHQ0REdkwIgdzcXAQHB0OWLfe9uqCgAEVFRSZfx9nZGa6urmaIyLZqZIJx/vx5hISE2DoMIiKqQdLT09GwYUOLXLugoABNGtVBxiWNydcKDAxEWlpajU8yamSC4enpCaD0h8XLy8vG0RARkT3LyclBSEiI9rPDEoqKipBxSYO0xEbw8qx+LUlOroImXU6jqKiICYYt3GoW8fLyYoJBRERVYo0mdS9P2aQEw5HUyASDiIjIHmmEAo0JS4hqhGK+YGyMCQYREZGZKBBQUP0Mw5Rz7Q0TDCIiIjNRoMCUOgjTzrYvbCgiIiIis2MNBhERkZlohIBGVL+Zw5Rz7Q0TDCIiIjNhH4wybCIhIiIis2MNBhERkZkoENCwBgMAEwyqBYoKirBv42HkZuUhsHE9tO/dmmvYEJFFsImkDBMMclhCCKxZ9De+ffVX5Gdf1+4PahqAGQsfQad+7WwYHRGRY2MfDHJYKz78E5/GfqeTXABAxqnLmD3sLRzadsxGkRGRo7o1isSUzVEwwSCHlJ99Hd/O/UXvMaEICEVg8Ys/WTkqInJ0ihk2R8EEgxzSP7/tQVFhscHjiiLw764UXDh5yYpRERHVHkwwyCFdvZgNlaryH++si9csHwwR1Rqam6NITNkcBTt5kkPyDaoLTUnllY1+QXWtEA0R1RYaARNXUzVfLLbGGgxySL2Gd4WLu7PB47JKQvterRDYuJ4VoyIiR8c+GGVYg0EOyd3TDY+8ORYLZ3xb7pgkS5BVKkx960EbREZUe5RoFMT/m4qVew7jwrVc+Ht6YESXthjUoSWc1Spbh0cWxgSDHNY9jw+Ei6szvn7lZ1y7lK3d37htQzz5yRS0Dm9mw+iIHFtBcQn+79vV2JWaDlmSoAiBk5ezsDP1DL7/Zx++mjIaXm6utg7T7BRI0KD6E/kpJpxrb5hgkEMb9HAk+j/UB4e2HUPu1XwENq6H5p0acyZPIgt7948t2HPyLABAuTm3w60/j52/jFdWrMeCh4bZLD5LUUTpZsr5joIJBjk8lVqFTpGctZPIWrJvFGDF3sPahOK/NEJgw9EUnL+ag+C6XlaOjqyFnTyJiMisDp65gGJNxd0VhQB2n0y3UkTWo7nZRGLK5iiMSjDmzZuH8PBweHp6IiAgACNGjEBycrJOmcjISEiSpLM9/vjjOmXOnDmDIUOGwN3dHQEBAXjuuedQUlJi+rshIiKbq+ps1w7UGqDFBKOMUU0kW7ZsQUxMDMLDw1FSUoLZs2dj4MCBOHr0KDw8PLTlpk6ditdee0372t3dXft3jUaDIUOGIDAwENu3b8eFCxcwYcIEODk54c033zTDWyIiIltq17A+VLIETSUdCjqHBmv/nnn+Kvb8fRCFN4rQpF1DdOzDVY9rOqMSjLi4OJ3XS5YsQUBAABITE9G3b1/tfnd3dwQGBuq9xt9//42jR49iw4YNqF+/Pjp16oTXX38dL7zwAubOnQtnZ8NzFxARkf3zq+OOIWGt8UfSMb2Ld6lkCd2bhaJxvbooKijGwmd/wN8/boNQBCRZglAEgpsG4IWvHkOrLk1s8A6qTxESFGHCKBITzrU3JvXByM4uHfrn6+urs//HH3+Ev78/2rdvj1mzZuH69bLVLHfs2IEOHTqgfv362n2DBg1CTk4Ojhw5ovc+hYWFyMnJ0dmIiMi8sq7lY+nKXXjro3X48MuNOHj0LEQ1V/ecfU8/tAoqncju9o9MCUDDut54875BAIB3Hv1Cm1wA0P6Zcfoynh/6NtKPX6j2+7EFNpGUqfYoEkVRMGPGDPTq1Qvt27fX7h83bhwaNWqE4OBgHDx4EC+88AKSk5OxcuVKAEBGRoZOcgFA+zojI0PvvebNm4dXX321uqESEVElVq/bjw+/2AghAEkGAAkr1u5Dp3YN8cbskfCsY9ycFZ6uLvj+8fuxZv9R/Lr7MDKyc+FXxx2jurbDqK7t4eHijOP70rDtt0S95ysageLCEix7fy2e+3yq6W+QrK7aCUZMTAwOHz6Mbdu26ex/9NFHtX/v0KEDgoKCEBUVhdTUVDRrVr2JjWbNmoXY2Fjt65ycHISEhFQvcCIi0rFtVwo++GxD2Q4NcKsL5sF/z2HOu2vwwatjjL6uq5MaY7p1xJhuHfUe37xiF1Rq2eC6QYpGwZYVu/H0J5OgdqoZsypoIENjQuOAxoyx2Fq1nsK0adOwdu1abNq0CQ0bNqywbEREBAAgJSUFABAYGIiLFy/qlLn12lC/DRcXF3h5eelsRERkHkuWbzfYoVJRBPYmnUZyiv4aZlPkXMmrdMRJSbEGN/IKzX5vSxE3+2BUdxO1tQ+GEALTpk3DqlWrEB8fjyZNKu98k5SUBAAICgoCAPTo0QOHDh3CpUuXtGXWr18PLy8vtG3b1phwiIjIRJlZeTieerHCvhYqWcK2XSlmv3dAiF+lZdzquMLdy83s97YU9sEoY1SCERMTgx9++AFLly6Fp6cnMjIykJGRgRs3bgAAUlNT8frrryMxMRGnTp3CmjVrMGHCBPTt2xcdO5ZWkQ0cOBBt27bF+PHjceDAAfz111946aWXEBMTAxcXF/O/QyIiMqiwsLjSMpIkoaCo8nLGGjCuFxTF8IRcskrG4Il9oVJxTsiayKh/tUWLFiE7OxuRkZEICgrSbsuXLwcAODs7Y8OGDRg4cCBat26NZ555BqNHj8bvv/+uvYZKpcLatWuhUqnQo0cPPPTQQ5gwYYLOvBlERGQd/n6ecHereHqAEo2CpqH1zH7voCYBeCB2iN5jskqGX6AP7n/6brPf15I0QjZ5cxRG9ZqpbLhSSEgItmzZUul1GjVqhD///NOYWxMRkQW4OKsxdEAH/Lp2HxQ9E2NJEuDm6ox+vVtZ5P4TXx6FuvW98dN7a3HtUukUBJIsoceQzvi/d8bBp17N6nOnQIJiQidPxYHmN60Z3XKJiGqg4qISXDmfBSdnJ/gG+djtzJQPP9ALew6cxun0KzpJhixLkAC89PQQuLo4WeTekiRh+GP9MXRKP5xIOoXCG8UIaRkE3/reFrkfWQ8TDCIiMyu4Xoilb/2GP77ciLxrpRMNNm7XEGOfvweRY3rYOLry6ni44NO3xmHpyt34bV0ScvIKIElA9y5NMf6+7mjXKrjyi5hIpVahddfqTWVgT0ztqOlInTyZYBARmVHhjSLMvPstJO9J1akNOH30HOZN/BQXT2fi/ueG2TBC/TzcXTD1oT6YPLYX8vIL4eqihouFai0cman9KPRNrV5TOU5vEiIiO7Dms/U4tju1XH+GW33Yvp7zM86fvKjvVLugUsnw9nJjclFDJCQkYNiwYQgODoYkSVi9erXO8YcffrjcCueDBw+u9LoLFy5E48aN4erqioiICOzevdvo2JhgEBGZ0e+fb6iwQ7wsy4j7ZnO1r19QUIxVa/Zh8hNfY+i9C/DQlC/w4/KdyM0tqPY1yXxKO3mathkjPz8fYWFhWLhwocEygwcPxoULF7TbTz/9VOE1ly9fjtjYWMyZMwf79u1DWFgYBg0apDN/VVWwiYSIyEw0GgUXT2dWWEZRFJw9Xr1ZMfPyCzHj+aVITb2kHWuQl1eIr5YkYM0f+/Hx+w8ioIaNunA0iolThRs7iiQ6OhrR0dEVlnFxcTE4U7Y+H3zwAaZOnYpJkyY
"text/plain": [
"<Figure size 640x480 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure()\n",
"plt.scatter(pos[:, 0], pos[:, 1], c=np.log10(mass))\n",
"plt.colorbar()\n",
"\n",
"plt.scatter(x[0], x[1], c=\"r\", marker='x')\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([(951., 284.35236, 246.34824, 370.83707, 2.8412564e+15, nan),\n",
" (950., nan, nan, nan, nan, nan),\n",
" (949., nan, nan, nan, nan, nan),\n",
" (948., nan, nan, nan, nan, nan),\n",
" (947., nan, nan, nan, nan, nan),\n",
" (946., nan, nan, nan, nan, nan),\n",
" (945., nan, nan, nan, nan, nan),\n",
" (944., nan, nan, nan, nan, nan),\n",
" (943., nan, nan, nan, nan, nan),\n",
" (942., nan, nan, nan, nan, nan),\n",
" (941., nan, nan, nan, nan, nan),\n",
" (940., nan, nan, nan, nan, nan),\n",
" (939., nan, nan, nan, nan, nan),\n",
" (938., nan, nan, nan, nan, nan),\n",
" (937., nan, nan, nan, nan, nan),\n",
" (936., nan, nan, nan, nan, nan),\n",
" (935., nan, nan, nan, nan, nan),\n",
" (934., nan, nan, nan, nan, nan),\n",
" (933., 284.46155, 246.00227, 370.8075 , 2.8477622e+15, 0.36398822),\n",
" (932., 284.4702 , 245.98221, 370.80765, 2.8483010e+15, 0.02185764),\n",
" (931., nan, nan, nan, nan, nan),\n",
" (930., nan, nan, nan, nan, nan),\n",
" (929., nan, nan, nan, nan, nan),\n",
" (928., nan, nan, nan, nan, nan),\n",
" (927., 284.5113 , 245.87349, 370.80716, 2.8455723e+15, 0.11622101),\n",
" (926., 284.5216 , 245.85237, 370.81116, 2.8424150e+15, 0.02384024),\n",
" (925., nan, nan, nan, nan, nan),\n",
" (924., 284.53732, 245.8114 , 370.8111 , 2.8395653e+15, 0.043881 ),\n",
" (923., nan, nan, nan, nan, nan),\n",
" (922., nan, nan, nan, nan, nan),\n",
" (921., nan, nan, nan, nan, nan),\n",
" (920., nan, nan, nan, nan, nan),\n",
" (919., nan, nan, nan, nan, nan),\n",
" (918., nan, nan, nan, nan, nan),\n",
" (917., nan, nan, nan, nan, nan),\n",
" (916., nan, nan, nan, nan, nan),\n",
" (915., nan, nan, nan, nan, nan),\n",
" (914., nan, nan, nan, nan, nan),\n",
" (913., nan, nan, nan, nan, nan),\n",
" (912., nan, nan, nan, nan, nan),\n",
" (911., nan, nan, nan, nan, nan),\n",
" (910., nan, nan, nan, nan, nan),\n",
" (909., nan, nan, nan, nan, nan),\n",
" (908., nan, nan, nan, nan, nan),\n",
" (907., nan, nan, nan, nan, nan),\n",
" (906., nan, nan, nan, nan, nan),\n",
" (905., nan, nan, nan, nan, nan),\n",
" (904., nan, nan, nan, nan, nan),\n",
" (903., nan, nan, nan, nan, nan),\n",
" (902., nan, nan, nan, nan, nan),\n",
" (901., nan, nan, nan, nan, nan),\n",
" (900., nan, nan, nan, nan, nan)],\n",
" dtype=[('snapshot_index', '<f4'), ('x', '<f4'), ('y', '<f4'), ('z', '<f4'), ('mass', '<f4'), ('desc_dist', '<f4')])"
]
},
"execution_count": 47,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"hist"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([(951., 2.8871637e+15, 284.3524 , 246.34824, 370.83704, 950., 2.8882882e+15, 2.8788946e+15, 9.3937321e+12, 0.00093918),\n",
" (950., 2.8788946e+15, 286.42444, 244.69951, 373.20593, 949., 2.8756223e+15, 2.8672700e+15, 8.3523876e+12, 0.00110787),\n",
" (949., 2.8672700e+15, 286.40372, 244.72537, 373.17398, 948., 3.8162037e+12, 1.4894010e+12, 2.3268027e+12, 0.81327796),\n",
" (948., 1.4894010e+12, 286.77917, 242.59756, 372.9749 , 947., nan, nan, nan, nan)],\n",
" dtype=[('desc_snapshot_index', '<f4'), ('desc_mass', '<f4'), ('desc_x', '<f4'), ('desc_y', '<f4'), ('desc_z', '<f4'), ('prog_snapshot_index', '<f4'), ('prog_totmass', '<f4'), ('mainprog_mass', '<f4'), ('minprog_totmass', '<f4'), ('merger_ratio', '<f4')])"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [],
"source": [
"mladen = np.genfromtxt(\"/mnt/extraspace/rstiskalek/CSiBORG/cleaned_mtree/ramses_out_7444/mergertree_00951_halo-21344979.txt\", skip_header=1) "
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[ 9.5100000e+02, -6.0000000e-04, 2.1344979e+07, 4.0949790e+15,\n",
" 1.3323500e+13, 0.0000000e+00],\n",
" [ 9.5000000e+02, 7.0000000e-04, 2.1390351e+07, 4.0832510e+15,\n",
" 7.5558290e+12, 4.2906940e+12],\n",
" [ 9.4900000e+02, 2.1000000e-03, 2.1382973e+07, 4.0667630e+15,\n",
" 2.1738350e+12, 1.1263620e+12],\n",
" [ 9.4800000e+02, 3.5000000e-03, 2.1405046e+07, 2.1124770e+12,\n",
" 0.0000000e+00, 0.0000000e+00]])"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"mladen"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAi0AAAGdCAYAAADey0OaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABPrklEQVR4nO3deXzU1b3/8df3OzOZTDLZAwmBsCuKsigiQhWxUpVa69aq6FXUamuLirW1ar2t1/ZW/d3eX3/2d3/09t722lZUBNxXXNgUBWRHRBCQHUIgIfs2mTm/P77JJJEAmSHMZML7+Xj4YDIzmTk5neb7zjmfc45ljDGIiIiIdHF2vBsgIiIi0hEKLSIiIpIQFFpEREQkISi0iIiISEJQaBEREZGEoNAiIiIiCUGhRURERBKCQouIiIgkBHe8G9BZQqEQe/fuJS0tDcuy4t0cERER6QBjDJWVlRQUFGDbRx9L6TahZe/evRQWFsa7GSIiIhKFXbt20adPn6M+p9uElrS0NMD5odPT0+PcGhEREemIiooKCgsLw9fxo+k2oaV5Sig9PV2hRUREJMF0pLRDhbgiIiKSEBRaREREJCEotIiIiEhCUGgRERGRhKDQIiIiIglBoUVEREQSgkKLiIiIJASFFhEREUkICR9apk+fztChQxk9enS8myIiIiInkGWMMfFuRGeoqKggIyOD8vJy7YgrIiKSICK5fif8SIuIiIicHBRaREREJCF0mwMTRURE5Pg0BkPM31jM53srqGloZNzgXC4a0jPezQrTSIuIiEgC21tWy4a9FdQ3Bg97rLYhyNKvSthSXEUgGDrq67y8/Ct++8RjZMy6kgkfTeajxYv40YyVlFTVEwoZln1VcqJ+hA7TSIuIiEgcHapuwOuxSUk6+iX5qwNV3PTXZXx3ZAEPTzqdxRt3M/elvzGo9jMyrGpepx8VBRdwwxWTGJKfxqJNB3js9c+xKnZytrWFdE+QjFHX4vJlMGv5Tty2zfhTczmjIIO9O75k0uc/5xp7e3g443Xvr3gkcBvPLxtMgV1K+vyH+fczHuTnN1x64jvlCLR6SEREJE72Hqph5h8foN7fl4d/9gssyzric386aw2vrN6Dx2Xx4S8uYuUfb+Q7ofmHPe+14Dg2mr6cau1ijP0FBVZp+LEK4+Pj0Jl4CdDLKqG3VUKJSSPTqibLqqLWnYF77F14itbA5ncJGovbXI/zw+BMzrfWsTd7DAX3vtepfRDJ9VuhRUREJE5emf03rt5wH/XGw2c3fMo5pw9s93m7SmuY8O8LCYacS/a5fZL524HJpFr1NAy/CU92P2q2f4pv+zxs2l7Wje2B/OHUVB0iteKrI7alMvM00m6dA5l9wRiCc27HteFlKkwK6VYNDSTh/sli7J5DOq8DiOz6rekhERGROAiGDJkbZwHgtQLs/PAZzjn9X9p97l8/+opgyJDh81BeGyB370JSk+op8xaQefV0sCxSAfatpW7RH8GE8PY6DatwDFbhGEhKITUUgq3zoGQrJKVCWj5kFEL1AWioIm3AhZCU4ryhZeG6/N+p2byQ9IAzUlN9wSNkdXJgiZRCi4iISBx8un4T3wh+Ck0zQqfsfY3q+n8m1dv20vzSyt3MXL4LgKduGMnPZq/lioYlAHiGXwutp5R6jSD5hqfbf0PbhlO+5fzXxmntPz81B9d3/w/mpVspzz+PrIvujfRH7HQKLSIiInGw96O/M9YKUuztT3b9LoZZX/HY089S78li5PCRnN0/m7++s5SlG3fQYHpxydA8Jpzag9tGZfPNZWsASB11/Qlto3fYVdBnLZlp+U7oiTOFFhERkTgYVvwmWFB/zg/Zsel9Bh1cwKP7pwGwaWcfVoYG8xvXRyR5g+xJP4teI36CVZLJ1Pr/wbYChHJOwc4788Q3NKvfiX+PDlJoERERiYMB7AXAd/ql5PY9HWYuACCEiyH2bobYuwEwlk3vitXwyp1AywZr9nk/bjs1dBJQaBEREYkDm6bN3lwefEO+CfetB08Ktu2icdlfaCz+kuRzbsLKHQLL/wpfvgv7P4O8M+GS38Kgb8b3B4gDhRYREZE4cFnO0mSruVYkszD8mHvCA20v0Bf/yvmvsR7c3tg1souJf1WNiIjIScaEWrbUt21Xx7/xJA4soNAiIiISc6FW+7panFx1KcdDoUVERCTGQqGWww0jGmk5ySm0iIiIxJgJtdpq36VLcUepp0RERGKs9UiLpoc6TqFFREQkxtoW4upS3FEJ31PTp09n6NChjB49Ot5NERER6RBjVNMSjYQPLVOnTmXDhg0sX7483k0RERHpkDarhzTS0mHqKRERkRgLtZoesmzVtHSUQouIiEiMRb253ElOoUVERCTWTKuRFkuX4o5ST4mIiMRY6+khW6Glw9RTIiIiMdZmnxYV4naYekpERCTGjFYPRUU9JSIiEmtN00Mho5VDkVBoERERibHmmpaQtvCPiEKLiIhIjBkUWqKh0CIiIhJjLfu0KLREQqFFREQkxkJBZ/WQRloio9AiIiISJyFdhiOi3hIREYkx02qfFuk4hRYREZEYa1k9pMtwJNRbIiIiMWaazh4KWappiYRCi4iISIxp9VB0FFpERERiLDzSotASEYUWERGRWGs6e8joMhwR9ZaIiEiMhYyzesgc43nSlkKLiIhIjJmgRlqiod4SERGJMZ09FB2FFhERkVhrWj1kFFoiotAiIiISY82rhxRaIqPQIiIiEmMmpJqWaKi3REREYsw0rR7SjriRUWgRERGJMe2IGx2FFhERkVhTTUtUFFpERERizDTtiKtTniOj3hIREYkxEwrGuwkJKeFDy/Tp0xk6dCijR4+Od1NEREQ6JDzSYiX8ZTimEr63pk6dyoYNG1i+fHm8myIiItIh2qclOgkfWkRERBKO0eqhaCi0iIiIxJgJb+Ovy3Ak1FsiIiIx1lLTopGWSCi0iIiIxJjR9FBUFFpERERiTac8R0WhRUREJOaaQouWPEdEvSUiIhJjLac8a6QlEgotIiIiMdZ8yrNCS2QUWkRERGKsefWQpocio94SERGJNa0eiopCi4iISKxpG/+oKLSIiIjEmKaHoqPeEhERibHmbfwlMgotIiIisWZ09lA01FsiIiIxp+mhaKi3REREYsxoG/+oKLSIiIjEWnNNi055johCi4iISIyZ5ukhXYYjot4SERGJteZCXI20REShRUREJNa0I25UFFpERERiLTzSostwJNRbIiIiMda8I65GWiKj0CIiIhJrIdW0REOhRUREJOaaa1p0GY6EektERCTWdGBiVNRbIiIiMaYDE6Oj0CIiIhJrWj0UFfWWiIhIzDWtHlJoiYh6S0REJNaMDkyMhkKLiIhIjBntiBsVhRYREZFY0+qhqKi3REREYq15pEWby0VEoUVERCTWjDaXi4Z6S0REJOaaVw9ppCUSCi0iIiKxprOHoqLQIiIiEmvhU551GY6EektERCTmtCNuNNRbIiIisRYeadH0UCQUWkRERGJNS56jotAiIiISa0ZnD0VDvSUiIhJrOuU5KuotERGRWNPZQ1FRaBEREYk5TQ9FQ70lIiISa+FCXF2GI6HeEhERibVwaIlvMxJNXELL1VdfTVZWFt/73vfC95WVlXHOOecwcuRIzjzzTP7yl7/Eo2kiIiInnBWeHnLFtyEJJi6hZdq0aTzzzDNt7ktLS+PDDz9kzZo1LFu2jMcff5ySkpJ4NE9EROTEMjowMRpxCS0TJkwgLS2tzX0ul4uUlBQA6uvrMcZgwjsGioiIdCNaPRSViEPLhx9+yBVXXEFBQQGWZfHqq68e9pzp06fTv39/kpOTGTNmDJ9++mmHXrusrIwRI0bQp08fHnjgAXJzcyNtnoiISJdnqRA3KhH3VnV1NSNGjGD69OntPj5r1izuv/9+Hn30UVatWsWIESO49NJLKS4uPuZrZ2ZmsnbtWrZt28bzzz/P/v37I22eiIhIl2e05DkqEffWpEmT+Nd//Veuvvrqdh//wx/+wJ133sltt93G0KFD+fOf/0xKSgpPP/10h98jLy+PESNG8NFHHx3xOfX19VR
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure()\n",
"plt.plot(data[\"desc_snapshot_index\"], data[\"desc_mass\"])\n",
"m = mladen[:, 0] > 700\n",
"plt.plot(mladen[:,0][m], (mladen[:,3][m] - mladen[:, 5][m]) * 0.7)\n",
"\n",
"plt.yscale(\"log\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 298,
"metadata": {},
"outputs": [],
"source": [
"snaps = paths.get_snapshots(7468, \"csiborg\")"
]
},
{
"cell_type": "code",
"execution_count": 299,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 145/145 [01:46<00:00, 1.36it/s]\n"
]
}
],
"source": [
"nsnaps = range(800, 944 + 1)\n",
"from tqdm import tqdm\n",
"cats = {}\n",
"for nsnap in tqdm(nsnaps):\n",
" cats[nsnap] = csiborgtools.read.CSiBORGPHEWCatalogue(\n",
" nsnap, 7468, paths, bounds={\"dist\": (None, 155.5), \"is_main\": True})"
]
},
{
"cell_type": "code",
"execution_count": 230,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"15.50197501793565"
]
},
"execution_count": 230,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cats[944][\"dist\"][cats[944][\"hid_to_array_index\"][20467619]]"
]
},
{
"cell_type": "code",
"execution_count": 454,
"metadata": {},
"outputs": [],
"source": [
"# hid = cats[944][\"index\"][np.argmax(cats[944][\"summed_mass\"])]\n",
"hid = 20467619"
]
},
{
"cell_type": "code",
"execution_count": 455,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 144/144 [00:00<00:00, 1348.89it/s]\n"
]
}
],
"source": [
"hist = csiborgtools.read.track_halo_manually(cats, hid)\n",
"# x, y = csiborgtools.read.track_halo_manually(cats, hid)"
]
},
{
"cell_type": "code",
"execution_count": 456,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiUAAAGdCAYAAADNHANuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACZ8UlEQVR4nOzdd3hUVfrA8e+9M8lMekgICSUQCCX0UENARQUJggVERXSFRcWy4qr81oKisLqK7q4sthV1dUWUBQuiAqKAAiJI770HAkkIgfRkZu69vz8mGRgyCRlSSMj7eZ77SO6ce+65GGbeOeU9imEYBkIIIYQQl5l6uRsghBBCCAESlAghhBCilpCgRAghhBC1ggQlQgghhKgVJCgRQgghRK0gQYkQQgghagUJSoQQQghRK0hQIoQQQohawXy5G1BVdF3nxIkTBAUFoSjK5W6OEEKIWsowDHJycmjSpAmqWn3fzQsLC7HZbFVSl6+vL1artUrqqs2umKDkxIkTREdHX+5mCCGEqCOOHTtGs2bNqqXuwsJCWrYIJDVdq5L6oqKiOHz48BUfmFwxQUlQUBDg/CULDg6+zK0RQghRW2VnZxMdHe363KgONpuN1HSNwxtbEBxUud6Y7Bydlj2OYrPZJCipK0qGbIKDgyUoEUIIcVE1MdQfHKRWOiipT66YoEQIIYSobTRDR6vktreaoVdNY+oACUqEEEKIaqJjoFO5qKSy19clEpQIIYQQ1URHp7L9HJWvoe6QgS4hhBBC1ApeByUrV67k5ptvpkmTJiiKwvz58y96zfLly+nevTsWi4XWrVvzySeflCrz7rvvEhMTg9VqJSEhgXXr1nnbNCGEEKJW0QyjSo76wuugJC8vj65du/Luu+9WqPzhw4cZOnQo1113HVu2bOGJJ57ggQce4Mcff3SVmTt3LhMmTGDy5Mls2rSJrl27kpSURHp6urfNE0IIIWqNkjkllT3qC8UwLj0EUxSFb775hmHDhpVZ5plnnmHhwoXs2LHDde6uu+7i7NmzLF68GICEhAR69erFO++8Azizs0ZHR/PYY4/x7LPPVqgt2dnZhISEkJWVJUuChRBClKkmPi9K7nF0T5MqyVPSIu5Evfh8q/Y5JWvWrGHgwIFu55KSklizZg3gTDCzceNGtzKqqjJw4EBXGU+KiorIzs52O4QQQojaRMdAq+RRn3pKqj0oSU1NJTIy0u1cZGQk2dnZFBQUkJGRgaZpHsukpqaWWe/UqVMJCQlxHZJiXggharecvEJ+WbOXH5bvZN+htMvdnBohwzfeqbNLgidOnMiECRNcP5ekDRZCCFG7ODSdD2b/ylcLN2Gzn9sLpl1sJM+Pv5FWzRtextaJ2qTag5KoqCjS0twj4rS0NIKDg/Hz88NkMmEymTyWiYqKKrNei8WCxWKpljYLIYSoOv98fwkLl20v9X1//+F0/vT8//joH/fSNCr0cjSt2lXF6hlZfVOFEhMTWbZsmdu5JUuWkJiYCDi3Y+7Ro4dbGV3XWbZsmauMEEKIuunwsQwWeAhIAHTdoKDQxqfzfq/xdtUUvYqO+sLroCQ3N5ctW7awZcsWwLnkd8uWLSQnJwPOYZXRo0e7yj/88MMcOnSIp59+mj179vDvf/+bL774gieffNJVZsKECXz44YfMnDmT3bt388gjj5CXl8fYsWMr+XhCCCEupx9X7MKklr3xnaYb/LRyNw6HVmYZUX94PXyzYcMGrrvuOtfPJfM6xowZwyeffMLJkyddAQpAy5YtWbhwIU8++SRvvvkmzZo14z//+Q9JSUmuMiNHjuTUqVO8+OKLpKamEh8fz+LFi0tNfhVCCFG3ZJ7Nu2gZu10jr8BGSJBfDbSoZpWsoKlsHfWF10HJtddeS3mpTTxla7322mvZvHlzufWOHz+e8ePHe9scIYQQtVh4g8CLlvH1NRPg51sDral5mkEV7BJcNW2pC2TvGyGEENXmxms7oullf6qaVIUh13bEbDbVYKtqjswp8Y4EJUIIIapN86ZhjLixm8fXVFUhMMDCH25LqOFWidqqzuYpEUIIUTc8ft/1NAjxZ/b89eQX2lznu7RvyrOPJBEVceWmTtdR0Ch7om9F66gvJCgRQghRrVRV4Y93JHLXLT3Zuus4hTYHLaPDad4k7HI3rdrphvOobB31hQQlQgghaoTV4kNCt5aXuxmiFpOgRAghhKgmWhUM31T2+rpEghIhhBCimkhQ4h1ZfSOEEEKIWkF6SoQQQohqohsKulHJ1TeVvL4ukaBECCFErZWbU8jRoxnsyExnQ2Ea2Q4bzYNDGNmhM63Dwi938y5Khm+8I0GJEEKIWiXbVsgPh3eyeNk2Dq0+gc8RAwUFhxXOtDezrJ2Z/2zZyMPde/F04tUoSv350L7SSVAihBCiVtANgzd3Luc/+9Zg1zWIAIaBKRsa/gSW4woRmx2Y8w1Od/Nhxqb1NA0K5g+d4y9zy8umoaJVcvpmfdo/WSa6CiGEqBX+vm0p7+1Z5QxIgJJRCy0Q0oYb2CKdWcQa7NXwzXLuCPPvjevQ9Nq7O4xRPKekModRj+aUSFAihBDiskvNz+aT/Ws9v6gCCpzt6wxKDAWCDzkDl5O5ORw4k1lDrfReyZySyh71hQQlQgghLruFx3eWX0CFwhag+RlggDn3XO51m1afBjiubDKnRAghxGWXWZSPqijoRvkbvWh+oBaC7uvsPbCYTLQMbVATTbwkmqGiGZWcUyJ73wghhBA1p7FfMJpxkbkhOpjyQDEgp4WKSVG4vX0nAn19a6aRl0BHQa/koIRO/YlKZPhGCCHEZTc0uiNm1VR2AR38D4BqU8iPUCiKMtG6QThPJ15Vc40U1U6CEiGEEJddA4s/f+l0vecXdVDsELpaIa+Jija4AU/26cdXt48i2GKt2YZ6SSa6ekeGb4QQQtQKY9v2IcjHyvSdv5BemOs635IGDPfpwM0z4olqEopJrTvfp6tmTkn9Gb6RoEQIIUStcXvLeIbHdGFb5gly7UW0CGxA88Cwy90sUUMkKBFCCFGrmBSVbuHNLnczqoRzomslN+SrR8M3dacPTAghhKhj9OI085U5LmX1zrvvvktMTAxWq5WEhATWrVtXbvkvv/ySuLg4rFYrnTt3ZtGiRW6vT5kyhbi4OAICAmjQoAEDBw5k7Vr3ZHeZmZncc889BAcHExoayv33309ubi7ekKBECCGEuILMnTuXCRMmMHnyZDZt2kTXrl1JSkoiPT3dY/nVq1czatQo7r//fjZv3sywYcMYNmwYO3bscJVp27Yt77zzDtu3b2fVqlXExMQwaNAgTp065Spzzz33sHPnTpYsWcKCBQtYuXIlDz74oFdtVwzjyphBk52dTUhICFlZWQQHB1/u5gghxBUpJTOLtfuP4dB1YkNDCDdMBDUIILxx7U1gdqGa+LwoucecLR3wDypnqXMF5Odo3BW/q8LtTUhIoFevXrzzzjsA6LpOdHQ0jz32GM8++2yp8iNHjiQvL48FCxa4zvXp04f4+HhmzJjh8R4lz7d06VIGDBjA7t276dChA+vXr6dnz54ALF68mCFDhnD8+HGaNGlSoWeVOSVCCCEuKrewiBfn/MTS7QecqbwMQAGftDzCfjlGfOcYxrxwG537tbvMLa1d9EscfnGvw9l3kJ2d7XbeYrFgsVjcztlsNjZu3MjEiRNd51RVZeDAgaxZs8Zj/WvWrGHChAlu55KSkpg/f77H8jabjQ8++ICQkBC6du3qqiM0NNQVkAAMHDgQVVVZu3Ytw4cPr9CzyvCNEEKIcjk0nYc/+IZlOw6eyy1aPPfSHuHPqZtj2b7lMM/c/A/W/ri1QnWeysplw4Hj7ExOrdW7/FaWZihVcgBER0cTEhLiOqZOnVrqfhkZGWiaRmRkpNv5yMhIUlNTPbYxNTW1QuUXLFhAYGAgVquVf/3rXyxZsoSGDRu66mjUqJFbebPZTFhYWJn39UR6SoQQQpRrxa5DbD160vOLqoLuZyYnLoyQLaeY9qeP+XzPG5h9PH+8nDyTzWvzlrNi5yHXPjeNQgJ5eFACIxI7oyj1Z6WJt44dO+Y2fHN
"text/plain": [
"<Figure size 640x480 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure()\n",
"plt.scatter(hist[\"snapshot_index\"], hist[\"mass\"] / hist[\"mass\"][0], c=hist[\"desc_dist\"])\n",
"plt.colorbar()\n",
"# plt.yscale(\"log\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 457,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiEAAAGdCAYAAADE96MUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8nUlEQVR4nO3deVxVdf748dc597JcRUDcEAUl3B23qAzH0crdxqx0SjO1srIaa2yxcuZnu+MyTd/KJq3RLEtLq7HMUjNNy9y3NHMtVxZRURAQuPecz++PC1euXHa4cOH97HHSe9b3R/He9/2smlJKIYQQQgjhZXpVByCEEEKI2kmSECGEEEJUCUlChBBCCFElJAkRQgghRJWQJEQIIYQQVUKSECGEEEJUCUlChBBCCFElJAkRQgghRJWwVnUA3mKaJgkJCdSrVw9N06o6HCGEENWYUoqLFy8SERGBrlfe9/WsrCxycnLKfR9/f38CAwMrICLvqjVJSEJCApGRkVUdhhBCCB9y8uRJmjdvXin3zsrKIrpFEEnJRrnvFR4eztGjR30uEak1SUi9evUA5w9UcHBwFUcjhBCiOktLSyMyMtL12VEZcnJySEo2OLqjBcH1yl7bknbRJDr2ODk5OZKEVFd5TTDBwcGShAghhCgRbzTfB9fTy5WE+LJak4QIIYQQ1ZGhTIxyLCVrKLPigvEySUKEEEKIKmSiMCl7FlKea6uaJCFCCCFEFTIxKU9dRvmurlq1sxFKCCGEqMUuXrzIxIkTadGiBTabjR49erBt2zaP5z700ENomsbrr7/utj8lJYVRo0YRHBxMaGgo48aNIz09vVRxSBIihBBCVCFDqXJvpXX//fezevVqPvzwQ/bu3Uv//v3p27cv8fHxbuctXbqUzZs3ExERUeAeo0aNYt++faxevZrly5fzww8/8OCDD5YqDklChBBCiCqU1yekPFtpXLp0ic8//5yZM2fSq1cvWrVqxQsvvECrVq2YPXu267z4+HgeffRRFi5ciJ+fn9s99u/fz8qVK5k7dy7du3enZ8+ezJo1i08++YSEhIQSxyJJiBBCCFEDpKWluW3Z2dkez3M4HBiGUWBOEZvNxoYNGwDnLOOjR49m0qRJdOzYscA9Nm3aRGhoKNdcc41rX9++fdF1nS1btpQ4ZklChBBCiCpkojDKseXVhERGRhISEuLapk2b5vF59erVIy4ujpdffpmEhAQMw+Cjjz5i06ZNJCYmAjBjxgysViuPPfaYx3skJSXRuHFjt31Wq5WwsDCSkpJKXHYZHVMKykyHnJ9AZYK1FVj/IOvQCCGEKJeKGqJ75YzgAQEBhV7z4Ycfct9999GsWTMsFgtXX301I0eOZMeOHezYsYM33niDnTt3VvpnnCQhJaCUgUqfBRnvAVmXD1jbQch0NL8OVRabEEIIAaWbETwmJob169eTkZFBWloaTZs25c477+Sqq67ixx9/JDk5maioKNf5hmHw5JNP8vrrr3Ps2DHCw8NJTk52u6fD4SAlJYXw8PASxyxJSAmotH/CpQ8LHnAcRqXcBQ3+h2a9yvuBCSGE8HllHeGS//qyqlu3LnXr1uX8+fOsWrWKmTNnMmzYMPr27et23oABAxg9ejT33nsvAHFxcVy4cIEdO3YQGxsLwNq1azFNk+7du5f4+ZKEFEM5TnhOQAAwQGWj0v+DFvpvr8YlhBCiZjBzt/JcX1qrVq1CKUXbtm05cuQIkyZNol27dtx77734+fnRoEEDt/P9/PwIDw+nbdu2ALRv356BAwfywAMPMGfOHOx2OxMmTGDEiBEeh/MWRjqmFifrS8BSxAkGZK1AqUveikgIIYQol9TUVP7617/Srl07xowZQ8+ePVm1alWBobhFWbhwIe3ataNPnz4MHjyYnj178u6775YqDqkJKYYyzgLFdcxxgJkKFps3QhJCCFGD5I1yKc/1pXXHHXdwxx13lPj8Y8eOFdgXFhbGokWLSv3s/CQJKYZmaYwqtrLLCnqoN8IRQghRwxiKcq6iW3GxeJs0xxTHdisUmWVaIPDPaFpgEecIIYQQnpkVsPkqqQkphmZphqp7P2T818NRC2h10YImAKCUiZmzEePSFyjjLJq1GVbbcDS/rjKfiBBCCHEFSUJKQAt6CrQQVMYcUPlWCPTrghbyCpo1CmVmknN+PGbOBpwdWQ3IsWBkLkIPvB3/0JloWlEdXIUQQtRGJhpGsX0Pi77eV0kSUgKapkHQg1B3DORsB5UB1hg0ayvXOTmpz2DmbMx9Zbj9amYtxZHeHL96j3s3cCGEENWeqZxbea73VZKElIKmBUJAT7d9Kmcnjov/zpeAeKJwZLyHNehh6TsihBBC5JIkpBzMrO8wLzyCUiXoFqTSMXN2YQmIq/zAhBBC+AyjnM0x5bm2qkkSUkZKXcJMfQpQJRjCmyenMkMSQgjhg2pzEiJDdMtIZa3M7aSq0Ev0A6CjW2WhOyGEECKP1ISUkXIcxvnH53B2XC2yY5AFPXAAmqWRc0VelQbYMM2zKHUJq7U5miazrQohRG1kKg1TlWN0TDmurWqShJSRptlQ+TIPKzoOj80yOpolEmvQRDJSXyI7cxEO8yJGvqs1rS516oykXvAkdL2eV+IXQghRPUhzjCg1LaAfl4fiOofxWtGvaJrxwxr0N/zqzyMtZQxZGfOwmxdxuKUvoFQGGRnzOXv2dkwz3zwkQgghRA0mSUgZaX7tIOAm8v8RapqGRdPx0yz4aRYC6r+NX73HyLz4f5hGAko5ilhoyMBh309GeulWIBRCCOHbDPRyb77KdyOvBiwhr4H/H3NfWXM3DfBDD34ZPbAvpnmenKxlgIGjkAREKYWpFIYyuJj+X0zT8HieEEKImkfl9gkp66akT0jtpOlBWMPmo+x7MC99AyodzdoSzXY7mh4GgOH4HZWbfnhKQQylyJ9yGOYF4k93p0HoNOrY+nmjGEIIIapQbe4TIklIBdD8OmPx6+zxmDLtlzug4p6IXJmAuPYbCSSfG0vjBguoY+tbwdEKIYQQ1YMkIZUsO3Oh6/f5c1VVSAKSexTQSEl9DltgH1mBVwghajBD6Riq7L0jDB9eO0b6hFSy7KyVrt+7JSHFXqlwOI6SY99d8UEJIYSoNkw0TPRybL77RVWSkEqmyHL93jmMt2CzTFEM43RlhCWEEEJUOWmOqWSaFoBSl/K9diYiFNkcc5nFEl5ZoQkhhKgGanPHVKkJqWQBAf097rcU289Dw2q9Cn+/LhUflBBCiGojr09IeTZf5buR+4g6IS8C/gX2a5pGQG4ionDOverI3Qw0FBAW8pJ0ShVCCFFjSRJSySyWRtRvtApdb1DgWIAlgnp1H8KBjgm5c4lomIADDbuZ7O1whRBCeJmzY2r5Nl8lfUK8wOrXhrAmP2PP+YmcSysBjQDbLeh+rTmWeD3OrqpX/hApks8/hb+1DbaAWO8HLYQQwivMck69bpZ4qEP1I0mIl2iahn9AT/wDerr2nb/4X0x1kcLHyuhcSH8HW4CsJyOEEKLmkSSkCmVmraPowboGGVnfeykaIYQQVaH8k5VJTYgoA4WjBGfJYnZCCFGT5U06VvbrfTcJkY6pVcjmH0vRfwUWAv2kP4gQQtRkhtLKvfmqUiUhs2fPpnPnzgQHBxMcHExcXBwrVqxwHR8/fjwxMTHYbDYaNWrE0KFDOXDggOv4+++/j6ZpHrfk5MJHgrRs2bLA+dOnTy9DcauX4Lp3U/RfgUFovfu9FY4QQgjhVaVKQpo3b8706dPZsWMH27dv56abbmLo0KHs27cPgNjYWObPn8/+/ftZtWoVSin69++PYTibFO68804SExPdtgEDBtC7d28aN25c5LNfeuklt+seffTRMha5+vCzRhAe9iZgyd3yOH8fGjSeuoGeJzsTQghRMxi5o2PKs/mqUvUJGTJkiNvrqVOnMnv2bDZv3kzHjh158MEHXcdatmzJK6+8QpcuXTh27JirhsRms7nOOXPmDGvXrmXevHnFPrtevXqEh9e8Kczr1bkVP2sMF9LnkZG1GpSDAP9u1A+6nzqygq4QQtR4ptIxy9Ex1ay
"text/plain": [
"<Figure size 640x480 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure()\n",
"plt.scatter(hist[\"x\"], hist[\"y\"], c=hist[\"snapshot_index\"])\n",
"plt.colorbar()\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 458,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAGdCAYAAADqsoKGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABQ50lEQVR4nO3dfXRTVb438G9SaINIU1suTYtFOohCKVJ5aSiXJaNEyxXF3nEEemFgGBaOXsFC7ygvw6uMT2FcKCqMvbCcuXNHaxnW40VFp3OhcK8i4a2lM9NBEBkUhaZQKg2U6QvNfv7gSWzapMnJ69kn389aXUqyc3J2cnLO7+z923vrhBACRERERJLTR3sHiIiIiEKBQQ0RERFpAoMaIiIi0gQGNURERKQJDGqIiIhIExjUEBERkSYwqCEiIiJNYFBDREREmtAr2jsQKQ6HAxcuXEC/fv2g0+mivTtERETkByEErl69ivT0dOj1PbfFxExQc+HCBWRkZER7N4iIiCgAX3/9NW6//fYey8RMUNOvXz8ANz+UxMTEKO8NERER+cNutyMjI8N1He9JQEHN1q1b8dJLL8Fms2HUqFF4/fXXkZub67X8zp07sWrVKnz55ZcYOnQoNm7ciIcfftj1/Nq1a1FeXo6vv/4a8fHxGDNmDF588UWYzWZXmcGDB+Orr75y225JSQmWLVvm1z47u5wSExMZ1BAREUnGn9QRxYnCO3bsQHFxMdasWYPq6mqMGjUK+fn5uHjxosfyBw8eRGFhIebPn4/jx4+joKAABQUFqK2tdZW56667sGXLFvzlL3/BgQMHMHjwYDz00EO4dOmS27ZeeOEF1NXVuf4WLVqkdPeJiIhIo3RKV+k2m80YN24ctmzZAuBmAm5GRgYWLVrksdVkxowZaG5uxu7du12PjR8/Hjk5OSgtLfX4Hna7HUajEXv37sXkyZMB3GypWbx4MRYvXqxkd7tts6mpiS01REREklBy/VbUUtPW1oaqqipYLJbvNqDXw2KxwGq1enyN1Wp1Kw8A+fn5Xsu3tbVh27ZtMBqNGDVqlNtzGzZsQEpKCu6991689NJLuHHjhpLdJyIiIg1TlFPT0NCAjo4OpKamuj2empqKkydPenyNzWbzWN5ms7k9tnv3bsycORPXr19HWloa9uzZg/79+7uef/bZZzF69GgkJyfj4MGDWL58Oerq6vDyyy97fN/W1la0tra6/m2325VUlYiIiCSjmtFP999/P2pqatDQ0IDt27dj+vTpOHz4MAYMGAAAKC4udpW95557EB8fj5/+9KcoKSlBQkJCt+2VlJRg3bp1Edt/IiIiii5F3U/9+/dHXFwc6uvr3R6vr6+HyWTy+BqTyeRX+b59++LOO+/E+PHj8eabb6JXr1548803ve6L2WzGjRs38OWXX3p8fvny5WhqanL9ff31137UkIiIiGSlKKhxDreurKx0PeZwOFBZWYm8vDyPr8nLy3MrDwB79uzxWr7zdjt3H3VVU1MDvV7vasnpKiEhwTV8m8O4iYiItE9x91NxcTHmzp2LsWPHIjc3F5s3b0ZzczPmzZsHAJgzZw4GDhyIkpISAEBRUREmTZqETZs2YerUqSgvL8exY8ewbds2AEBzczNefPFFTJs2DWlpaWhoaMDWrVtx/vx5PPHEEwBuJhsfPnwY999/P/r16wer1YolS5Zg9uzZuO2220L1WRAREZHEFAc1M2bMwKVLl7B69WrYbDbk5OSgoqLClQx87tw5t7UZJkyYgLKyMqxcuRIrVqzA0KFDsWvXLmRnZwMA4uLicPLkSfz2t79FQ0MDUlJSMG7cOHzyyScYMWIEgJutLuXl5Vi7di1aW1uRmZmJJUuWuOXZEBERBaPDIXDkbCMuXm3BgH4G5GYmI07PtQJlonieGllxnhoiIvKmorYO6z44gbqmFtdjaUYD1jyahSnZaVHcMwrbPDVERERaU1Fbh6ffqnYLaADA1tSCp9+qRkVtXZT2jJRiUENERDGrwyGw7oMT8NRl4Xxs3Qcn0OGIiU4N6TGoISKimHXkbGO3FprOBIC6phYcOdsYuZ2igDGoISKimHXxqveAJpByFF0MaoiIKGYN6GcIaTmKLgY1REQUs3Izk5FmNMDbwG0dbo6Cys1MjuRuUYAY1BARUcyK0+uw5tEsAOgW2Dj/vebRLM5XIwkGNUREFNOmZKfhjdmjYTK6dzGZjAa8MXs056mRiGpW6SYiIoqWKdlpeDDLxBmFJceghoiICDe7ovKGpER7NygI7H4iIiIiTWBQQ0RERJrAoIaIiIg0gUENERERaQKDGiIiItIEBjVERESkCQxqiIiISBMY1BAREZEmcPI9Up0Oh+CsnkREpBiDGlKVito6rPvgBOqaWlyPpRkNWPNoFtdfISKiHrH7iVSjorYOT79V7RbQAICtqQVPv1WNitq6KO0ZERHJgEENqUKHQ2DdBycgPDznfGzdByfQ4fBUgoiIiEENqcSRs43dWmg6EwDqmlpw5Gxj5HaKiIikwqCGVOHiVe8BTSDliIgo9jCoIVUY0M8Q0nJERBR7GNSQKuRmJiPNaIC3gds63BwFlZuZHMndIiIiiTCoIVWI0+uw5tEsAOgW2Dj/vebRLM5XQ0REXjGoIdWYkp2GN2aPhsno3sVkMhrwxuzRnKeGiIh6xMn3SFWmZKfhwSwTZxQmIiLFGNSQ6sTpdcgbkhLt3SAiIsmw+4mIiIg0gUENERERaQKDGiIiItIEBjVERESkCQxqiIiISBMY1BAREZEmMKghIiIiTWBQQ0RERJrAoIaIiIg0gUENERERaUJAQc3WrVsxePBgGAwGmM1mHDlypMfyO3fuxLBhw2AwGDBy5Eh89NFHbs+vXbsWw4YNQ9++fXHbbbfBYrHg8OHDbmUaGxsxa9YsJCYmIikpCfPnz8e1a9cC2X0iIiLSIMVBzY4dO1BcXIw1a9aguroao0aNQn5+Pi5evOix/MGDB1FYWIj58+fj+PHjKCgoQEFBAWpra11l7rrrLmzZsgV/+ctfcODAAQwePBgPPfQQLl265Coza9Ys/PWvf8WePXuwe/dufPzxx3jyyScDqDIRERFpkU4IIZS8wGw2Y9y4cdiyZQsAwOFwICMjA4sWLcKyZcu6lZ8xYwaam5uxe/du12Pjx49HTk4OSktLPb6H3W6H0WjE3r17MXnyZHz22WfIysrC0aNHMXbsWABARUUFHn74YXzzzTdIT0/3ud/ObTY1NSExMVFJlYmIiChKlFy/FbXUtLW1oaqqChaL5bsN6PWwWCywWq0eX2O1Wt3KA0B+fr7X8m1tbdi2bRuMRiNGjRrl2kZSUpIroAEAi8UCvV7frZvKqbW1FXa73e2PiIiItEtRUNPQ0ICOjg6kpqa6PZ6amgqbzebxNTabza/yu3fvxq233gqDwYBXXnkFe/bsQf/+/V3bGDBggFv5Xr16ITk52ev7lpSUwGg0uv4yMjKUVJWIiIgko5rRT/fffz9qampw8OBBTJkyBdOnT/eap+OP5cuXo6mpyfX39ddfh3BviYiISG0UBTX9+/dHXFwc6uvr3R6vr6+HyWTy+BqTyeRX+b59++LOO+/E+PHj8eabb6JXr1548803XdvoGuDcuHEDjY2NXt83ISEBiYmJbn9ERESkXYqCmvj4eIwZMwaVlZWuxxwOByorK5GXl+fxNXl5eW7lAWDPnj1ey3febmtrq2sbV65cQVVVlev5ffv2weFwwGw2K6kCERERaVQvpS8oLi7G3LlzMXbsWOTm5mLz5s1obm7GvHnzAABz5szBwIEDUVJSAgAoKirCpEmTsGnTJkydOhXl5eU4duwYtm3bBgBobm7Giy++iGnTpiEtLQ0NDQ3YunUrzp8/jyeeeAIAMHz4cEyZMgULFixAaWkp2tvbsXDhQsycOdOvkU9ERESkfYqDmhkzZuDSpUtYvXo1bDYbcnJyUFFR4UoGPnfuHPT67xqAJkyYgLKyMqxcuRIrVqzA0KFDsWvXLmRnZwMA4uLicPLkSfz2t79FQ0MDUlJSMG7cOHzyyScYMWKEaztvv/02Fi5ciMmTJ0O
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure()\n",
"plt.scatter(hist[\"snapshot_index\"], hist[\"desc_dist\"])\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 459,
"metadata": {},
"outputs": [],
"source": [
"x = np.arange(len(pos_history))"
]
},
{
"cell_type": "code",
"execution_count": 293,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAj0AAAGdCAYAAAD5ZcJyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB9oUlEQVR4nO29e3yU5Zn//3nmnPORJBzCQaECcjRIDKXVapbgl12brVKlVZCl2m8LrTXfdS3+EKh0F6vFqpVvqa1Y+62sLC5StBaNeNqWCBKIAgKCAgFCziSTTJI5Pr8/Zu57ZsJMMufnfmau9+s1L3HmnmfuyRyea67rc30uSZZlGQRBEARBEEmORukNEARBEARBJAIKegiCIAiCSAko6CEIgiAIIiWgoIcgCIIgiJSAgh6CIAiCIFICCnoIgiAIgkgJKOghCIIgCCIloKCHIAiCIIiUQKf0BkTC5XKhqakJWVlZkCRJ6e0QBEEQBBECsiyjp6cHo0aNgkYTPJ9DQY8PTU1NKC0tVXobBEEQBEFEwPnz5zFmzJigt1PQ40NWVhYA9x8tOztb4d0QBEEQBBEKZrMZpaWl/DweDAp6fGAlrezsbAp6CIIgCEJlDCdNISEzQRAEQRApAQU9BEEQBEGkBBT0EARBEASRElDQQxAEQRBESkBBD0EQBEEQKQEFPQRBEARBpAQU9BAEQRAEkRJQ0EMQBEEQREpAQQ9BEARBECkBBT0EQRAEQaQEFPQQBEEQBJESUNBDEARBEERKQANHCYIgCIKIO39uuIiG8124eXIRvjZphCJ7oEwPQRAEQRBx52+n2vHi38/iyMVuxfZAQQ9BEARBEHGnz+4EAKTptYrtgYIegiAIgiDizoDNHfSkGyjoIQiCIAgiienzBD0myvQQBEEQBJHM9NtZpke5HioKegiCIAiCiDv9NtL0EARBEASRArBMT5qCmh7y6SEIAO981oLjl8z4xuQiTBudo/R2CIIgko4+ATI9FPQQBIBX6y9gz7Fm5KTrKeghCIKIAwN26t4iCCHIzzQAADp6bQrvhCAIIvmQZRl9NgcAZctbFPQQBICCDHfQc7mPgh6CIIhYY3O64JLd/6aghyAUJt8T9HRYKOghCIKINQM2F/83dW8RhMKwoKeTylsEQRAxp8/uLm3ptRL0WuVCDwp6CAJAQYYRANBJmR6CIIiY0y+AGzNAQQ9BAADyMvQAqLxFEAQRD/oEmLsFUNBDEAC8mZ7LfTa4mNqOIAiCiAkDAkxYByjoIQgA3kyP0yXDPGBXeDcEQRDJBTcmVHDuFkBBD0EAAIw6LbKM7g8j6XoIgiBiCx9BoVc27KCghyA8MINCCnoIgiBiCx82SpoeghAD8uohCIKID95MjwrLW5s3b8b48eNhMplQXl6OAwcODLl+x44dmDx5MkwmE6ZPn44333yT32a32/Hwww9j+vTpyMjIwKhRo7B06VI0NTXxNWfPnsWKFSswYcIEpKWl4eqrr8a6detgs9n81kiSdMXlo48+iuQpEikIc2WmTA9BEERs6VNrpmf79u2oqanBunXrcOjQIcycORNVVVVobW0NuH7fvn1YsmQJVqxYgcOHD6O6uhrV1dU4evQoAKCvrw+HDh3Co48+ikOHDmHnzp04efIkbrvtNn6MEydOwOVy4be//S2OHTuGX/3qV9iyZQseeeSRKx7vnXfewaVLl/ilrKws3KdIpCh56RT0EARBxAM+bFTh7i1JluWw+nPLy8tx/fXX47nnngMAuFwulJaW4kc/+hF++tOfXrH+zjvvhMViwRtvvMGvu+GGGzBr1ixs2bIl4GN8/PHHmDt3Ls6dO4exY8cGXPPkk0/iN7/5Db788ksA7kzPhAkTcPjwYcyaNSucp8Qxm83IyclBd3c3srOzIzoGoV42/vU4fvvBl/iXr07A2n+aqvR2CIIgkoYn3zqBze99gXvnjcf6266N+fFDPX+Hlemx2Wyor69HZWWl9wAaDSorK1FXVxfwPnV1dX7rAaCqqiroegDo7u6GJEnIzc0dck1+fv4V1992220oKirC/PnzsXv37iGfj9Vqhdls9rsQqYu3vGVVeCcEQRDJRb9n9paqylvt7e1wOp0oLi72u764uBjNzc0B79Pc3BzW+oGBATz88MNYsmRJ0Gjt9OnT+PWvf43vf//7/LrMzExs2rQJO3bswF/+8hfMnz8f1dXVQwY+GzduRE5ODr+UlpYGXUskP/lsFEUf+fQQBEHEkn7P7C2lzQmVlVEPwm6349vf/jZkWcZvfvObgGsuXryIhQsXYvHixbjvvvv49YWFhaipqeH/f/3116OpqQlPPvmknz7Il9WrV/vdx2w2U+CTwlCmhyDEQpZlLP/Dx+gdcOCFZdcjJ12v9JaICOkXZAxFWEFPYWEhtFotWlpa/K5vaWlBSUlJwPuUlJSEtJ4FPOfOncO7774bMMvT1NSEb3zjG5g3bx6ef/75YfdbXl6O2traoLcbjUYYjcZhj0OkBjRpnSDEQpIk7P+yE/12J8wDdgp6VEyfGgeOGgwGlJWVYe/evfw6l8uFvXv3oqKiIuB9Kioq/NYDQG1trd96FvCcOnUK77zzDgoKCq44zsWLF3HTTTehrKwML774IjSa4bfe0NCAkSNHhvr0iBTH16cnTH0/QRBxIsPjlN4z4FB4J0Q0MJ8eVWV6AKCmpgbLli3DnDlzMHfuXDz99NOwWCxYvnw5AGDp0qUYPXo0Nm7cCAB44IEHcOONN2LTpk1YtGgRXnnlFRw8eJBnaux2O+644w4cOnQIb7zxBpxOJ9f75Ofnw2Aw8IBn3Lhx+OUvf4m2tja+H5Yxeumll2AwGDB79mwAwM6dO7F161b8/ve/j+LPQ6QSLOixOlzoszn5ly1BEMqRZdKhvdeKXisFPWqGOzKrTdNz5513oq2tDWvXrkVzczNmzZqFPXv2cLFyY2OjXxZm3rx52LZtG9asWYNHHnkEkyZNwq5duzBt2jQA7gwOExsPbjV/7733cNNNN6G2thanT5/G6dOnMWbMGL81vr/IN2zYgHPnzkGn02Hy5MnYvn077rjjjnCfIpGipBu0MOo0sDpc6LTYKOghCAHI9HwOLRT0qBruyKxwpidsn55khnx6iHkb96KpewC7Vn4Vs0pzld4OQaQ8dz1fh4++7MSzS2bjtpmjlN4OESE3b3ofX7ZZsP3+G1B+1ZUSlmiJi08PQSQ7bOjoZXJlJgghyDS6xcu9pOlRNd7uLRXO3iKIZIV59dDQUYIQgyyT+yTZayX/LDXjLW8pG3ZQ0EMQPpBXD0GIRYbRrQHptToV3gkRDd6Bo5TpIQhhYENHKdNDEGJA5S3143TJsDk8YyjU5NNDEMlOQSYZFBKESFB5S/2w0hagvE8PBT0E4QN3ZaZMD0EIQYbnJGmh8pZqYSJmADDqSNNDEMLAg54+CnoIQgQyTe7yVg/59KgWX2NCSZIU3QsFPQThQwFleghCKJg5Ye8AlbfUiigjKAAKegjCDxo6ShBiwTQ9VN5SL302d5ZO6WGjAAU9BOFHgcenp8fqgNVBX7IEoTRsHAzN3lIvlOkhCEHJMumg1bhrzpctlE4nCKXJ5FPW6fOoVrimh4IeghALjUby8eohg0KCUBpe3rI5QaMi1Ql3Y6byFkGIB4mZCUIcWHnL6ZIxYHcpvBsiEvoo00MQ4kJePQQhDul6LViXcw8ZFKqSAdL0EIS4sEnrFPQQhPJoNBIyDaxtncTMaoRleqh7iyAEhMpbBCEWrMRFbevqhAmZKdNDEAJCQ0cJQiwyPWJmKm+pkwESMhOEuNDQUYIQC68rM5W31IhXyKxTeCcU9BDEFZCQmSDEwtu2TkGPGqGWdYIQGBb0kE8PQYhBBgmZVQ1peghCYNgoist9pB8gCBHwanoo6FEjlOkhCIFhmZ7LfTY4XeQASxBKk8m7tyjoUSNs4CiZExKEgOSl6wEAsgx09ZGuhyCUhoTM6qbf46RNmR6CEBCdVoOcNHfgQ2JmglAeKm+pm37K9BCE2BRkkFcPQYgClbfUDdf0UNBDEGJCbesEIQ68vEVBjyph3VtU3iIIQcm
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure()\n",
"plt.plot(dist_history)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 276,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGdCAYAAAA8F1jjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB01klEQVR4nO3de1xUdf4/8NeZgRkuwwwCcktQlAKl0CJT1MwLKtZ6y67mrXUzXS9rtm7Rbzc11y+UmVq6XjY129V0bXMzTQk1byWoGIGYJCZeEERR7nKb8/n9gUxOcpmRYWbA1/PxOI+Ncz7nc94fVpg3n9uRhBACRERERHZIYesAiIiIiOrDRIWIiIjsFhMVIiIisltMVIiIiMhuMVEhIiIiu8VEhYiIiOwWExUiIiKyW0xUiIiIyG452DqAlkaWZVy+fBlubm6QJMnW4RARkR0TQqC4uBj+/v5QKJqnb6C8vByVlZUWqUulUsHJyckidVkKExUzXb58GQEBAbYOg4iIWpCLFy+iXbt2Fq+3vLwcQe01yM3TW6Q+X19fnDt3zq6SFSYqZnJzcwNQ849Oq9XaOBoiIrJnRUVFCAgIMHx2WFplZSVy8/Q4l9weWrem9dgUFcsIijiPyspKJiotWe1wj1arZaJCREQmae6pAlo3RZMTFXvFRIWIiKiF0wsZ+ia+YlgvZMsEY2FMVIiIiFo4GQIympapNPX+5sJEhYiIqIWTIaOp/SFNr6F5tM4BLSIiImoV2KNCRETUwumFgF40beimqfc3FyYqRERELVxrnqPCoR8iIiKyW+xRISIiauFkCOhbaY8KExUbuHA6GxnHMuHg6IBuAx5EG2+drUMiIqIWrDUP/TBRsaK8C1fx3ssr8OO36YZzSgcFBo3vh+kf/R5qZ7UNoyMiIrI/TFSspPBaEf7U52+4nnPD6Ly+Wkb8J9/iWvZ1LNwZ02xv1yQiotarNa/64aeilfzvo124nnMDsv7ODXWELHA8PgUp+07aIDIiImrpZAsd9oiJipXsXrevziSllkKpwDef7rdeQERERC0Ah36spOBqUYPXZb2M/Ms3GixDRERUF70FVv009f7mwh4VK/HwcW/wusJBgbYBntYJhoiIWhW9sMxhj5ioWMmTr0RBUkj1XperZQyZ0N+KERERUWvBOSrUZMOnDYFvB28oHe78lksKCb1HPobwJ7rYIDIiIiL7xTkqVuLWRoOlhxdgyaurkbgjGbVDgY5Ojhj26mD84d2XIEn197jUykzJwtfrvsXFjMvQuLviiWd6oveIR+Go4v+VRET3KhkS9Gj8M6SxOuyRWT0qK1euRHh4OLRaLbRaLSIjI7Fr1y7D9TVr1qBfv37QarWQJAkFBQV31HHixAkMGjQI7u7u8PT0xOTJk1FSUtLgcydOnAhJkoyO6OhoozLXr1/HSy+9BK1WC3d3d0yaNOmOelNTU/H444/DyckJAQEBeO+998xpfpN5+LbBgi/fxMZz/8C8L+bg71+9ia05/8TUJRPhqHJs8F4hBP4Z8xmmRf4Nu9fvR+rB00jccQKx41fgjz3+H67nFlinEUREZHdkYZnDHpmVqLRr1w5xcXFITk7G8ePHMWDAAIwYMQLp6TU7rZaVlSE6OhpvvfVWnfdfvnwZUVFRCA4ORlJSEnbv3o309HRMnDix0WdHR0cjJyfHcHz22WdG11966SWkp6cjISEBO3bswMGDBzF58mTD9aKiIgwePBjt27dHcnIyFi1ahHnz5mHNmjXmfAsswjuwLXqPfAw9noqAq87VpHt2rfsWny/9GkDNJnEAIN/6V3XpTC7mP7cUwk436yEiIrpbZo0XDBs2zOjrhQsXYuXKlUhMTERYWBhmzZoFANi/f3+d9+/YsQOOjo5YsWKFYQfWVatWITw8HJmZmQgODq732Wq1Gr6+vnVe++mnn7B7924cO3YMjz76KADgo48+wpNPPon3338f/v7+2LhxIyorK7Fu3TqoVCqEhYUhJSUFH3zwgVFCY49kWcaW93cAElDX6jFZL+P0sbM4ffQsOveo/3tIREStk94CQz9Nvb+53PVkWr1ej82bN6O0tBSRkZEm3VNRUQGVSmW0TbyzszMA4PDhww3eu3//fnh7eyMkJARTp05Ffn6+4dqRI0fg7u5uSFIAICoqCgqFAklJSYYyffv2hUqlMpQZMmQIMjIycOOGfe9fkpt1FblZV+tMUmopHRQ4npBqvaCIiMhu1CYqTT3skdmJSlpaGjQaDdRqNaZMmYJt27ahSxfTVqsMGDAAubm5WLRoESorK3Hjxg28+eabAICcnJx674uOjsann36KvXv34t1338WBAwcwdOhQ6PV6AEBubi68vb2N7nFwcICHhwdyc3MNZXx8fIzK1H5dW6YuFRUVKCoqMjqsrXaop0GShOoqffMHQ0REZEVmJyohISFISUlBUlISpk6digkTJuDUqVMm3RsWFoYNGzZg8eLFcHFxga+vL4KCguDj49Pgy/heeOEFDB8+HA899BBGjhyJHTt24NixY/UOMVlSbGwsdDqd4QgICGj2Z/6WT3svaNxdGiyjr9IjJCLIShEREZE9kYVkkcMemZ2oqFQqBAcHIyIiArGxsejatSuWLVtm8v1jxoxBbm4usrOzkZ+fj3nz5uHq1avo2LGjyXV07NgRXl5eyMzMBAD4+voiLy/PqEx1dTWuX79umNfi6+uLK1euGJWp/bq+uS8AEBMTg8LCQsNx8eJFk+O0FJXaEU+9MrDeDeMUSgW8/Nugx5MPWzkyIiKyBxz6aYAsy6ioqDD7Ph8fH2g0GmzZsgVOTk4YNGiQyfdeunQJ+fn58PPzAwBERkaioKAAycnJhjL79u2DLMvo0aOHoczBgwdRVVVlKJOQkICQkBC0adOm3mep1WrDcuzawxZeihmJB3s9AEkCbt9uRaFUQO2swttbZkHpoLRJbERERM3FrEQlJiYGBw8eRFZWFtLS0hATE4P9+/fjpZdeAlAz1yMlJcXQ05GWloaUlBRcv37dUMfy5ctx4sQJ/Pzzz1ixYgWmT5+O2NhYuLu7G8qEhoZi27ZtAICSkhLMmTMHiYmJyMrKwt69ezFixAgEBwdjyJAhAIDOnTsjOjoar7zyCo4ePYrvvvsO06dPxwsvvAB/f38ANT05KpUKkyZNQnp6OrZs2YJly5Zh9uzZd//dsyK1swr/t+MNTFs6Ae07t4PKyRE6LzeMmDoIq44tRMijpvdIERFR66KHwiLH3YqLi4MkSYbVvwBQXl6OadOmwdPTExqNBqNHj75jZMMUZi1PzsvLw/jx45GTkwOdTofw8HDEx8cbekNWrVqF+fPnG8r37dsXALB+/XrDXilHjx7F3LlzUVJSgtDQUKxevRrjxo0zek5GRgYKCwsBAEqlEqmpqdiwYQMKCgrg7++PwYMHY8GCBVCr1YZ7Nm7ciOnTp2PgwIFQKBQYPXo0PvzwQ8N1nU6Hb775BtOmTUNERAS8vLzw9ttv2/3S5Nup1I4YNjkKwyZH2ToUIiKyI8ICc0zEXd5/7NgxrF69GuHh4UbnX3vtNezcuRNbt26FTqfD9OnT8fTTT+O7774zq35JcJcwsxQVFUGn06GwsNBmw0CWcv1KIb7+93c4Ep+KyopqhHQLxFPjH0dnTsolIrKI5v7MqK3/m7T2cHVr2myO0mIZgx86b1asJSUleOSRR/CPf/wDf//739GtWzcsXboUhYWFaNu2LTZt2oRnnnkGAHD69Gl07twZR44cQc+ePU2Oiy8lvEedOvYL/vD4Any2dDd+Sc/Gpcwr2L8tGbOHf4CNS3Y1XgEREbVKv92So6F5qNOmTcNTTz2FqCjjnv7k5GRUVVUZnQ8NDUVgYCCOHDliVjxMVO5BZSXleHv8KpTfrDRsww8Aen3Nfi3/fv9rJH6TZqvwiIjITHqhsMgBAAEBAUbbcsTGxtb5zM2bN+PEiRN1Xs/NzYVKpTKafwrULKRpaO+yuvCVu/egff89htLim/XudKtQSvjv6r3oOfgh6wZGRER3RYYEuYl9D/KtD4WLFy8aDf3cPh+01sWLF/GnP/0JCQkJcHJ
"text/plain": [
"<Figure size 640x480 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGsCAYAAAD+L/ysAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABKH0lEQVR4nO3deXiU1d0+8PuZmWSyJ2TfV0hYAiEQAgFREJSCTYu0YoXKplYFt/Lir6VULV3EYkuVFndAtKAWFWpdUAiSsEMCkZ0QEsi+kz2ZSWae3x+TGRNJyEySyTPL/bmuXO+bmWee+U6nmrvnfM85giiKIoiIiIgsmEzqAoiIiIh6w8BCREREFo+BhYiIiCweAwsRERFZPAYWIiIisngMLERERGTxGFiIiIjI4jGwEBERkcVjYCEiIiKLx8BCREREFs/mAktGRgZSU1MRHBwMQRCwe/duk17f2tqKJUuWYPTo0VAoFJg7d+5N1xw4cACCINz0U1ZWNjAfgoiIiLqwucDS1NSEhIQEbNq0qU+v12g0cHZ2xlNPPYWZM2fe8trLly+jtLTU8OPv79+n9yQiIqJbU0hdwECbPXs2Zs+e3ePzKpUKa9aswQcffIDa2lrEx8fjr3/9K6ZNmwYAcHV1xeuvvw4AOHz4MGpra3u8l7+/P7y8vAaweiIiIuqOzY2w9OaJJ57A0aNH8eGHH+LMmTO477778KMf/QhXrlwx+V5jx45FUFAQ7rrrLhw+fNgM1RIRERFgZ4GloKAAW7duxc6dOzF16lTExMRg1apVuO2227B161aj7xMUFIQ33ngDn3zyCT755BOEhYVh2rRpOHXqlBmrJyIisl82NyV0K2fPnoVGo0FsbGyXx1UqFXx8fIy+T1xcHOLi4gy/T548GVevXsU//vEPvP/++wNWLxEREenYVWBpbGyEXC5HVlYW5HJ5l+fc3Nz6de/k5GQcOnSoX/cgIiKi7tlVYElMTIRGo0FFRQWmTp06oPfOzs5GUFDQgN6TiIiIdGwusDQ2NiI3N9fwe35+PrKzs+Ht7Y3Y2FgsXLgQixYtwt///nckJiaisrISaWlpGDNmDO655x4AwIULF6BWq1FTU4OGhgZkZ2cD0DXZAsArr7yCqKgojBo1Cq2trXjnnXewf/9+fPPNN4P9cYmIiOyCIIqiKHURA+nAgQOYPn36TY8vXrwY7777Ltra2vDnP/8Z7733HoqLi+Hr64tJkyZh7dq1GD16NAAgMjIS169fv+ke+v+o1q9fj7feegvFxcVwcXHBmDFj8Pzzz3f7vkRERNR/JgeWjIwMvPzyy8jKykJpaSl27drV7W6wekuWLMG2bdtuenzkyJE4f/684fdNmzbh5ZdfRllZGRISEvDPf/4TycnJppRGRERENsrkZc2m7iT76quvdtkNtrCwEN7e3rjvvvsM13z00UdYuXIlXnjhBZw6dQoJCQmYNWsWKioqTC2PiIiIbFC/poQEQeh1hOWHdu/ejXnz5iE/Px8REREAgIkTJ2LChAn417/+BQDQarUICwvDk08+id/+9rd9LY+IiIhsxKA33W7evBkzZ840hBW1Wo2srCysXr3acI1MJsPMmTNx9OjRHu+jUqmgUqkMv2u1WtTU1MDHxweCIJjvAxAREdGAEUURDQ0NCA4OhkzW88TPoAaWkpISfPXVV9ixY4fhsaqqKmg0GgQEBHS5NiAgAJcuXerxXuvWrcPatWvNVisRERENnsLCQoSGhvb4/KAGlm3btsHLy8ukKaSerF69GitXrjT8XldXh/DwcBQWFsLDw6Pf9yciIiLzq6+vR1hYGNzd3W953aAFFlEUsWXLFjz44INwdHQ0PO7r6wu5XI7y8vIu15eXlyMwMLDH+ymVSiiVypse9/DwYGAhIiKyMr21cwza4Yfp6enIzc3FQw891OVxR0dHjB8/HmlpaYbHtFot0tLSkJKSMljlERERkQUzeYTlVjvJhoeHY/Xq1SguLsZ7773X5XWbN2/GxIkTER8ff9M9V65cicWLFyMpKQnJycl45ZVX0NTUhKVLl/bhIxEREZGtMTmwZGZmdtnRVd9Hot9JtrS0FAUFBV1eU1dXh08++QSvvvpqt/e8//77UVlZieeffx5lZWUYO3Ys9uzZc1MjLhEREdknm9mav76+Hp6enqirq2MPCxERkZUw9u/3oPWwEBEREfUVAwsRERFZPAYWIiIisngMLERERGTxGFiIiIjI4jGwEBERkcVjYCEiIiKLx8BCREREFo+BpRfvH7uOlR9lo+hGs9SlEBER2S0Gll58nFmIT08X47vCOqlLISIislsMLL0YFeIJADhXwsBCREQkFQaWXsQHdwSWYgYWIiIiqTCw9CI+RHcQ0/mSetjIOZFERERWh4GlF7EB7lDIBNQ0qVFa1yp1OURERHaJgaUXTg5yDAtwB8BpISIiIqkwsBghPlg3LXSupF7iSoiIiOwTA4sR4jtWCp3nCAsREZEkGFiMoG+85dJmIiIiaTCwGGFEkAcEASivV6GigY23REREg42BxQgujgrE+LkB0C1vJiIiosHFwGIkfeMt+1iIiIgGHwOLkfSNt2cZWIiIiAYdA4uRRhm26OeUEBER0WBjYDHSyI4poeLaFtxoUktcDRERkX1hYDGSp7MDInxcALDxloiIaLAxsJjAcHIz92MhIiIaVAwsJhil30COjbdERESDioHFBPoRFk4JERERDS4GFhOM6mi8za9qQkNrm8TVEBER2Q8GFhP4uCkR7OkEALjAURYiIqJBw8BiIv0GcucYWIiIiAYNA4uJ9IGFW/QTERENHgYWE8XrVwpxaTMREdGgYWAxkX6lUG5FI1rUGomrISIisg8MLCby93CCn7sSWhG4WMY+FiIiosHAwNIH8R3Lm9nHQkRENDgYWPrAsFKIJzcTERENCgaWPhjFM4WIiIgGFQNLH+hXCuWUN0DVzsZbIiIic2Ng6YMQL2d4uTigTSMip6xR6nKIiIhsHgNLHwiCYFjezGkhIiIi82Ng6aNR+g3kuFKIiIjI7BhY+uj7ERauFCIiIjI3BpY+0i9tvlhajzaNVuJqiIiIbBsDSx9FeLvATamAul2Lq5VsvCUiIjInBpY+kskEjAzW97FwWoiIiMicGFj6wdDHwsZbIiIis2Jg6Qf9BnLnubSZiIjIrBhY+kHfeHu+pB5arShxNURERLaLgaUfon1d4eQgQ7Nag/zqJqnLISIislkMLP2gkMswIogbyBEREZkbA0s/6Rtvz3MDOSIiIrNhYOmneG7RT0REZHYMLP00qtPSZlFk4y0REZE5MLD0U2yAOxzlMtS3tqPoRovU5RAREdkkBpZ+clTIEBfoDoDTQkREROZicmDJyMhAamoqgoODIQgCdu/e3etrVCoV1qxZg4iICCiVSkRGRmLLli1drnnllVcQFxcHZ2dnhIWF4de//jVaW1tNLU8Shj4WbiBHRERkFgpTX9DU1ISEhAQsW7YM8+bNM+o18+fPR3l5OTZv3oyhQ4eitLQUWu33Jxzv2LEDv/3tb7FlyxZMnjwZOTk5WLJkCQRBwIYNG0wtcdDp+lgKcZZnChEREZmFyYFl9uzZmD17ttHX79mzB+np6cjLy4O3tzcAIDIysss1R44cwZQpU7BgwQLD8w888ACOHz9uanmSMOx429F4KwiCxBURERHZFrP3sHz22WdISkrC+vXrERISgtjYWKxatQotLd83qE6ePBlZWVk4ceIEACAvLw9ffvkl5syZ0+N9VSoV6uvru/xIZXigO+QyAdVNapTVW8c0lqVqbdPgH3tz0NqmkboUIiKyICaPsJgqLy8Phw4dgpOTE3bt2oWqqiosX74c1dXV2Lp1KwBgwYIFqKqqwm233QZRFNHe3o7HHnsMv/vd73q877p167B27Vpzl28UJwc5hvm74VJZA84V1yPI01nqkqxSo6odj2zLxNG8auRWNGLTwnFSl0RERBbC7CMsWq0WgiBg+/btSE5Oxpw5c7BhwwZs27bNMMpy4MABvPjii3jttddw6tQpfPrpp/jiiy/wpz/9qcf7rl69GnV1dYafwsJCc3+
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure()\n",
"plt.scatter(pos_history[:, 0], pos_history[:, 1], c=x)\n",
"plt.colorbar()\n",
"plt.show()\n",
"\n",
"\n",
"plt.figure()\n",
"plt.plot(mass_history)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 148,
"metadata": {},
"outputs": [],
"source": [
"nsnap0 = 944\n",
"k = cats[nsnap0][\"hid_to_array_index\"][hid]\n",
"pos = cats[nsnap0][\"cartesian_pos\"][k]"
]
},
{
"cell_type": "code",
"execution_count": 166,
"metadata": {},
"outputs": [],
"source": [
"nsnap = 939\n",
"cats[nsnap0][\"dist\"][k]\n",
"indxs = cats[nsnap].select_in_box(pos, 5)\n",
"nearby_pos = cats[nsnap][\"cartesian_pos\"][indxs]\n",
"nearby_mass = cats[nsnap][\"summed_mass\"][indxs]"
]
},
{
"cell_type": "code",
"execution_count": 167,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAGdCAYAAABQEQrmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABA3klEQVR4nO3dfVxUZd4/8M+Z4UmRAUEQCdDUxCBBl5TYrVZFBdbIbDddKyWzvPNOvbsp77TfprSt4W5tm3tLqK2lu21rj5q3JeRD+FCKApGkWUKgKCCiOQNDgMy5fn+wDE0CznAOM8Pweb9e16vO8/ecl8LX63ud60hCCAEiIiIiFWkcHQARERG5HiYYREREpDomGERERKQ6JhhERESkOiYYREREpDomGERERKQ6JhhERESkOiYYREREpDo3RwfQHbIso7KyEj4+PpAkydHhEBGRExNCoK6uDiEhIdBoeu7f1Y2NjWhublZ8Hg8PD3h5eakQkWP1ygSjsrISYWFhjg6DiIh6kYqKCoSGhvbIuRsbG3Hj0AGorjEpPldwcDDKysp6fZLRKxMMHx8fAK1/WHQ6nYOjISIiZ2YwGBAWFmb+3dETmpubUV1jQlnBUOh8ut9LYqiTcWPsGTQ3NzPBcIS2sohOp2OCQUREVrFHSV3no1GUYLiSXplgEBEROSOTkGFS8AlRk5DVC8bBmGAQERGpRIaAjO5nGEqOdTZMMIiIiFQiQ4aSPghlRzsXFoqIiIhIdezBICIiUolJCJhE98scSo51NkwwiIiIVMIxGO1YIiEiIiLVsQeDiIhIJTIETOzBAMAEg6hPaTQ2oTD3JIyGH3DDiMG4efxwfs+HSEUskbRjgkHUBwgh8PYru7D15Y/RaGwyrw8bNQRp/5uKm8ePcGB0ROSKOAaDqA/4+wsfYvPz2yySCwA4X1KN/7n7JZQcP+ugyIhcS9tbJEqaq2CCQeTiLl/Q4+1XdnW4TZYFTC0ytqzeZueoiFyTrEJzFUwwiFzc/g+OQXTxryLZJOPYnq9wpbbOjlERkatjgkHk4r6v0UOrvc5fdQHomWAQKWb691skSpqr4CBPIhfnH+wHU0vXHa+SJGFgkM5OERG5LpOAwq+pqheLo7EHg8jFTbx3PDTazl9F1Wg1uC05Bjr/AXaMisg1OWIMxoEDB5CSkoKQkBBIkoTt27dbbH/ooYcgSZJFS0pKuu55MzMzMWzYMHh5eSEuLg5Hjx61KS4mGEQuzi9QhwefvrvDbRqtBA9Pd6T+v3vsGxQRqcZoNCImJgaZmZmd7pOUlISqqipz+9e//tXlOd9++22kpaVh1apVKCwsRExMDBITE1FTU2N1XCyREPUBv037Ffr7eOHNP/4f6r43mtePjB6K/3plLobdfIMDoyNyHTIkmND9yevkbhybnJyM5OTkLvfx9PREcHCw1ed8+eWX8eijj2L+/PkAgPXr1+Ojjz7C66+/juXLl1t1DiYYRH2AJEmYsTABv3rolyj+/Fs01DXihhFBuDEy1NGhEbkUWbQ2JccDgMFgsFjv6ekJT0/Pbp83NzcXQUFBGDhwICZPnow//OEPCAgI6HDf5uZmFBQUYMWKFeZ1Go0GU6ZMweHDh62+JhMMoj7E3cMNP5sY6egwiOg6wsLCLJZXrVqF9PT0bp0rKSkJ9957L2688UaUlpbimWeeQXJyMg4fPgytVnvN/rW1tTCZTBg8eLDF+sGDB+PUqVNWX5cJBhERkUpMCkskbcdWVFRAp2t/s0tJ78Vvf/tb8/+PGTMG0dHRGDFiBHJzc5GQkNDt814PB3kSERGppC3BUNIAQKfTWTQlCcZPDR8+HIMGDUJJSUmH2wcNGgStVosLFy5YrL9w4YJN4ziYYBAREfUh586dw6VLlzBkyJAOt3t4eCA2NhZ79+41r5NlGXv37kV8fLzV12GCQUREpBJZSIqbrerr61FUVISioiIAQFlZGYqKinD27FnU19dj2bJlOHLkCMrLy7F3717MmDEDI0eORGJiovkcCQkJWLdunXk5LS0Nr732GrZs2YKvv/4aixYtgtFoNL9VYg2OwSAiIlKJWmMwbJGfn49JkyaZl9PS0gAAqampyMrKwvHjx7FlyxZcuXIFISEhmDZtGp5//nmLsktpaSlqa2vNy7Nnz8bFixexcuVKVFdXY+zYscjOzr5m4GdXJNHVV5CclMFggK+vL/R6vcUgGCIiop+yx++Mtmvs/+oGDPDpfnGgvk7GL2857xK/39iDQUREpBITNDApGH1gUjEWR2OCQUREpBLRzXEUPz7eVTDBICIiUokjxmA4K75FQkRERKpjDwYREZFKTEIDk1AwBqPXvXbROSYYRGS1L3NPYNv/foyvDp2CRqvBhORxmLn0VxgRM8zRoRE5BRkSZAXFARmuk2GwREJEVvnn6vfx1OR0HPm/fOgvGvB99RXs+cd+LIr9H+x766CjwyMiJ8MEg4iuq+jTr7D52a0AAFOLbF5vapEhZIE/pq5DVdmFzg4n6jPU+haJK2CCQUTXte2vH0Pr1vWPi4827LZTNETOq20MhpLmKlznToioxxQf/Nqi5+KnZJOM4we+tmNEROTsOMiTiK5Lo7l+t+31ejiI+oLWQZ7dL3MoOdbZ8CcCEV3XrUlju0wgJI2EW6eNtV9ARE5K/vdU4d1tSt5AcTaucydE1GPu/a/pkDt5QV+SJHh4uiP5kcl2joqInBkTDCK6rlGxI/DU6/8JjUaCRtv+Y0OjkeDh5Y7f71gO/+CBDoyQyDlwkGc7jsEgIqtMS52IyJ9HYOf6T1B88Gto3bQYnzgWv1o4BQFDmFwQAa0lEk601YoJBhFZLfSmIXjsz6mODoPIaZmEBJOCL6IqOdbZuE5fDBERETkN9mAQERGppO1tkO4fzxIJERER/YQsNJAVDNSUheskGCyREBERkerYg0FERKQSlkjaMcEgIiJSiQxlb4J0/sWf3oclEiIiIlIdezCIiIhUonyiLdf5dz8TDCIiIpUone7blaYKd507ISIiIqfBHgwiIiKVyJAgQ8kgT9eZKpwJBhERkUpYImln051kZWUhOjoaOp0OOp0O8fHx2LVrFwDg8uXLWLJkCSIiItCvXz+Eh4dj6dKl0Ov1FudYunQpYmNj4enpibFjx6p2I0RERI7WNg+GkuYqbOrBCA0NxZo1a3DTTTdBCIEtW7ZgxowZ+OKLLyCEQGVlJV566SVERkbizJkzeOyxx1BZWYn33nvP4jwPP/ww8vLycPz4cVVvhoiIiJyDTQlGSkqKxfLq1auRlZWFI0eOYMGCBXj//ffN20aMGIHVq1fjwQcfREtLC9zcWi/117/+FQBw8eJFJhhERORSZCFBVjLRlgt9rr3bYzBMJhPeffddGI1GxMfHd7iPXq+HTqczJxdERESuTFZY5ujT82AUFxcjPj4ejY2NGDBgALZt24bIyMhr9qutrcXzzz+PhQsXKg6yqakJTU1N5mWDwaD4nERERNRzbE6VIiIiUFRUhLy8PCxatAipqak4efKkxT4GgwHTp09HZGQk0tPTFQeZkZEBX19fcwsLC1N8TiIiIrW1fa5dSXMVNt+Jh4cHRo4cidjYWGRkZCAmJgZr1641b6+rq0NSUhJ8fHywbds2uLu7Kw5yxYoV0Ov15lZRUaH4nERERGozQVLcXIXiwRGyLJvLFwaDAYmJifD09MSOHTvg5eWlOEAA8PT0hKenpyrnIiIiop5nU4KxYsUKJCcnIzw8HHV1dXjrrbeQm5uLnJwcGAwGTJs2DQ0NDXjzzTdhMBjMYyUCAwOh1WoBACUlJaivr0d1dTV++OEHFBUVAQAiIyPh4eGh7t0RERHZkdIyhyuVSGxKMGpqajBv3jxUVVXB19cX0dHRyMnJwdSpU5Gbm4u8vDwAwMiRIy2OKysrw7BhwwAAjzzyCPbv32/eNm7cuGv2ISIi6o1MgKIyh0m9UBzOpgRj06ZNnW6bOHEihBDXPUdubq4tlyQiIqJeyHX6YoiIiBzMEW+RHDhwACkpKQgJCYEkSdi+fXun+z722GOQJAmvvPJKl+dMT0+HJEkWbfTo0TbFxRm
"text/plain": [
"<Figure size 640x480 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure()\n",
"plt.scatter(nearby_pos[:, 0], nearby_pos[:, 1], c=np.log10(nearby_mass))\n",
"plt.colorbar()\n",
"\n",
"plt.scatter(pos[0], pos[1], c=\"r\", marker=\"x\")\n",
"plt.xlim(pos[0] - 5, pos[0] + 5)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGsCAYAAAAPJKchAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABXiElEQVR4nO3de3Rc1Xk3/u+ZuyRLI8k3ybZsDCamxlcMOHIKmOBg/PJS3HTxUpr+TFJCFsT+FeJcGqcpNEnXEiEvtzQUQym4SUpMCMGsEEJwTGx+gAjYWMWG4GJwbGNbNrbuI2luZ//+mNlnRrIuc2bOfb6ftWZJGs2MzpkzmvPMs5/9bEUIIUBERERkE5/dG0BERETljcEIERER2YrBCBEREdmKwQgRERHZisEIERER2YrBCBEREdmKwQgRERHZisEIERER2YrBCBEREdmKwQgRERHZylXByMsvv4xrrrkG06ZNg6Io2Lp1q677Dw4O4vOf/zwWLFiAQCCANWvWnHGbHTt2QFGUMy7t7e3G7AQREREN4apgJBaLYdGiRXjwwQeLun86nUZFRQX+/u//HitXrhzztvv378fx48e1y5QpU4r6m0RERDS2gN0boMfq1auxevXqUX8fj8fxj//4j/jZz36Grq4uzJ8/H9///vexYsUKAEBVVRUeeughAMCrr76Krq6uUR9rypQpqK2tNXDriYiIaCSuyoyMZ/369WhtbcWWLVvw9ttv47rrrsNVV12F999/X/djLV68GI2NjfjMZz6DV1991YStJSIiIsBDwcjhw4fx+OOP46mnnsIll1yCc845B1/72tfw53/+53j88ccLfpzGxkZs2rQJTz/9NJ5++mk0NTVhxYoVeOutt0zceiIiovLlqmGasezduxfpdBqf+MQnhlwfj8cxceLEgh9n7ty5mDt3rvbz8uXL8cEHH+C+++7DT37yE8O2l4iIiDI8E4z09fXB7/dj9+7d8Pv9Q343YcKEkh774osvxiuvvFLSYxAREdHIPBOMLFmyBOl0GidPnsQll1xi6GO3tbWhsbHR0MckIiKiDFcFI319fThw4ID288GDB9HW1ob6+np84hOfwOc+9zmsXbsW99xzD5YsWYKPP/4Y27dvx8KFC3H11VcDAN59910kEgl0dHSgt7cXbW1tADIFqwBw//33Y/bs2Tj//PMxODiIRx99FC+99BJefPFFq3eXiIioLChCCGH3RhRqx44duPzyy8+4/sYbb8TmzZuRTCbxL//yL/jxj3+Mo0ePYtKkSfjkJz+J73znO1iwYAEA4KyzzsKhQ4fOeAz5NNx999145JFHcPToUVRWVmLhwoW44447Rvy7REREVDpXBSNERETkPZ6Z2ktERETuxGCEiIiIbOWKAlZVVXHs2DFUV1dDURS7N4eIiIgKIIRAb28vpk2bBp9v9PyHK4KRY8eOoampye7NICIioiIcOXIEM2bMGPX3rghGqqurAWR2pqamxuatISIiokL09PSgqalJO4+PxhXBiByaqampYTBCRETkMuOVWLCAlYiIiGzFYISIiIhsxWCEiIiIbMVghIiIiGzFYISIiIhsxWCEiIiIbMVghIiIiGzFYISIiIhspSsYeeihh7Bw4UKt+VhzczN+85vfjHmfp556Cueddx4ikQgWLFiA559/vqQNJiIiIm/RFYzMmDEDd911F3bv3o1du3bh05/+NK699lq88847I97+tddeww033ICbbroJe/bswZo1a7BmzRrs27fPkI0nIiIi91OEEKKUB6ivr8cPfvAD3HTTTWf87vrrr0csFsNzzz2nXffJT34SixcvxqZNmwr+Gz09PYhGo+ju7mY7eCIiIpco9PxddM1IOp3Gli1bEIvF0NzcPOJtWltbsXLlyiHXrVq1Cq2trWM+djweR09Pz5ALEREReZPuYGTv3r2YMGECwuEwbrnlFjzzzDOYN2/eiLdtb2/H1KlTh1w3depUtLe3j/k3WlpaEI1GtUtTU5PezaQiDSbTePT/+xCHTsfs3hQiIioTuoORuXPnoq2tDX/4wx9w66234sYbb8S7775r6EZt3LgR3d3d2uXIkSOGPj6N7u4X9uNffv1H3Lvtf+zeFCIiKhMBvXcIhUKYM2cOAGDp0qV488038cADD+Dhhx8+47YNDQ04ceLEkOtOnDiBhoaGMf9GOBxGOBzWu2lUoiMd/fjJ638CAJzoGbR3Y4iIqGyU3GdEVVXE4/ERf9fc3Izt27cPuW7btm2j1phY7WTvIPa396J3MGn3pjjCvdv+B8l0pp65ZyBl89YQEVG50JUZ2bhxI1avXo2ZM2eit7cXTzzxBHbs2IHf/va3AIC1a9di+vTpaGlpAQDcdtttuOyyy3DPPffg6quvxpYtW7Br1y488sgjxu9JEb7w+Jt451gPHv/CRbh87hS7N8dW7x7rwda2o9rPPQzQiIjIIrqCkZMnT2Lt2rU4fvw4otEoFi5ciN/+9rf4zGc+AwA4fPgwfL5csmX58uV44okn8O1vfxvf+ta3cO6552Lr1q2YP3++sXtRpGhFEADQM8AT792/fQ9CAAumR7H3aDe6+ZwQEZFFdAUj//Ef/zHm73fs2HHGdddddx2uu+46XRtlFRmMlPuJ97UPTmHH/o8R8Cn457+Yh796qBV98RRUVcDnU+zePCIi8riyXpumJsLMiBAC3//NewCAzy2bifOnRbPXA71x1o0QEZH5yjoYiVYyM/Kbfe3474+6URnyY/2nz0Uk6Ec4kHlZlHOQRkRE1invYKTMh2mSaRU/+O1+AMDNl5yNydWZ6dQ1spaGRaxERGSBsg5Gaso8GHnyzSM4eCqGiVUh3Hzp2dr1NZFMKRGn9xIRkRXKOhgp58xILJ7C/b97HwDw91eciwnhXC0zMyNERGSlsg5GZAaguwwzAI+9chCn+uKYWV+JGy6eOeR35RykERGR9co6GCnXPiOn++J4+OUPAQBfWzUXocDQlwFnGRERkZUYjKD8Tro/+v0B9MVTmD+9Bv97QeMZv6+pyNaMDJZfxoiIiKzHYASZfhppVdi8NdY40tGPn75+CADwzav+bMSmZsyMEBGRlco6GJGFmkD5nHjveXE/kmmBS86dhD8/d9KIt2EBKxERWamsg5Gg34eqkB9AeRRrvnOsG8/+9zEAwD9cdd6ot8tlRjhMQ0RE5ivrYAQor14jd7+wH0IAf7FoGuZPj456uygzI0REZKGyD0bK5cT72oFT2Pk/HyPoV/C1K+eOeVutgLUMAjQiIrJf2Qcj5ZAZEULgrhfkYnizMHNi5Zi3ZwErERFZqeyDkXJo8PX83na8/VE3qkJ+rP/0nHFvnytgZc0IERGZj8FIGQQj9//ufwAAX7r0HEyaEB739rIzbV88hVRaNXXbiIiIGIx4PBhJpVW8f7IPAHDDsqaC7lMdyU157oszO0JEROYq+2DE6/URXdn9UhRgYtX4WREACAV8qAhmpjxzei8REZmt7IORqDZzxJsn3a7+TDBSEwnCP0K31dGUyywjIiKyH4ORSm8P03T1JwAAtZXBcW45lJze69XnhYiInIPBiMdrRjqzmZHaypCu+3l9+IqIiJyDwYjng5FMZqROd2aEwzRERGSNsg9GZAbAq8FIt8yMVOgMRiLerqUhIiLnKPtgRGZGegeTUFVh89YYr1OrGdE5TMPMCBERWaTsgxF50lUF0JfwXhZA1ozUsWaEiIgcquyDkUjQj3Ag8zTIIQ0v6R7I1oxU6RumibIlPBERWaTsgxHA20WsnbHMPkX11oxwai8REVmEwQjysgAePPHmZtNwmIaIiJyJwQhydSNezAJ0FVszwgJWIiKyCIMReLv1eddAkR1YtcwIa0aIiMhcDEbg3ZqRwWQag0kVQPHt4L0YoBERkbMwGIF3gxFZLxLwKZgQDui6r3xO+hNpJNOq4dtGREQkMRiBd2tG5Eya2soQFKXwFXsBDAleWMRKRERmYjCC/MyIt+ojZL2I3nVpACDg92kBCXuNEBGRmRiMILcOi9cyI13air36gxEgf30abz0vRETkLAxG4N0+I8WuSyNxei8REVmBwQi
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure()\n",
"plt.plot(mass_history)\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgIAAAGdCAYAAABgnRvHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABriklEQVR4nO3dd3hUZdoG8PucmcmkzoT0BBKItECA0CFUxShiA429YXddUJFvLeyq2LGtuLoI6iqiuzZUwAoiCoj0Jh0pgYRACiHJpM9kzvv9ETIQkpnMZGpm7t9e53Jz6nOYZM5z3ioJIQSIiIgoIMneDoCIiIi8h4kAERFRAGMiQEREFMCYCBAREQUwJgJEREQBjIkAERFRAGMiQEREFMCYCBAREQUwtbcDOJeiKDh+/DgiIiIgSZK3wyEiIh8mhEBFRQWSkpIgy+57t62trYXRaHT6PEFBQQgODnZBRK7jc4nA8ePHkZyc7O0wiIioHcnLy0OnTp3ccu7a2lqkdg5HQZHZ6XMlJCQgJyfHp5IBn0sEIiIiADR8qDqdzsvREBGRLzMYDEhOTrY8O9zBaDSioMiMnC2doYtoe6mDoUJB6qCjMBqNTARsaawO0Ol0TASIiMgunqhK1kXITiUCvsrnEgEiIiJfZBYKzE5M02cWiuuCcSEmAkRERHZQIKCg7ZmAM8e6ExMBIiIiOyhQ4Mw7vXNHu4//VXYQERGR3VgiQEREZAezEDCLthfvO3OsOzERICIisoO/thFg1QAREVEAY4kAERGRHRQImP2wRICJABEROU3UHwRMuwBogKDhkFTR3g7J5fy1aoCJABERtZkw50OUPQaYNp61Vg0RcjUk3ROQJN8ZSpdaxkSAiIjaRCinIEpuAJST52ypB2q+hDAXAB3e85uZZP211wAbCxIRUZuIqo8ApRhAS7PyKYBxNWBc7+mw3EZxweKLmAgQEVHb1HwJ2483FUTNIk9FQ23EqgEiImob5VQrO5gBpcgjoXiC2cleA84c605MBIiIqG3kGEApsLGDClAleiwcdzMLODn7oOticSVWDRARUZtIodfB9mPEDCnkak+F43ZsI0BERHS20FsAVRIAVQsbJUB7MaAZ7OmoyEFMBIiI7CB8tOuXN0lyJKSozwDtWABndxHUAqG3Q4p83W+6DgKAAglmJxYFvvlvwTYCRERWKEoFaqvmo67qYyjKCUiSDtrQbASH3QeVupO3w/MJkioOUod5EOZ8wLQbDSMLDoYkR3g7NJdTRMPizPG+iIkAEVELFKUUhpPZMNcfRGPtrhAG1FZ9hLrqr6CL+RJqTW/vBulDJFVHQNXR22FQG7BqgIioBVXlz8FcfwjNm3iZIUQVKk7dz+qCAONMtUDj4ouYCBARnUNRymCsWYSWR8wDADMU8yHU+9GoedQ6JgJERAHCbDoAwNTKXjLqTTs8EQ6RW7GNABHROSRJY8deApCC3B4L+Q5FSFBE29/qnTnWnZgIEBGdQ6VJhyRHQyglNvYSCNJe4LGYyPucLd5n1QARUTshSRqEhP/Fxh4qaIInQKXu4qmQiNyGiQARUQuCw+6DNvT20z81Fp42jKCnDhqC8MjXvREWeZEZstOLQ9czm/Hkk08iNTUVISEh6Nq1K5577rkmvVWEEHjqqaeQmJiIkJAQZGVl4cCBAw5dh1UDREQtkCQZ4ZHPIzjsRtRVfwpz/THIcgcEhVwFjXYUJInvUYFGONlGQDh47Msvv4y5c+diwYIFSE9Px+bNm3HHHXdAr9fjwQcfBAC88sorePPNN7FgwQKkpqbiySefxPjx47Fnzx4EBwfbdR0mAkRENqg16VDrn/d2GOQDPN1GYO3atZg4cSIuu+wyAECXLl3w6aefYuPGjQAaSgPeeOMNPPHEE5g4cSIA4KOPPkJ8fDwWL16MG264wa7rMKUlIiLyQSNGjMCKFSvw559/AgD++OMPrFmzBhMmTAAA5OTkoKCgAFlZWZZj9Ho9hg0bhnXr1tl9HZYIEJHHmc2lKKv+Gsb6w1BJEdCFXongIA7XS77NLGSYRdvfn82nq/YNBkOT9VqtFlqtttn+jz/+OAwGA9LS0qBSqWA2m/HCCy/g5ptvBgAUFBQAAOLj45scFx8fb9lmDyYCRORRpZX/Q0HpPyBQj4avIAUnK95CRMgl6Bj1b8hyiLdDJGqRAgmKEwXpChoygeTk5CbrZ86ciaeffrrZ/l988QX+97//4ZNPPkF6ejq2b9+OadOmISkpCZMnT25zHOdiIkBEHlNRswwnSh89a43prG0/4fipaegU847nAyPyoLy8POh0OsvPLZUGAMAjjzyCxx9/3FLX37dvXxw9ehSzZs3C5MmTkZCQAAAoLCxEYmKi5bjCwkL079/f7njYRoCIPEIIgaLyV2H9a0eBoeY71JkOejIsIru5aq4BnU7XZLGWCFRXV0OWm/69qFQqKErDRFipqalISEjAihUrLNsNBgM2bNiAzMxMu++LJQJE5BEmcz7qTHtb2UuFipofodU84JGYiBzhfBsBx2arvOKKK/DCCy8gJSUF6enp2LZtG15//XXceeedAABJkjBt2jQ8//zz6N69u6X7YFJSEiZNmmT3dZgIEJFHKKLKjr0kKIo9+xH5v7feegtPPvkk/vrXv6KoqAhJSUm477778NRTT1n2efTRR1FVVYV7770XZWVlGDVqFJYuXWr3GAIAIAkfm1DbYDBAr9ejvLy8SR0KEbVvZqUSf+b3hYDR5n5JUW8iMizbQ1G1nSKMqKrbCQVGhGq6Q6OK8XZIAckTz4zGa3z1Rw+ERajafJ6qCjOyM/70uecbSwSIyCNUcjh0oVejvHohAHMLe0iQpQjoQi/zdGgOEULBCcO7OGF4B/VK2em1MqJCL0WXqJlMCPyY0oZhgpse71Pv3RZsLEhEHhMfOQMaVUc0jtl/hgqAhI7Rb0CW7C/S9Iajp55FXtnLZyUBAKDgVPWP2F1wDerNZVaOJPJNTASIyGPUqhikxn+HDuG3QZLOjBcQph2BLnFfISJkvNuurQgjTlYtR375fBRWLkK9UuHwOaqN+1BYucDKVjPq6vNwouJ95wIln9XYWNCZxRc5FJWnZkIiIv+lVkUjscPz6NlxN7onbkTPjnvQOe4zhGqHuu2aJ6uWYkPeSOwtvh+HS2fhz5OPYH3uMOSWzYEjzaSKK79E89KMsykoqvjE6XjJNymQnV58kUNRNc6E9O9//xt79+7Fyy+/jFdeeQVvvfWWZZ/GmZDmzZuHDRs2ICwsDOPHj0dtba3Lgyei9kuWtNCoO0Il6916nVPVq7C3+IGzivIb+mALGHG0bDbyyufYfa46c77leGvqlVNQhMnmPtQ+mYXk9OKLHEoEzp4JqUuXLrjmmmtw8cUXW50JqV+/fvjoo49w/PhxLF682B3xExFZJYRATunLjT+1uE9u2duoNxta3HYujdwBrX1tylIoJLbDpnbEoUTAHTMh1dXVwWAwNFmIiFyh2nQQ1aY/YS0JABpKBk5W/2TX+aLDJqLlHg+NVIgJuxqS5JtvfuQc8+leA84svsihtNUdMyHNmjULzzzzTFtiJyKyqV4ptWMvlZ37ARHaodAHj0V57W9oXkWggkoKQ6LuXkfDpHZCETIUJxr8Kb41bI+FQ3d09kxIW7duxYIFC/Daa69hwQJrrWhbN2PGDJSXl1uWvLy8Np+LiOhsWnVHO/Yy27lfw5Cu3WPnni4ZaHzrb/hvsCYVvRM+Q7Am2erxRL7IoRIBd8yEZG0eZiJqf4zmchyrXITi6tVQhAmRwRlIibgOYZoUr8QTrO4IffBwlNduhLVGfmpZh+iQC+0+p0oOQbeY15Ec+TeU16yCIuoQFpSOcO1gVgn4OWeL980+OqCQQ4mAIzMhNT74G2dCuv/++10TMRH5pLLaHdhYeB/qlUo01smX1e1ATvlH6BszE8kR3hk2+Lyof+CPE9dBEUY0rd+XAAh0jXoasuz4y4hWnYS4iBtdFCW1BwrgVMt/2/1NvMeh1KZxJqTvv/8eR44cwaJFi/D666/jqquuAtB0JqRvvvkGO3fuxG233ebwTEhE1L6
"text/plain": [
"<Figure size 640x480 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure()\n",
"plt.scatter(dist, rank, c=rank)\n",
"plt.colorbar()\n",
"\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 147,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([0.03469291, 1.4941071 , 1.6137327 , 1.9338818 , 1.9451369 ,\n",
" 1.9745505 , 2.1557822 , 2.1732695 , 2.1866972 , 2.188077 ,\n",
" 2.1966248 , 2.2173362 , 2.2315993 , 2.2622092 , 2.3083584 ,\n",
" 2.3235521 , 2.3334928 , 2.3339765 , 2.3409498 , 2.3531873 ,\n",
" 2.3956246 , 2.4191911 , 2.4279647 , 2.44543 , 2.4778795 ,\n",
" 2.4828646 , 2.4840972 , 2.5520175 , 2.5533767 , 2.5614178 ,\n",
" 2.5633898 , 2.569979 , 2.585207 , 2.6075015 , 2.6134186 ,\n",
" 2.6162403 , 2.6280391 , 2.6483216 , 2.6745644 , 2.675266 ,\n",
" 2.7104652 , 2.710785 , 2.717791 , 2.723212 , 2.7351549 ,\n",
" 2.7434163 , 2.760779 , 2.786919 , 2.8479278 , 2.855215 ,\n",
" 2.8956635 , 2.9201431 , 2.9495463 , 2.9762506 , 3.0421073 ,\n",
" 3.051291 , 3.1273162 , 3.2203753 , 3.2434456 , 3.3662832 ,\n",
" 3.4216032 , 3.4361768 , 3.4840217 , 3.5633564 , 3.9444454 ],\n",
" dtype=float32)"
]
},
"execution_count": 147,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dist"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 144,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([15.143617 , 11.506105 , 12.061865 , 11.754903 , 12.1637535,\n",
" 11.706644 , 11.527555 , 11.81453 , 12.305587 , 12.008193 ,\n",
" 12.468391 , 12.135068 , 12.20031 , 12.3106165, 12.231938 ,\n",
" 11.548329 , 12.199055 , 12.237394 , 12.008322 , 12.201574 ,\n",
" 11.60354 , 12.199569 , 11.6475315, 12.25819 , 12.761718 ,\n",
" 12.20017 , 12.319948 , 11.594081 , 12.582169 , 12.207142 ,\n",
" 12.232144 , 12.207256 , 12.191118 , 12.230139 , 12.195937 ,\n",
" 12.181732 , 12.241584 , 11.854617 , 12.172837 , 11.583755 ,\n",
" 11.785564 , 12.170507 , 12.247758 , 12.217982 , 12.198726 ,\n",
" 12.500331 , 12.096592 , 11.642915 , 12.206478 , 12.189644 ,\n",
" 12.199734 , 12.29456 , 13.210453 , 12.040288 , 12.19934 ,\n",
" 11.566858 , 11.664642 , 12.346448 , 11.688704 , 12.551069 ,\n",
" 12.198501 , 12.084832 , 12.190776 , 12.184218 , 12.298596 ],\n",
" dtype=float32)"
]
},
"execution_count": 144,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.log10(dx)"
]
},
{
"cell_type": "code",
"execution_count": 143,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"15.47017"
]
},
"execution_count": 143,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.log10(mass)"
]
},
{
"cell_type": "code",
"execution_count": 140,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([0.3265535, 3.9640648, 3.408305 , 3.7152677, 3.3064172, 3.7635257,\n",
" 3.9426146, 3.6556396, 3.1645837, 3.4619775, 3.001779 , 3.3351023,\n",
" 3.2698607, 3.1595533, 3.2382321, 3.9218407, 3.2711155, 3.2327757,\n",
" 3.461849 , 3.2685957, 3.8666298, 3.2706015, 3.8226388, 3.21198 ,\n",
" 2.7084525, 3.2700012, 3.1502216, 3.876089 , 2.888002 , 3.263028 ,\n",
" 3.2380261, 3.262914 , 3.279052 , 3.2400315, 3.2742333, 3.2884378,\n",
" 3.2285862, 3.615553 , 3.297333 , 3.8864155, 3.684606 , 3.299663 ,\n",
" 3.2224126, 3.252188 , 3.2714448, 2.9698398, 3.3735788, 3.8272555,\n",
" 3.2636924, 3.2805262, 3.2704363, 3.1756098, 2.2597172, 3.4298823,\n",
" 3.2708306, 3.9033115, 3.8055282, 3.1237218, 3.7814672, 2.9191008,\n",
" 3.27167 , 3.3853385, 3.2793946, 3.2859516, 3.1715744],\n",
" dtype=float32)"
]
},
"execution_count": 140,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.abs(np.log10(dx / mass))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 107,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAv7klEQVR4nO3dfXBT54Hv8Z9MQIbGUoAU24ChLqSAIbxuKCJpIAkECMvFd2d2U7aN2TSwWwZmYNlpE3a7ZQnbcRhK08yU5SVZQjcsISUpcEMI1IUFLsFswovv2pAym5QCSWzTBiKBGwzXPvcPrhwElqwjHek5kr6fGf3hwznSo6PDOb/zvB2PZVmWAAAADMkzXQAAAJDbCCMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjLrDdAHi0draqk8++UQFBQXyeDymiwMAAOJgWZYuX76s3r17Ky8vev1HRoSRTz75RCUlJaaLAQAAEnD+/Hn17ds36r9nRBgpKCiQdOPL+Hw+w6UBAADxCIVCKikpabuOR5MRYSTcNOPz+QgjAABkmI66WNCBFQAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAYRRgBAABGJRVGnnvuOXk8Hi1atCjmelu3btXgwYOVn5+ve++9V7t27UrmYwEAQBZJOIy89957WrdunYYPHx5zvcOHD2vWrFl66qmndOLECZWXl6u8vFx1dXWJfjQAAMgiCYWRK1eu6Fvf+pZefPFFde/ePea6L7zwgqZOnarvfe97GjJkiJYvX67Ro0frZz/7WUIFBoBs09JqqfrDT7Wj5mNVf/ipWlot00UC0iqhGVjnz5+v6dOna9KkSfrnf/7nmOtWV1dr8eLFEcumTJmi7du3R92mublZzc3NbX+HQqFEigkArre7rl7L3jyl+uDVtmXF/nwtnVGmqcOKDZYMSB/bNSNbtmzR8ePHVVlZGdf6DQ0NKiwsjFhWWFiohoaGqNtUVlbK7/e3vXhIHoBstLuuXvM2HY8IIpLUELyqeZuOa3ddvaGSAellK4ycP39eCxcu1L//+78rPz8/VWXSkiVLFAwG217nz59P2WcBgAktrZaWvXlK7TXIhJcte/MUTTbICbaaaY4dO6YLFy5o9OjRbctaWlp08OBB/exnP1Nzc7M6deoUsU1RUZEaGxsjljU2NqqoqCjq53i9Xnm9XjtFA4CM8u6Zi7fViNzMklQfvKp3z1xUYEDP9BUMMMBWGHnkkUdUW1sbsezJJ5/U4MGD9fTTT98WRCQpEAho7969EcN/q6qqFAgEEisxkOFaWi29e+aiLly+ql4F+Rpb2kOd8mI/0RKpYfK3uHA5ehBJZD0gk9kKIwUFBRo2bFjEsi996Uvq2bNn2/KKigr16dOnrU/JwoULNWHCBK1atUrTp0/Xli1bdPToUa1fv96hrwBkDjorukcqf4t4Qk6vgviauuNdD8hkCY2mieXcuXPKy/uiK8r48eO1efNm/eAHP9Df//3f65577tH27dtvCzXIHNzZJybcWfHWHgDhzoprvj2aQJImqfwt4g05Y0t7qNifr4bg1Xb7jXgkFflv/P8Csp3HsizX944KhULy+/0KBoPy+Xymi5PTuLNPTEurpQdW7IvaRyB84Tn09MMEuxRL5W8RLeSE3+XWkBNeX1LENtHWBzJNvNdvnk2DuDk5DDHXJnmy01kRqZWq3yKR0TFThxVrzbdHq8gf2RRT5M8niCCnON5Mg+zU0YnWoxsn2sllRR3eTeZi7QqdFd0jVb9FoqNjpg4r1uSyIpo+kdMII4iLU8MQc7XfBJ0V3SNVv0VDKPGQ0ynPk5XDd+lfhngRRhAXJ+4mnaxdyTSZ0FkxVy4cqfgtdtfVa/nOk3GtmyuBMxdrQJE4+owgLk7cTeZyv4lOeR4tnVHW7sVPuvHdl84oM3bx311XrwdW7NOsF49o4ZYazXrxiB5YsS8rpyMP/xbSFx1Fw8J/2/ktwrV9F5uux1zPoxsX41wYHcM097CLMIK4hO8mo52e4znR0m/CnXLxwuFUx9FYtX03SyTkmJRMB3OmuUciaKZBXMJ3k/M2HZdH7Q9D7OhEm8v9JsIn6GhMNVHlctOZEx1HO6rtC+vxpS760f8clhHNE8k2rzDNPRJBzQjiluzdpBO1K5kqlU1UydzF5nLTmfRFx9GZI/soMKCn7cAVby3eD6YPyZggkmwtGTWgSAQ1I7AlmbtJJ2pXMlWqTtDJ3sVy4UhOvLV4Rf6uKS5J8pyqJcvlGlCTMr0DOmEEtiUzDDFcu3LrBbQoy3vZp+IE7cQwaS4cycmEUVLxcqp5JZv2SabIhpFLhBGkXS5O8jSmf3fleaRYLSh5nhvrxcOpu9iOLhzhcl1quhZXuXJNNtX2OVVLlk37JBNky9xN9BmBEcm21WeaY2cvxQwi0o2gcuzspbjez6m+HjcPc41Vrvmbs3NUjROyZUp3J2vJ4tknufZIiFTIppFL1IwAaeB03wwn15s6rFir/3KUFrx6ImZgytZRNU7Ihto+p5tXYu2TbGhWcINsGrlEGAHSwOm+GU6v1/1L3phBJJNOaqY4OaW7ic6IqWheaW+fZEuzghtkUwd0wgiQBk7fdTr9ftl0Ust0JmsNUt3BPJfntUmFbOqAThgB0sDpu06n3y+bTmqZzA21BqlscsqmZgU3yKaRS3RgBdLE6Y6OTr5fLk9I5xZu6ox4cwfzsaU99O6Zi450NKUGzllOP2fJJGpGgDRy+q7TqfdjOKZ5bqw1cLrJiBo452XL3E2EESDNnOzo6OT7ZctJLVO5rdYgFU1G2dSs4CbZMJqLMAKgTapOapk+VXU6uKnWIFUdTamBSx2nb3LSjTACIILTJzXmlIiPm2oNUtlkRA0c2kMYAZAybhgdkincVGuQ6iajbGhWgLMYTQMgJdw0OiRTuGVq+XQ0GeXaIyEQGzUjAFLCjaNDMoEbag3c1GSE3EAYAZASbhsdkklMd0Z0U5MRcgPNNABSwk2jQzrCE2Rv55YmI+QGakYApESmVPUz2ic6NzQZITdQMwIgJTJhqurwaJ9b+7aER/vsrqs3VDL3oKMp0oEwAiBl3FzVz2gfwD1opgGQUm6t6nditA8zywLOIIwASDnTo0Pak+xoH/qaAM6hmQZATkpmtA99TQBnEUYA5KTwaJ9ojSoe3ajpuHW0D31NAOcRRgAYZWqOj0RH+9jpawIgPvQZAWCM6X4XiTxBlpllAefZqhlZs2aNhg8fLp/PJ5/Pp0AgoLfffjvq+hs3bpTH44l45eebn20RgHlu6XcxdVixDj39sF6dO04vfHOkXp07ToeefjhqGMqkmWWBTGGrZqRv37567rnndM8998iyLP385z/XzJkzdeLECQ0dOrTdbXw+n06fPt32t8fDsDcg13XU78KjG/0uJpcVpWWorJ3RPpkysyyQSWzVjMyYMUOPPfaY7rnnHn3ta1/Tj370I9155506cuRI1G08Ho+KioraXoWFhUkXGkBmy+R+F5kwsyyQaRLuwNrS0qItW7aoqalJgUAg6npXrlxR//79VVJSopkzZ+rkyZOJfiSALJHp/S7cPLMskIlsd2Ctra1VIBDQ1atXdeedd2rbtm0qKytrd91BgwZpw4YNGj58uILBoH784x9r/PjxOnnypPr27Rv1M5qbm9Xc3Nz2dygUsltMAC6WDf0u3DqzLJCJPJZl2RpHd+3aNZ07d07BYFCvv/66XnrpJR04cCBqILnZ9evXNWTIEM2aNUvLly+Put4//dM/admyZbctDwaD8vl8dooLwIVaWi09sGJfh/0uDj39MBd3IIOFQiH5/f4Or9+2w8itJk2apAEDBmjdunVxrf/nf/7nuuOOO/Tqq69GXae9mpGSkhLCCJBFwqNpJEUEknD0oLkDyHzxhpGkJz1rbW2NCA6xtLS0qLa2VsXFsU8wXq+3bfhw+AUgu9DvIj6mJoUD0slWn5ElS5Zo2rRp6tevny5fvqzNmzdr//792rNnjySpoqJCffr0UWVlpSTp2Wef1bhx4zRw4EB99tlnWrlypc6ePas5c+Y4/00
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure()\n",
"plt.scatter(dist, dm)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 133,
"metadata": {},
"outputs": [],
"source": [
"pcat = csiborgtools.read.CSiBORGPHEWCatalogue(\n",
" 940, 7468, paths, bounds={\"dist\": (None, 155.5), \"is_main\": True})"
]
},
{
"cell_type": "code",
"execution_count": 134,
"metadata": {},
"outputs": [],
"source": [
"k = np.argmax(pcat[\"summed_mass\"])"
]
},
{
"cell_type": "code",
"execution_count": 135,
"metadata": {},
"outputs": [],
"source": [
"# center = pcat[\"cartesian_pos\"][k]"
]
},
{
"cell_type": "code",
"execution_count": 136,
"metadata": {},
"outputs": [],
"source": [
"indxs = pcat.select_in_box(center, 10)"
]
},
{
"cell_type": "code",
"execution_count": 137,
"metadata": {},
"outputs": [],
"source": [
"pos = pcat[\"cartesian_pos\"][indxs]\n",
"mass = np.log10(pcat[\"summed_mass\"][indxs])"
]
},
{
"cell_type": "code",
"execution_count": 138,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAGgCAYAAADo9R6VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gUZdeH75nd9B7SgdB7CaH33kLvCoqC5VUUVLCin6hYELsi9gKiKL33XkMLBEILEFpIJb2X3ZnvjyULS7KbtulzX9dckJlnnjmb7O6cOc85vyPIsiyjoKCgoKCgoGBGxIo2QEFBQUFBQaH6oTgYCgoKCgoKCmZHcTAUFBQUFBQUzI7iYCgoKCgoKCiYHcXBUFBQUFBQUDA7ioOhoKCgoKCgYHYUB0NBQUFBQUHB7CgOhoKCgoKCgoLZURwMBQUFBQUFBbOjOBgKCgoKCgoKZqdYDsaCBQvo1KkTDg4OeHh4MGbMGEJDQw3GhIWFMXbsWNzd3XF0dGTSpEnExMQUOF92djbt2rVDEASCg4NL/CIUFBQUFBQUKhfq4gw+cOAAL774Ip06dUKj0fD2228zePBgLl68iJ2dHenp6QwePBg/Pz/27t0LwLvvvsvIkSM5duwYomjoz7zxxhv4+Phw9uzZYhktSRKRkZE4ODggCEKxzlVQUFBQqFnIskxqaio+Pj757kPmJCsri5ycnFLPY2lpibW1tRksqmDkUhAbGysD8oEDB2RZluUdO3bIoijKycnJ+jFJSUmyIAjyrl27DM7dunWr3Lx5c/nChQsyIJ85c6bI1w0PD5cBZVM2ZVM2ZVO2Im/h4eGlueWZJDMzU/byUJnFTi8vLzkzM7PMbC0vihXBeJjk5GQAXF1dAd2ShyAIWFlZ6cdYW1sjiiKHDx9m4MCBAMTExPDss8+yfv16bG1tC71OdnY22dnZ+p/lew1gw8PDcXR0LM1LUFBQUFCo5qSkpFC3bl0cHBzK7Bo5OTlEx2q5EVQPR4eSR0lSUiUadLhFTk5OlY9ilNjBkCSJV155hR49etC6dWsAunbtip2dHW+++SaffPIJsizz1ltvodVqiYqKAnTOwbRp03j++efp2LEjN2/eLPRaCxYs4IMPPsi339HRUXEwFBQUFBSKRHksqTs6iKVyMKoTJf4tvPjii5w/f57//vtPv8/d3Z1Vq1axadMm7O3tcXJyIikpifbt2+vXvRYtWkRqaipz584t8rXmzp1LcnKyfgsPDy+p2QoKCgoKCmWGVpZKvVUXShTBmDlzJps3b+bgwYPUqVPH4NjgwYMJCwsjLi4OtVqNs7MzXl5eNGzYEIC9e/cSGBhosIwC0LFjRx577DGWLl2a73pWVlb5xisoKCgoKFQ2JGQk5FKdX10oloMhyzKzZs1i3bp17N+/nwYNGhgd6+bmBugcitjYWEaNGgXAd999x0cffaQfFxkZyZAhQ1ixYgVdunQpyWtQUFBQUFCoFEhIlCYGUbqzKxfFcjBefPFFli9fzoYNG3BwcCA6OhoAJycnbGxsAPjzzz9p0aIF7u7uBAYG8vLLLzN79myaNWsGgK+vr8Gc9vb2ADRq1ChfNERBQUFBQUGhalIsB+PHH38EoG/fvgb7//zzT6ZNmwZAaGgoc+fOJSEhgfr16/POO+8we/ZssxiroKCgoKBQmdHKMlq55MscpTm3siHIctV7NSkpKTg5OZGcnKxUkSgoKCgomKQ87hl517h12afUZar1mkdWi/ubUkujoKCgoKCgYHYUB0NBQUFBQcFMSMhoS7GVpIrk4MGDjBw5Eh8fHwRBYP369QbHp02bhiAIBtvQoUMLnXfx4sXUr18fa2trunTpwokTJ4pll+JgKABw6+Zddu0IYd/eiyQlpVe0OQoKCgpVkrwy1dJsxSU9PR0/Pz8WL15sdMzQoUOJiorSb//++6/JOVesWMGcOXN47733OH36NH5+fgwZMoTY2Ngi21UqqXCFqk9UVBKffbKJkHP3xcvUapGhw/x4YeYgLK2Ut4hC5eLciets/vcY1y5EYGVtQfdBrRj2SBdqeVTt9WoFhZISEBBAQECAyTFWVlZ4eXkVec6vvvqKZ599lunTpwPw008/sWXLFv744w/eeuutIs2h3D1qMIkJabz8wlKSkjMM9ms0Els2BRMfl8b8TyYoHWsVKgWyLPPHF9tZ/cdBRJWIpNXpBdwOi2Xd0iN8/NtTtGjnW8gsCgpli7mqSFJSUgz2l1Zwcv/+/Xh4eODi4kL//v356KOPqFWrVoFjc3JyCAoKMlDcFkWRgQMHEhgYWORrKkskNZg1q0+SlJSBpM3/YZBlmcCjVzl/TpFlV6gcHNwWwuo/DgLonQsASZLJzszhveeXkJVR+lbZCgqlQTLDBlC3bl2cnJz024IFC0ps09ChQ/nrr7/Ys2cPCxcu5MCBAwQEBKDVagscHxcXh1arxdPT02C/p6enXv+qKCgRjBrMti1nkSTjnrZKJbJzRwht/JSnQoWKZ82fBxFEAbmA96wkyaQmZ3Jg61mGTOhUAdYpKJiXh7uFlyZ68eijj+r/36ZNG9q2bUujRo3Yv38/AwYMKJWdplAcjBqKLMukPLQ08jBarUR8XFo5WaSgYJzcHA1Xz0eYHCOqBM6duF4mDkZmWia7lx1k339HSE1Mw7d5bYY/Nxj//q2VJUQFA/KqQUpzPpRtt/CGDRvi5ubGtWvXCnQw3NzcUKlUxMTEGOyPiYkpVh6H4mDUUARBwNnFjsQE4xUjKpWIm7tDOVqloFAwFakGGHPrLq/2fY+Y23cRAFmG8MsRHFx9jCHT+zHn1+f13aIVFLSybivN+WXNnTt3iI+Px9vbu8DjlpaWdOjQgT179jBmzBgAJEliz549zJw5s8jXUT4VNZhhI9ohisafvrRaiaEBbcvRIgWFgrG0VNOkdW0EE+9XSSvTplNDs15XlmXmjV5IXEQ8yDrnAkCr0a2U7/hzH+u+3WrWaypUbcyVg1Ec0tLSCA4OJjg4GIAbN24QHBzM7du3SUtL4/XXX+fYsWPcvHmTPXv2MHr0aBo3bsyQIUP0cwwYMIDvv/9e//OcOXP49ddfWbp0KZcuXWLGjBmkp6frq0qKguJg1GDGje+Em7sDKlX+L21BgL79WtCiVe0KsExBIT/jpvUqMP8CQBQFHJxs6Dvcz6zXPHfwItfP3dI7FAWx+qtNRpPlFBTKg1OnTuHv74+/vz+gcw78/f2ZN28eKpWKc+fOMWrUKJo2bcrTTz9Nhw4dOHTokEFeR1hYGHFxcfqfH3nkEb744gvmzZtHu3btCA4OZvv27fkSP02h9CKp4cTdTeWrz7dy4niYfp+VlZrRYzvy1LN9UKtVFWidgsJ9ZFnm9y+2seaPQ6hUItp7lSSiKGBlY8nHv06nhX89s15z6Xsr+HfBWpMOBsCfod9Rp0nB4WaFiqc8e5GcvuiJfSl6kaSlSrRvGVMt7m9KDkYNx83dgU8+e4ToqCSuXY1BbaGiTdu62NmVPGO5oshIz2bHpmC2bzxDYnw6bh4ODBvTnkHD/bCytijTa185c5MNP+8h+OAlANr1acGY5wbQpF39Mr1uTUIQBJ55fRid+zRn8/JArl6IwNLagp6DW5eZ0JYuYlJ4EqcslSSwrVAdkWTdVprzqwuKg6EAgJe3M17ezmadMzMzh0OHQomNScHJ2ZbevZvh5GRr1mvkkRifxqvPLSUiPF6XEChDclI63y3cypZ1p/n8xyewd7Auk2tvXXKA7+Ys0z1V33vS3b/6OHtWBPLSV1MZNq1PmVwXdE/1oZciSU7KwN3DkQaNPKp9VUPbzg1p29m8uRbGaNWjGVqN6eUPJzcHvBsWPWysoFBTUBwMhTJhy+ZgFv+wm+ysXFQqEUmS+H7RTh6d3I1p03qZ/Sb4+fwNREYk8OCCX97/b1yL4fvPt/LW/HFmvSbA9ZBwvpuzDGQMwuh5//9uzjKad2xIw9Z1zX7to4dC+fn73URGJOn3NWrswYuzhyjaJWaiw2A/fBp5En3zroG4Vx6CKDB6ZgBqC+WrVEGHFgFtEaJeps6vLihJngpmZ8+eC3z
"text/plain": [
"<Figure size 640x480 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure()\n",
"plt.scatter(pos[:, 0], pos[:, 1], c=mass)\n",
"plt.colorbar()\n",
"plt.scatter(center[0], center[1], c=\"r\", marker=\"x\")\n",
"\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.34072953251081034"
]
},
"execution_count": 55,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pcat[\"is_main\"].sum() / len(pcat)"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['940/index',\n",
" '940/mass_cl',\n",
" '940/parent',\n",
" '940/summed_mass',\n",
" '940/ultimate_parent',\n",
" '940/x',\n",
" '940/y',\n",
" '940/z',\n",
" 'cartesian_pos',\n",
" 'spherical_pos',\n",
" 'dist']"
]
},
"execution_count": 46,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pcat.keys()"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [],
"source": [
"x = pcat[\"mass_cl\"]"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [],
"source": [
"y = pcat[\"summed_mass\"]"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAi0AAAGhCAYAAACtc4RMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABsr0lEQVR4nO3df2xU550v/veZmePx4BKPHSjUBpzI34JiiG3kQOhNL+tkWbysBSG77a0isU1TKStZtKmEvFfkmyaWb6Ag1beqkrWINle9zS7d3GwqFZLrNtAkRWzTWFAnxnFMoOVLXdYOhMSMIZPxeH6c7x/j5/jMmTMz58zvM/N+SQl45sw5zxwb5sPn+TyfR1IURQERERFRiXMUewBEREREZjBoISIiIltg0EJERES2wKCFiIiIbIFBCxEREdkCgxYiIiKyBQYtREREZAuuYg8gV6LRKKanp7F06VJIklTs4RAREZEJiqLg1q1baGhogMOROpdSNkHL9PQ0Vq9eXexhEBERUQauXLmCVatWpTymbIKWpUuXAoi96dtuu63IoyEiIiIzbt68idWrV6uf46mUTdAipoRuu+02Bi1EREQ2Y6a0g4W4REREZAsMWoiIiMgWGLQQERGRLTBoISIiIltg0EJERES2wKCFiIiIbIFBCxEREdmC7YOWwcFBtLS0YNOmTcUeChEREeWRpCiKUuxB5MLNmzdRW1uL2dlZNpcjIiKyCSuf37bPtBAREVFlYNBCREREtsCghYiIiGyBQQsRERHZAoMWIiIiSuvo8CTuO/wWjg5PFm0MDFqIiIgorSOnLmHKF8CRU5eKNgYGLUREVBSl8C93Mq+nsxmNXg96OpuLNgYGLUREJaZSPsxL4V/uZN6eLU14e/8D2LOlqWhjYNBCRFRiKuXDvBT+5U724ir2AIiIKF5PZzOOnLpU9h/me7Y0FfVf7WQ/bONPRERERcM2/kRERFR2GLQQERGRLdg+aBkcHERLSws2bdpU7KEQkUmVsjqGKgN/ngvH9kHL3r17MTExgbNnzxZ7KERkUqWsjqHKUA4/z3YJvGwftBCR/VTqUle7fDCQNeXw82yXwIurh4iICuS+w29hyhdAo9eDt/c/UOzhEOHo8CSOnLqEjqY6jEzeQE9nc8GXoVv5/GafFiKiAqmU/itkHyLDAsAWgTSDFiKiPBL/khX/gmUzNfvTf0/tSJthAWCbQJo1LUREeWSXWgEyrxy+p+I9jEzeKPp+QlYwaCEiyiM7FGmyQNga7ffUrvfODj+XRliIS0SUhXKYKmCBcOZ477LHNv5ERAVSDlMFdv1XdyngvSssZlqIiLJQDpkWyg/+bJhj5fObQQsREVEecOrIHE4PERFRUdi1MDUfSmHqqNy+HwxaiIgoZ8qhxidX9mxpKvpy4nL7fjBoISKinCmF7AItZlg6murK6vvBjrhERBQnmwJSdv3NHyvfF7u15zeLmRYiIopTblMK5cLK96VcM14MWoiIKE65fuDZnZXvSynU0+QDlzwTERHlGXu2JMclz0RERCYVYlkwp9xyoyhBy0MPPYS6ujp87Wtfi3v8jjvuQGtrK9rb23H//fcXY2hERFRhChFQ5HPKrdx6saRSlKDle9/7Hv7lX/7F8Lnf/e53GB0dxW9+85sCj4qIiHLJLh+mhajhyWeNSSVlcYoStHR2dmLp0qXFuDQRERWIXT5MUwUUpRx4Pf7Se2h+Ygi311RVTOG05aDl9OnT2LlzJxoaGiBJEo4dO5ZwzODgIO644w5UV1fj3nvvxZkzZ0ydW5Ik/MVf/AU2bdqEn/3sZ1aHRkREJaQcViGVcuA1NDaNiAJ8MD1bliuFjFgOWvx+P9ra2jA4OGj4/Msvv4x9+/ahr68P7777Ltra2tDV1YWPP/447bl/+9vfYmRkBK+++ip+8IMfYGxszOrwiIioRJTDsttSDry6WxvglGK/VgrLHXF37NiBHTt2JH3+Rz/6ER577DE8+uijAIDnn38eQ0ND+MlPfoL9+/enPHdjYyMA4Etf+hL+5m/+Bu+++y5aW1sNjw0GgwgGg+rXN2/etPpWiIjIgnJctpvuPZVih1/tmJ99eGOxh1NQOa1pmZ+fx8jICLZt27Z4AYcD27ZtwzvvvJPytX6/H7du3QIAfPbZZ3jrrbewfv36pMcfOnQItbW16n+rV6/OzZsgIiJDpTxVIlitQbHDe9Kz45hzJadByyeffIJIJIIVK1bEPb5ixQpcvXpV/Xrbtm34+te/jl/+8pdYtWoV3nnnHVy7dg1f/epX0dbWhi1btuCb3/wmNm3alPRaTzzxBGZnZ9X/rly5ksu3QkREOqU8VSJY/UC38p5KpSjXDt+HfCnKholvvPGG4ePnzp0zfQ632w23252rIRERURqlNFWSbFqnp7NZfdwMK+9JGxAV8z6U0veh0HKaaVm2bBmcTieuXbsW9/i1a9ewcuXKXF6KiIgqWLKMSj6Lf4uV4SiVDE8pyGnQUlVVhY6ODrz55pvqY9FoFG+++Sa+8pWv5PJSqsHBQbS0tKScSiIiovJSjACi0KuhRLAycOJCxdaw6FmeHvrss8/wxz/+Uf368uXLGB0dRX19PdasWYN9+/bhkUcewT333IPNmzfjxz/+Mfx+v7qaKNf27t2LvXv3qhsuERGRPWSzGqkSpkhENkkC4PXIFVnDomc5aPn9738fty/Qvn37AACPPPIIfvrTn+Ib3/gGrl+/jqeffhpXr15Fe3s7Xn/99YTiXCIiqmylUiNSio4OT8IfDEMCoACocbt4jwBIiqIoxR5ELljZ2pqIiIovH31fyqWXzH2H38KULwCvR0aN22X795OKlc9v2wctg4ODGBwcRCQSwcWLFxm0EBFVMPFh3+j14O39D2R8nmIHP8W+fiFZCVqKsmFiLu3duxcTExM4e/ZssYdCVJayXbnAlQ+FU2r3OtV48jXWXBXoFruBWzlsgZAPtg9aiCi/sv3Lu9h/+VeSUrvXqcaT7ViTBT25+rDvaKqDU4r9WiilFnSWIgYtRJRStv9yreTunYVWavc61XiyHWu+A7SRyRuIKLFfC+Ho8CT6jo+XVNBZimxf0yKwEJeIqHLku+bj8Zfew9DYNLpbGwqyKaGoxXFKQP+DGypqWqiialrYXI6IygGnBqzJd81HoTMtIvNUaQGLVbYPWliIS1T6+IGcXi6mO/J9n0v1+5iPcRV6qo2Ft+bYPmghotJXagWimcrnh3YuPiTzfZ+tnL+QAU4+3jeDiNLEoIWI8q7UCkQzlc+gQHxIArD0Ya8NDpLd51wFEFa+j5neq0zG2tPZDK9Hhj8YLrksEOUWC3GJiEwqRMMvq83RzByfq4ZrVmR6rzIdayUXstpdRRXiEhGZkYtsQyGmDKxmpcwcb6cdkTMda09nM5wSEFFg+2lISs72mRa28ScqH/nMZBQj20CFla+fn1ydt5Ja81tRUZkWrh4iKh/5rBkpl7oaoVRX8uSD2fear0xYrn4uy6UgvZhsH7QQUfnIZ2Bhl9UgZj+g8/0BWEpBUbE/7HNV4FxugXMxMGghopJRrMCiWJtC6l9npZW70Qeg1XGkOr7YgYKWeK8dTXWG4813gJXs59LqPbJL4FzKGLQQUcUr1qaQ+tcdOXUJEQVwSkj7r/E9W5rQ09mMI6cuqR/WVseR6vhSygqID/uRyRuG49W+j0JmiErpHlUKBi1EVPGKtSmk/nVWW7nrg45crjwqxayXdrzJ+tOYCdxyFdikukelNL1WTmy/ekhgnxai8maXlReFHGehrlXI6zx1bBwKAK9Hxmjf9qTXF6vBvB4ZNW6XGngNnLgAAOjtWpd0rIVYScbVauZV1OohbphIVBlKqcYilUKOs1DZkHTvyWxWId1xR05dgvhXdDAcVY81ur7IrgBQnzty6hJ8gRBq3K6U2Y+Oprq8T+tw6ig/bB+0cMkzUWWwy4eAXcYppAskjg5Pwh8Mw+uRk74ns4FauuNEO36vR4bb5VCP1d9Tbealt2ud+ly6ey+uPzJ5Qw32cjmNoz0Xi27zw/ZBCxFVBrt8CJTSOM18IKcLJNJlLwDzgVq64/Z
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure()\n",
"plt.scatter(x, y, s=1)\n",
"\n",
"plt.xscale(\"log\")\n",
"plt.yscale(\"log\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"indxs = pcat.select_in_box([338.85, 338.85, 338.85], 40, False)"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
"pos = pcat[\"cartesian_pos\"][indxs]\n",
"\n",
"# indxs"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"ename": "AttributeError",
"evalue": "'list' object has no attribute 'keys'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
"\u001b[1;32m/mnt/zfsusers/rstiskalek/csiborgtools/notebooks/test.ipynb Cell 6\u001b[0m line \u001b[0;36m1\n\u001b[0;32m----> <a href='vscode-notebook-cell://ssh-remote%2Bglamdring.physics.ox.ac.uk/mnt/zfsusers/rstiskalek/csiborgtools/notebooks/test.ipynb#Y112sdnNjb2RlLXJlbW90ZQ%3D%3D?line=0'>1</a>\u001b[0m indxs\u001b[39m.\u001b[39;49mkeys()\n",
"\u001b[0;31mAttributeError\u001b[0m: 'list' object has no attribute 'keys'"
]
}
],
"source": [
")"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGdCAYAAAAxCSikAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADEPElEQVR4nOydeXxU1fn/PzOTyU42AswgSwIJaAhhq5iI8G0jgRAUVPrtT1CxViMKtBaXYipUEBDUtkgLIkXla7WBWgRxCWAQUZZEUAhJiBYICQgkYBKykJBtZn5/hBtmJnc55y4z907u+/Wyr5K5c+fO3HvOec6zfB6Dw+FwQEdHR0dHR0dHxRi9fQE6Ojo6Ojo6OkLoBouOjo6Ojo6O6tENFh0dHR0dHR3VoxssOjo6Ojo6OqpHN1h0dHR0dHR0VI9usOjo6Ojo6OioHt1g0dHR0dHR0VE9usGio6Ojo6Ojo3r8vH0BYrDb7bh48SJ69OgBg8Hg7cvR0dHR0dHRIcDhcKChoQF9+/aF0UjnM9GkwXLx4kX079/f25eho6Ojo6OjI4Iff/wR/fr1o3qPJg2WHj16AOj4wmFhYV6+Gh0dHR0dHR0S6uvr0b9//851nAYqg2X9+vVYv349ysvLAQDDhg3Dn/70J0yZMqXzmLy8PLzwwgv45ptvYDKZMHLkSOzevRtBQUEAgJqaGvz2t7/FJ598AqPRiBkzZmDNmjUIDQ0lvg4mDBQWFqYbLDo6Ojo6OhpDTDoHVQCpX79+WLVqFb777jt8++23SE1NxfTp03HixAkAHcZKeno6Jk2ahMOHD+PIkSOYP3++S5zqgQcewIkTJ5Cbm4tPP/0UX3/9NR5//HHqC9fR0dHR0dHpPhikdmuOiorCa6+9hkcffRTJyclIS0vDsmXLWI/9/vvvkZCQgCNHjuBnP/sZAGDXrl3IyMjA+fPn0bdvX6LPrK+vR3h4OOrq6nQPi46Ojo6OjkaQsn6LLmu22WzYsmULGhsbkZKSgsuXL+Obb75B7969cfvtt6NPnz74n//5Hxw4cKDzPXl5eYiIiOg0VgBg4sSJMBqN+Oabb8Reio6Ojo6Ojo6PQ22wFBUVITQ0FAEBAXjiiSewfft2JCQk4MyZMwCAJUuWIDMzE7t27cLo0aNx55134tSpUwCAyspK9O7d2+V8fn5+iIqKQmVlJedntrS0oL6+3uU/HR0dHR0dne4DtcEydOhQFBQU4JtvvsGTTz6Jhx9+GCUlJbDb7QCAOXPm4JFHHsGoUaOwevVqDB06FO+8846ki1y5ciXCw8M7/9NLmnV0dHR0dLoX1AaLv78/4uLiMGbMGKxcuRIjRozAmjVrYLVaAQAJCQkux99yyy04d+4cAMBiseDy5csur7e3t6OmpgYWi4XzM7OyslBXV9f5348//kh72To6Ojo6OjoaRrI0v91uR0tLC2JiYtC3b1/897//dXn95MmTGDhwIAAgJSUFtbW1+O677zpf37t3L+x2O2677TbOzwgICOgsYdZLmXV0dHR0dLofVDosWVlZmDJlCgYMGICGhgZkZ2dj37592L17NwwGA5577jm8+OKLGDFiBEaOHIl3330XP/zwA7Zu3Qqgw9uSnp6OzMxMvPnmm2hra8P8+fNx//33E1cI6ejo6Ojo6HQ/qAyWy5cvY/bs2aioqEB4eDiSkpKwe/dupKWlAQB+//vfo7m5GQsWLEBNTQ1GjBiB3NxcDB48uPMc//rXvzB//nzceeedncJxf/vb3+T9VhrFZncgv7QaeWeqABiQMrgnkgf1hMmo90vS0dHR0eneSNZh8Qa+psPS2m5H1rZCfFxwEW1219sREWzGqvuGIz3R6qWr09HR0dHRkQev6LDoyMPKnBIMXbQTHx690MVYAYDapjY88f5R7Cqu8MLV6ejo6OjoqAPdYPEiK3NKsOHrMpC4uJZ+UgIbi0Gjo6Ojo6PTHdANFi/R2m7Hxv1lxMdX1DXjcFmNglfU/bDZHcgrrcaOggvIK63WDUIdHR0dFUOVdKsjH+/llYN2fbzc0KzMxXQzbHYH1u49hU0Hy1F7ra3z79bwQLx4d4KeL6Sjo+NT2OwOHC6rweWGZvTuEYixsVGaLObQDRYvcbamifo9vXsEKnAl3YtdxRV4flsRapvaurxWWdeMJ98/ivUPjtaNFh0dHZ9gV3EFln5Sgoq6GxterW7O9JCQlxgYFUx1vDW8wyrW6QppaGdXcQWefP8oq7ECoDOXSM8X0tHR8QWYOc/ZWAFubM60Vsyhe1g8iLNbbkjvHjAYANKi8hfvTtCkC09pSHcPNrsDSz8pEUxwduBGvlDK4J7KXLQC+IrLV4ju8j11dKTCN+c5ABjQsTlLS7BoZgzpBouHYFtYg/2NaGq1877PAGDdrFGac90pgftidaWxBfOyj3UZkGyhncNlNV12GXxoKV/Il1y+fLB9z4ggMx4ZF4v5qXGamXR1dDyB0Jynxc2ZbrB4AMYt576wXhMwVgBg3azRyEjynUVHLGyLldEA4t0DrQGilXwhrmfL1/JxuL5n7bU2rN5zEv/YX4rXZiQhI0lv8aGjA5BvurS0OdNzWBSGxC0XHmhCjwBX29EaHog3H9SNFYA7DsuXZuK8ewDoDBCt5AsJPVuAb+TjkITzGltsmJt9DCtzSjx2XTo6aoZ0ztPK5gzQPSyKQ+KWq2u24V+P3gbjdU+AHpu/AWnuCRfM7mFsbBSs4YGorGsWPJdW8oV80eXLBk04b8PXZRjRL1I39HW6PUJzngGARSObMwbdw6IwpO62qsYWpAzuiekjb0LKYL3hIQNt7ok7zO7BZDTgxbsTAHQMVDYigs14U0MhFF9y+drsDhw8VYXXdv2ABVuO4bXdP+DgqSrY7A7q61+8o1jzXiUdHanwzXnMv7WyOWPQPSwK44tuOU8idrFl2z2kJ1qx/sHRXRM3g8145HbtJW76yrPFpY2z7svS6/cmhup81Y2tmvcq6ejIAdecZ9FoUr5usCiML7rlPImYxZZv95CeaEVagsVrpbGt7Xa8e6gMR8qvIMTfhPtG98PtcdGiPt8Xnq1dxRV44v2jnK/XNrVh9Z5TiAg2c+rnsKEFr5KOjifw9pwnJ7rBojCMW+7J94/CANeqFq265TxJtYiFR2j3YDIavLL7XplTgn+4NbvcXnARIf4m/OVXIzqvl1RrRMvPls3uwKHTVXjmgwKi4x124Yo6Z9TuVdLR8STemvPkxuBwkEqXqYf6+nqEh4ejrq4OYWFh3r4cIrqLVoac2OwOJC3djcYWG9Hx838xGOPieqly98B05ubjzQdHAwD1c6K1Z4uvPYIcWMMDcWBhquqeAWfUJoCntuvR8V2krN+6weJBxE4K3XUyOXiqCg+8/Q3x8WvuH4npI29S8IrE0dpux5BFOwWP4wp7MHeaT1NFK8+IUAhIKgbw/05qQG0GptquR8e3kbJ+6yEhSqQsDGLcct15Msk7U0V1vFrDAO8eKic6jq/HESOEl3pzH3x39kqX508LLl+b3YElHyunk6KFcSEk9Ldu1mhEhvh7zPDsLsKDOr6BbrBQwC0NHoP5qfEAIOsuV59MyH87RuxNjZ6GI+XVks/BaKqMWZ6Lhub2zr9rYZFmOFxWg8p6+ZNh1RwKdIZE6G/+5qMugohRIWYsn56oiIKvL/aa0Qqt7Xa8l1eOM1WNuFzfjN49AjCoVygeSomBv5+uNsKFbrAQwi8Nfgr/+PoMzH5Gl12ylMVEn0yAlME9sfbL00THvnh3AnJLKlXpjQr2l2+YORsrgLaMV6Uqd+L79FC9dwkg0xRyl4+paWzD3OxjmHO+FlkZCR69Hl8RHlQbbMn3DCtyvkfm+FjZ77WvoJtyBBBJg7faurj0pbTwpplMfJXkQT0REWwWPC4iyA92u0O1bdRnjO6n2Lm9KcFvszuQV1qNHQUXkFdaLfj5SoXs1BoKdEeKwbbh6zLkFMr7DPuS8KBWYJLvuUaK3dFxr/UWE+zoBosTXBOwWLVVKYuJPpl05Pw8cnus4HG119qxaEexanvq3B4XjWB/k+BxEUFmiiDYDeQwXmmNj13FFRi
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure()\n",
"plt.scatter(pos[:, 0], pos[:, 2])\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 105,
"metadata": {},
"outputs": [],
"source": [
"clumparr = reader.read_phew_clumps(951, 7444, True)\n",
"\n",
"# clindex = clumparr['index']\n",
"# clindex_to_array_index = {clindex[i]: i for i in range(clindex.size)}"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 103,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Ultimate clump: 100%|██████████| 541043/541043 [00:00<00:00, 1486022.37it/s]\n"
]
}
],
"source": [
"x, y = reader.find_parents(clumparr, verbose=True)"
]
},
{
"cell_type": "code",
"execution_count": 98,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAi0AAAGhCAYAAACtc4RMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABpBUlEQVR4nO3df2xU550v/veZmePx4BKP+bFQGzLkay1WDLGNXAi5aVknS+ObtSBwb7urSGzTXClXQmzJFfJeEaWpxYaUSOsbRbQW2e1VbzZLl0tSaYFcN4UNKeI2Gwp1sKlDghMudZFdCIkZQybjYX59/xg/x8+cOTNzxp4f58y8XxIFz49znnPsZj5+ns/n8yjxeDwOIiIiIotzlHoARERERGYwaCEiIiJbYNBCREREtsCghYiIiGyBQQsRERHZAoMWIiIisgUGLURERGQLrlIPIF9isRjGx8cxf/58KIpS6uEQERGRCfF4HLdv30Z9fT0cjsxzKWUTtIyPj2P58uWlHgYRERHNwtWrV7Fs2bKMrymboGX+/PkAEhd91113lXg0REREZMatW7ewfPly7XM8k7IJWsSS0F133cWghYiIyGbMpHYwEZeIiIhswfZBS19fH5qbm7F27dpSD4WIiIgKSCmXXZ5v3bqF2tpaTE5OcnmIiIjIJnL5/Lb9TAsRERFVBgYtREREZAu2D1qY00JERFQZmNNCREREJcOcFiIiIio7DFqIiIjIFmwftDCnhYiIqDIwp4WIiIhKhjktREREVHYYtBAREZEtMGghorJw8MwoHnzxHRw8M1rqoRBRgdg+aGEiLhEBwIFTlzHmD+LAqculHgoRFYjtg5YdO3bg4sWLOHfuXKmHQkQltL2jEQ1eD7Z3NJZ6KERUIKweIiIiopJh9RARERGVHQYtREREZAsMWoiIiMgWGLQQERGRLdg+aGHJMxERUWVg9RARERGVDKuHiIiIqOwwaCEiIiJbYNBCREREtsCghYiIiGyBQQsRERHZgu2DFpY8ExERVQaWPBMREVHJsOSZiIiIyg6DFiIiIrIFBi1ERERkCwxaiIiIyBYYtBAREZEtMGghIiIiW2DQQkRERLbAoIWIiIhswfZBCzviEhERVQbbBy07duzAxYsXce7cuVIPhYgq0MEzo3jwxXdw8MxoqYdiK7xvNBu2D1qIiErpwKnLGPMHceDU5VIPxVZ432g2GLQQEc3B9o5GNHg92N7RWOqh2ArvG80GN0wkIiKikuGGiURERFR2GLQQERGRLbhKPQAiIiKytoNnRtF7/BIAoLuzCdvW+0oyDs60EBGRZbAU2poOnLoMfzAMfzBc0oovBi1ERGQZLIW2pu0djfB6VHg9akkrvrg8RERkUQfPjOLAqcvY3tFYsun4Ytve0ahdM1nHtvU+S/wMcqaFiMiiKnHWYdt6H97d/bAlPiArmVWX6Ri0EBFZFBuwUalYNWDm8hARkUVZZUqeKo9Vl+lsH7T09fWhr68P0Wi01EMhIiIqC1YNmNnGn4iIqMKVsg8L2/gTERGRaVbpw5INgxYiIqooVq2MKSWr9GHJhstDRERUUR588R2M+YNo8Hrw7u6HC3aeSuyzMxtcHiIiIksr5WxHsUrJrVo2bGcMWoiIqOhK+YFerAZ27LOTf7YveSYiIvuxah+QfLJq2bCdcaaFiMgmyimB1Ort+svpXpcTBi1ERDbBHIni4b22JgYtREQ2wRyJ4uG9tiaWPBMREVHJsOSZiIjIJOav2AeDFiKyFH6AULExf8U+GLQQkSWIYKX3+CV+gFBRlWP+ys5D59H4TD92Hjpf6qHkFYMWIrIE8dsugLL7AKHiynW2zurl17PRf2Ec0Xji73LCoIWILEH8ttvd2VR2HyBUXPlc7rHTcqU81q6WejgVoKulvtTDyitWDxFRReOmduUnn9/TYm2umA9te07AHwzD61Ex2PNIqYdjmuWrh7Zu3Yq6ujp861vfSnp8xYoVaGlpQVtbGx566KFSDI2IKgyTMK1tNjMd+VzuMZvvYqcZGTsrSdDy9NNP47XXXjN87t///d8xODiIX/3qV0UeFRFVEvEh0+6rs30OTTl/YNolqCzlOMX3f8PKxdoSa7kqSdDS0dGB+fPnl+LUREQAZj5kBkZv2j6HxgofmIUKmEpd2WP23pZynOX0s5xNzkHL6dOnsWnTJtTX10NRFBw5ciTlNX19fVixYgWqq6tx//334+zZs6aOrSgK/uzP/gxr167Fz372s1yHRkRkWqk/DPOpWNdiFKAUOmAqdWWP2XtbynGW089yNq5c3xAIBNDa2or/8l/+C/7Tf/pPKc8fPnwYu3btwiuvvIL7778fL7/8Mjo7O3Hp0iX8yZ/8ScZj//rXv0ZDQwP++Mc/YuPGjbjvvvvQ0tJi+NpQKIRQKKR9fevWrVwvhYgq2Lb1vrL5jbRY1yIHKOJ82zsataTXcmSHnxM7jDFfcp5pefTRR7F3715s3brV8PmXXnoJTz31FJ588kk0NzfjlVdewbx58/DTn/4067EbGhoAAF/96lfxF3/xF3j//ffTvnbfvn2ora3V/ixfvjzXSyEisg0r5K0Y/UZf6pmQSmSFn4VSyWtOy507dzAwMICNGzfOnMDhwMaNG/Hee+9lfG8gEMDt27cBAF988QXeeecdrFq1Ku3rn3nmGUxOTmp/rl69mp+LICKyICskpJZjgGLHAMAKPwulkteg5bPPPkM0GsWSJUuSHl+yZAmuXbumfb1x40Z8+9vfxi9+8QssW7YM7733Hq5fv46vf/3raG1txfr16/Gd73wHa9euTXsut9uNu+66K+kPEVG5qqS8hbnKJRCxYwBQyT8LOee05MPbb79t+PjQ0FCRR0JEZA9WzVuwYnM+o9wbQT9eK+bkZLunVv1ZKIa8zrQsWrQITqcT169fT3r8+vXrWLp0aT5Ppenr60Nzc3PGWRkiIioMK85UZJqJ0I/XikteVrynVpHXoKWqqgrt7e04efKk9lgsFsPJkyfxwAMP5PNUmh07duDixYs4d+5cQY5PRETpWXGpIlMgYsXx6tlhjKWS895DX3zxBT755BMAwJo1a/DSSy/hoYcewoIFC3D33Xfj8OHDeOKJJ/AP//APWLduHV5++WW8/vrr+Oijj1JyXfKJew8RUalYcYnEKsr53pTztRVTQfce+u1vf4s1a9ZgzZo1AIBdu3ZhzZo1+MEPfgAA+Ku/+iv09vbiBz/4Adra2jA4OIhf/vKXBQ1YiIhKqZyn8+daXVPO96acr82qcg5aOjo6EI/HU/68+uqr2mv+5m/+BqOjowiFQvjNb36D+++/P59jTsKcFiIqtXxM5xer9DbX88z1gznfSx1WKlHmMk7x5bw8ZFVcHiIiO3vwxXcw5g+iwevBu7sftsx5rLAEIo9BBFHy+K0wRpq9gi4PERFR/hXrt/Zcz2OU1Frs2Q55tsdo/LnOBllptoZyw5kWIiILs+IsQrFmhYRs90B+HkDW+1Xs8VNmFTXTwpwWIipnvccvYcwfRO/xSwU9Ty6zD8XOU8nWS0V+3sysi9H4OftiD5xpISKysLY9J+APhuH1qBjseaRg5ynl7EM+zz3bmSnOvpRORc20EBGVs+7OJjR4PejubCroeYqVU2M0o5HPc8+2wy0rgeyBMy1ERGSoEPk0nNEgPc60EBEVSalzIQp5/kI0T5vtjMZcrrPU3yPKHwYtRERzkO8P9mI3f8ukEEsms12+mct1Wq1zLYOo2bN90MLqIaLs+B/Jwsn3B7uZD1j5+1nIXAwr7YA8l+u0Wr6K1YIoO2FOC1EFYB6BfZjJI+H3MztxH9t9dRgYvWmpPjdW7L1TSrl8fjNoIaoAVvuPpNXGY5ZVxm2VcViRuDeBUAT+YBhOBYjGUfIAj9+z9Bi0MGghKrlM/5G28kyBXcc9G+X4QSq+R16Pihq3q+QzLfogqlx+dvKJ1UNEVHKZ1u2tlmMgy9SB1srjno1C5VYUI4cq3TnE96i7swnv7n4Y+x9fU9K8HHGPAZTVz06puEo9ACIqT2JHXqP/SG9b77Plb/Z2HXc6mb5HcyEHQ4W6X+nOYbX
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"m = clumparr[\"index\"] == clumparr[\"parent\"]\n",
"\n",
"plt.figure()\n",
"plt.scatter(clumparr[\"mass_cl\"][m], y[m], s=1)\n",
"\n",
"plt.xscale('log')\n",
"plt.yscale('log')\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {},
"outputs": [],
"source": [
"clindex = clumparr[\"index\"]\n",
"parindex = clumparr[\"parent\"]\n",
"\n",
"clindex_to_array_index = {clindex[i]: i for i in range(clindex.size)}"
]
},
{
"cell_type": "code",
"execution_count": 70,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"74641 57778\n",
"74641 57778\n",
"57778 57675\n"
]
},
{
"data": {
"text/plain": [
"(57675, 57675)"
]
},
"execution_count": 70,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"i = 2333\n",
"\n",
"cl = clindex[i]\n",
"par = parindex[i]\n",
"print(cl, par)\n",
"\n",
"while cl != par:\n",
" print(cl, par)\n",
"\n",
" element = clindex_to_array_index[par]\n",
"\n",
" cl = clindex[element]\n",
" par = parindex[element]\n",
" \n",
"cl, par"
]
},
{
"cell_type": "code",
"execution_count": 75,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(57675, 0, 57675, 2235., 328.36127, 247.63182, 338.77762, 80.28267, 227150.55, 515.31525, 2.6499586e+12, 209.85902)"
]
},
"execution_count": 75,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"clumparr[1338]"
]
},
{
"cell_type": "code",
"execution_count": 74,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1338"
]
},
"execution_count": 74,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"clindex_to_array_index[57675]"
]
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(16, 16)"
]
},
"execution_count": 57,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cl, par"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(283, 0, 244, 3475., 330.3978, 200.27946, 299.4979, 80.01514, 166588.81, 533.9489, 5.616282e+12, 34.512917)"
]
},
"execution_count": 49,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"clumparr[92]"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"66"
]
},
"execution_count": 53,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"clindex_to_array_index[244]"
]
},
{
"cell_type": "code",
"execution_count": 54,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(244, 1, 16, 2946., 330.4896, 200.48395, 299.27054, 81.122246, 184821.58, 539.8623, 4.571406e+12, 38.29027)"
]
},
"execution_count": 54,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"clumparr[66]"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(283, 0, 244, 3475., 330.3978, 200.27946, 299.4979, 80.01514, 166588.81, 533.9489, 5.616282e+12, 34.512917)"
]
},
"execution_count": 44,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"clumparr[]"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"13"
]
},
"execution_count": 47,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"clindex_to_array_index[16]"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(16, 0, 16, 6257., 330.06946, 200.00058, 299.66724, 80.11476, 782089.5, 536.5994, 9.229422e+12, 107.78266)"
]
},
"execution_count": 48,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"clumparr[13]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([ True, False, False, ..., False, False, False])"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x[0] == clumparr[\"index\"]"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAGhCAYAAABlH26aAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyde3xcdZn/32fumWSSTC4NSZPQQtNyM2mLUJFSFCvCCkVuK2tdu1DRtegiFxdQf1x2WRUtAqtFUWEtUi4rKBTUbi0IabkUaNpUaJumbWiuzXUmmcz9cn5/nDmnZyYzySRNmku/79eLV8nMmXObM3OeeZ7P83kkWZZlBAKBQCAQCGYwhsneAYFAIBAIBIKJRgQ8AoFAIBAIZjwi4BEIBAKBQDDjEQGPQCAQCASCGY8IeAQCgUAgEMx4RMAjEAgEAoFgxiMCHoFAIBAIBDMe02TvwHgRi8Vob2/H4XAgSdJk745AIBAIBIIMkGUZj8dDWVkZBsPE5WFmTMDT3t5ORUXFZO+GQCAQCASCMdDS0kJ5efmErX/GBDwOhwNQTlhubu4k741AIBAIBIJMGBgYoKKiQruPTxQzJuBRy1i5ubki4BEIBAKBYJox0XIUIVoWCAQCgUAw4xEBj0AgEAgEghmPCHgEAoFAIBDMeETAIxAIBAKBYMYjAh6BQCAQCAQzHhHwCAQCgUAgmPGIgEcgEAgEAsGMZ9oHPOvWreOMM87gnHPOmexdEQgEAoFAMEWRZFmWJ3snxoOBgQHy8vLo7+8XxoMCgUAgEEwTjtf9e9pneAQCgUAgEAhGQgQ8AoFAIBAIZjwi4BEIBAKBQDDjEQGPQCAQCASCGY8IeAQCgUAgOIHZ3erm5md3srvVPdm7MqGIgEcgEAgEghOYx7c18cruDh7f1jTZuzKhmCZ7BwQCgUAgEEweq5fOTfh3piICHoFAIBAITmCqy/N55LpFk70bE44oaQkEAoFAIJjxiIBHIBAIBALBjGdSAp4rr7wSp9PJNddck/D4nDlzqK6uZuHChXz605+ejF0TCAQCgUAwA5kUDc/NN9/MDTfcwPr164c899Zbb5GTkzMJeyUQCAQCgWCmMikZnk996lM4HI7J2LRAIBAIBIITkFEHPLW1tVx++eWUlZUhSRIvvvjikGXWrVvHnDlzsNlsLFmyhHfffTejdUuSxIUXXsg555zDhg0bRrtrAoFAIBAIphGyLPOXv/zluGxr1AGP1+ulpqaGdevWpXz+ueee49Zbb+Wee+6hrq6OmpoaPve5z9HV1TXiurdt28aOHTvYuHEjP/jBD9i9e3faZYPBIAMDAwn/CQQCgUAgmB50dnby+c9/nuuuu+64bG/UAc+ll17K/fffz5VXXpny+Z/+9KfceOONXH/99Zxxxhn88pe/xG6388QTT4y47tmzZwNQWlrKP/zDP1BXV5d22R/+8Ifk5eVp/1VUVIz2UAQCgUAgEEwCf/7zn6muruYvf/kLFovluGxzXDU8oVCIHTt2sHz58qMbMBhYvnw5b7/99rCv9Xq9eDweAAYHB3nttdc488wz0y5/11130d/fr/3X0tIyPgchEAgEAoFgwti7dy+XXXYZXV1dnHXWWbzxxhvHZbvj2qXV09NDNBqlpKQk4fGSkhL27dun/b18+XLq6+vxer2Ul5fz+9//npKSEi1rFI1GufHGGznnnHPSbstqtWK1Wlm3bh3r1q0jGo2O56EIBALBpLO71c3j25pYvXQu1eX5k707gmNEvJ8Kp59+Ot/61rcAeOCBBwiFQsdlu5PSlr5ly5aUj9fX1496XTfddBM33XQTAwMD5OXlHeuuCQQCwZRBHeoInBDW/zOdE/X9lGWZX/ziF1x22WVUVlYC8PDDDyNJEsD0DHiKioowGo10dnYmPN7Z2clJJ500npsSCASCGc+JMtTxROFEfD+7urq4/vrr+fOf/8yzzz7L3/72N4xGoxbsHE/GVcNjsVg4++yzefXVV7XHYrEYr776Kuedd954bkpj3bp1nHHGGcOWvwQCgWA6og51PJHLHzOJE+393LRpE9XV1fz5z3/GarVy7bXXYjBM3kSrUWd4BgcHOXDggPZ3U1MTu3btoqCggMrKSm699VZWrVrFxz/+cc4991wefvhhvF4v119//bjuuIooaQkEAoFAMHUIBALceeedPPLIIwCceeaZPPPMM3zsYx+b1P0adcDz/vvvJ8y5uvXWWwFYtWoVv/3tb/niF79Id3c3d999N0eOHGHhwoVs2rRpiJBZIBAIBALBzKKlpYXLLrtM89H75je/yY9//GOysrImec9AkmVZnuydGA/UDE9/fz+5ubmTvTsCgUAgEJxwBAIBzjnnHDo7O/mf//kfPv/5z4/4muN1/56ULq3xRLSlCwQCgUAwefT29pKfn4/RaMRms/GHP/wBh8Mx5ZqVJk89NE7cdNNN7Nmzh/fee2+yd0UgEAgEghOKzZs3c9ZZZ/GjH/1Ie6yqqmrKBTswAwIegUAgEAgEx5dgMMitt97K5z73OY4cOcLvf/97wuHwZO/WsIiARyAQCAQCQcbs2bOHJUuW8NBDDwGwZs0a3n77bcxm8yTv2fBM+4BH+PAIBAKBYCqxu9XNzc/uZHere7J3ZVxRHZPPPvts6uvrKSoqYuPGjaxbt25KdGGNhOjSEggEAsExIWZEJXLzszt5ZXcHl1WXzqgREk1NTZx++ukEg0E++9nPsn79ekpLS495vaJLSyAQCATTghN1RlQ6ZuoIiblz5/Lwww/j8/n49re/PamuyWNBZHgEAoFAcEyIDM/0ZKT3LRgM8v/+3//j6quvZsmSJRO2H8fr/j29wrMUCA2PQCAQTC4n2oyomYKamXt8W9OQ5/bt28d5553HT37yE1auXEkwGJyEPRxfpn3AI3x4BAKBYPTMVGHtTGSi3qvVS+dyWXVpQulNlmV+9atfsXjxYnbu3ElhYSE//elPsVqt47rtyUBoeAQCgeAEROhupg8T9V6pmTmV3t5ebrzxRv74xz8CjKsweSogAh6BQCA4AZmpwtqZyPF4r1paWvjEJz5Be3s7ZrOZH/3oR9NSmDwcQrQsEAgE0wAhDB4fTsTzmMkxy7LM5ZdfzsGDB3n66adZtGhoJmmizp0QLQsEAoFAYziBqSBzTsTzmO6Y9+/fz8DAAACSJPHkk0/y/vvvpwx2hlvPdGHaBzyiS0sgEJwIpBKYnqgci4j3WM/jdBR7Jx+zLMv8+te/ZtGiRXzrW9/SlisoKCA7Ozvj9Uw3RElLIBAIBNMK1cn4/HmFOO2W41qemu4uysnC5M985jO88sor2Gy2SdsnUdISCAQCgSAFaqZBguNeYpnOWY7XXnuNmpoa/vjHP2I2m/nxj3/M5s2bUwY70zGTNRKiS0sgEAgE0wq1nXp3q5t8e9NxDT6SW7mnA6FQiLvvvpsf//jHyLLM/PnzeeaZZ1i8eHFaIfJMtC0QAY9AIBAIpiXTMfiYDPr7+/ntb3+LLMvceOON3HD7Payv68I0y502sJmJtgUi4BEIBAKBYIYhyzKSJAFQXFzM7373OzweD1dddZWmQ4L0gc1MDCaFhkcgEAgEM4bJ1p6M5/bHui6Xy8U//uM/8uyzz2qPffazn+Wqq64CEnVIJ9IctGkf8Ii2dIFAIBCoTLZXzHhuP9W6RgqC3njjDaqrq3n++ef51re+hc/nG7LMiRTk6Jn2AY8YHioQCAQzl9FmOSa7i2o8t59qXekCqnA4zHe/+10+/elP09raSlVVFZs2bcJutx/zfswUhA+PQCAQCKYs0933ZrxJ1VV14MABvvSlL2k//FevXs3DDz9MTk7OJO5p5ggfHoFAIBCMO5OtcRktk52xyYTxOqfJ60m13uryfFYvncvj25rY3eqms7OTRYsW8d577+F0Onn++ef5zW9+M22CneOJCHgEAsGUYbrdjKcjk61xGS3TQW8yXuc0eT3p1qt/vKSkhNWrV3PhhRdSX1/P1VdffUz7MJMRbekCgWDKMBPNzqYa09lfZbInnafb/nid0+T1pFvvQlM7A6VHH//xj3+M0WjEaDQe0/ZnOkL
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"m = clumparr[\"index\"] == clumparr[\"parent\"]\n",
"\n",
"plt.figure()\n",
"plt.scatter(clumparr[\"mass_cl\"][~m], y[~m], s=0.5)\n",
"\n",
"plt.axline((1e12, 1e12), slope=1, color=\"black\", linestyle=\"--\")\n",
"\n",
"plt.xscale(\"log\")\n",
"plt.yscale(\"log\")\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 71,
"metadata": {},
"outputs": [],
"source": [
"clindex_to_array_index = {clindex[i]: i for i in range(clindex.size)}"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"a"
]
},
{
"cell_type": "code",
"execution_count": 110,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"<__array_function__ internals>:200: RuntimeWarning: invalid value encountered in cast\n",
"Ultimate clump: 100%|██████████| 541043/541043 [00:00<00:00, 1174427.26it/s]\n",
" 73%|███████▎ | 395059/541043 [00:22<00:08, 17753.93it/s]"
]
},
{
"ename": "",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[1;31mThe Kernel crashed while executing code in the the current cell or a previous cell. Please review the code in the cell(s) to identify a possible cause of the failure. Click <a href='https://aka.ms/vscodeJupyterKernelCrash'>here</a> for more info. View Jupyter <a href='command:jupyter.viewOutput'>log</a> for further details."
]
}
],
"source": [
"clumparr2 = reader.read_phew_clumps(951, 7444, True)"
]
},
{
"cell_type": "code",
"execution_count": 109,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.339305748341629"
]
},
"execution_count": 109,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"m.sum() / m.size"
]
},
{
"cell_type": "code",
"execution_count": 107,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAGhCAYAAABlH26aAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9e3xU9Z3//zozczIzjJBJAIGJElkqlBASUgpidSlaLrURxN5p2Vrbn7ulKLYs3S8WMVKgUKXWRbO23d1Wu1SqdVsujQpWl1KpFEUIchGUYrREriEBhslkLuf3x5n3Zz7nM+fMnEkml0k+z8dDw8ycOedzLnM+7/N+v97vt6JpmgaJRCKRSCSSXoyjuwcgkUgkEolE0tlIg0cikUgkEkmvRxo8EolEIpFIej3S4JFIJBKJRNLrkQaPRCKRSCSSXo80eCQSiUQikfR6pMEjkUgkEomk1+Pq7gHking8jsbGRvTv3x+KonT3cCQSiUQikdhA0zRcvHgRgUAADkfn+WF6jcHT2NiIq6++uruHIZFIJBKJpB188MEHuOqqqzpt/b3G4Onfvz8A/YANGDCgm0cjkUgkEonEDhcuXMDVV1/N5vHOotcYPBTGGjBggDR4JBKJRCLJMzpbjiJFyxKJRCKRSHo90uCRSCQSiUTS65EGj0QikUgkkl6PNHgkEolEIpH0eqTBI5FIJBKJpNcjDR6JRCKRSCS9HmnwSCQSiUQi6fXkvcFTW1uLsrIyTJw4sbuHIpFIJBKJpIeiaJqmdfcgcsGFCxdQWFiIlpYWWXhQIpFIJJI8oavm77z38EgkEolEIpFkQho8EolEIpFIej3S4JFIJBKJRNLrkQaPRCKRSCSSXo80eCQSiUQi6cOs39WAG9a8gvW7Grp7KJ2KNHgkEolEIunDPLH9GE40h/DE9mPdPZRORRo8EolEIpH0YeZPHYkSvxfzp47s7qF0KrIOj0QikUgkkm5D1uGRSCQSiUQiyRHS4JFIJBKJRNLr6RaD5/bbb0dRURE+//nPG96/5pprUFFRgfHjx+Omm27qjqFJJBKJRCLphbi6Y6P33nsvvvGNb+Cpp55K+ewvf/kLrrjiim4YlUQikUgkkt5Kt3h4pk6div79+3fHpiUSiUQikfRBsjZ4duzYgVmzZiEQCEBRFGzcuDFlmdraWlxzzTXweDy47rrrsHv3blvrVhQFn/zkJzFx4kT8+te/znZoEolEIpFI8ghN0/DCCy90ybayNniCwSAqKytRW1tr+vkzzzyDRYsWoaamBm+++SYqKysxc+ZMnD59OuO6X331VezZswebN2/GD3/4Q+zfv99y2XA4jAsXLhj+k0gkEolEkh+cOnUK1dXV+PKXv9wl28va4LnllluwcuVK3H777aafP/LII7jrrrtw5513oqysDD/96U/Rr18//OIXv8i47pKSEgDAsGHD8JnPfAZvvvmm5bKrV69GYWEh++/qq6/OdlckEolEIpF0A88//zwqKirwwgsvoKCgoEu2mVMNT1tbG/bs2YNp06YlN+BwYNq0aXjttdfSfjcYDOLixYsAgEuXLuGVV17B2LFjLZe/77770NLSwv774IMPcrMTEolEIpFIOo3Dhw/j1ltvxenTp1FeXo4//elPXbLdnGZpnT17FrFYDEOGDDG8P2TIELz99tvs9bRp01BfX49gMIirrroKv/3tbzFkyBDmNYrFYrjrrrswceJEy2253W643W7U1taitrYWsVgsl7sikUgk3c76XQ14YvsxzJ86EvMml3b3cCQdRJ5PnTFjxuCee+4BAPzoRz9CW1tbl2y3W9LS//jHP5q+X19fn/W6FixYgAULFrDS1BKJRNJb4Js69uUJsrfQV8+npml44okncOutt2L48OEAgEcffRSKogBAlxk8OQ1pDRo0CE6nE6dOnTK8f+rUKQwdOjSXm5JIJJJeT19p6thX6Ivn8/Tp07j11luxYMECzJs3j0VjyNjpSnLq4SkoKMCECRPw8ssvY86cOQCAeDyOl19+GXfffXcuN8WQIS2JRNJbmTe5tE95Ano7fe18vvjii/j617+OU6dOwe124wtf+AIcju7raJW1wXPp0iW8++677PXx48exb98+FBcXY/jw4Vi0aBHuuOMOfPzjH8ekSZPw6KOPIhgM4s4778zpwAkZ0pJIJBKJpOfQ2tqKJUuW4N///d8BAGPHjsWGDRswbty4bh1X1gbPG2+8YehztWjRIgDAHXfcgSeffBJf+tKXcObMGTzwwAM4efIkxo8fjxdffDFFyCyRSCQSiaR38cEHH+DWW29ldfTuvvtuPPTQQ/B6vd08MkDRNE3r7kHkAvLwtLS0YMCAAd09HIlEIpFI+hytra2YOHEiTp06hV/+8peorq7O+J2umr+7JUsrl0gNj0QikUgk3ce5c+fg9/vhdDrh8Xjwu9/9Dv379+9xyUrdpx7KEQsWLMChQ4fw+uuvd/dQJBKJRCLpU2zbtg3l5eVYs2YNe+/aa6/tccYO0AsMHolEIpFIJF1LOBzGokWLMHPmTJw8eRK//e1vEYlEuntYaZEGj0QikUgkEtscOnQI1113HX7yk58AAL797W/jtddeg6qq3Tyy9OS9wVNbW4uysrK0bSgkEolEIukq1u9qwA1rXsH6XQ3dPZScQhWTJ0yYgPr6egwaNAibN29GbW1tj8jCyoTM0pJIJBJJh5A9oozcsOYVnGgOocTvxc4lN3f3cHLG8ePHMWbMGITDYUyfPh1PPfUUhg0b1uH1dtX8nfceHolEIpF0L3yPKEnvbSExYsQIPProo/jxj3+MF198MSfGTlciPTwSiUQi6RDSw5OfZDpv4XAYy5Ytw+c+9zlcd911nTaOrpq/897g4evwHD16VBo8EolEIpHYIF3o7e2338ZXvvIV7N27FyNHjsTBgwfhdrs7ZRwypGUTWYdHIpFIsqe3Cmt7I511rsxCb5qm4ec//zk+9rGPYe/evRg4cCAeeeSRTjN2upK89/AQMqQlkUgk9umtwtreSFedq3PnzuGuu+7C73//ewDIqTA5HdLDI5FIJJJOo7cKa3sjXXGuPvjgA1RUVOD3v/89VFXNW2FyOqSHRyKRSPIAKQzODX3xONrZZ03TMGvWLBw7dgxPP/00qqqq2rWe9iA9PBKJRCJhyNTv3NAXj6PVPh89ehQXLlwAACiKgl/96ld44403TI2ddOvJF/Le4JGVliUSSV9AhqCSdETE29HjmI9ib3GfNU3Df/7nf6Kqqgr33HMPW664uBg+n8/2evINGdKSSCQSSV5BIl6/V4XP7erS8FS+i71FYfKnPvUp/OEPf4DH4+m2McmQlkQikUgkJpCnAUCXh1jy2cvxyiuvoLKykgmTH3roIWzbts3U2MlHT1YmpIdHIpFIJHlJXxQgt4e2tjY88MADeOihh6BpGkaNGoUNGzbgYx/7mOUx7EpPlvTwSCQSiUSShnmTS7Fzyc3S2MlAS0sLnnzySWiahrvuugvf++lG3LOtmRk7Zl6yfPZkWSE9PBKJRCKR9DI0TYOiKOz1Sy+9hIsXL+Kzn/2swXszf+rIbveSSQ+PRCKRSCRZ0t3ak1xuv73rOn/+PL74xS/iN7/5DXtv+vTp+OxnPwvA6L3pS16yvDd4ZFq6RCKRSIjurhWTy+2brSuTEfSnP/0JFRUVeO6553DPPffg8uXLKcv0JSOHJ+8NHtk8VCKRSHov2Xo5ult7ksvtm63LyqCKRCL4/ve/j5tuugl///vfce211+LFF19Ev379OjyO3oLU8EgkEomkx5LvdW9yjVlW1bvvvouvfOUr7MH/m9/8Jh599FFcccUV3TlU20gNj0QikUhyTndrXLKluz02dsjVMRXXY7beeZNLmdB4/a4GnDp1ClVVVXj99ddRVFSE5557Dv/1X/+VN8ZOVyINHolE0mPIt8k4H+lujUu25IPeJFfHVFyP1Xr594cMGYJvfvOb+OQnP4n6+np87nOf69AYejPS4JFIJD2GfJuM85F88JhY0d0GsdX2c3VMxfVYrfemwrMYqLWw9x966CG8/PLLuPrqqzu0/d6O1PB
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure()\n",
"\n",
"m = clumparr2[\"index\"] == clumparr2[\"parent\"]\n",
"\n",
"\n",
"# plt.scatter(clumparr2[\"mass_cl\"][m], clumparr2[\"summed_mass\"][m], s=1)\n",
"plt.scatter(clumparr2[\"mass_cl\"][~m], clumparr2[\"summed_mass\"][~m], s=1)\n",
"\n",
"plt.axline((1e12, 1e12), slope=1, color=\"black\", linestyle=\"--\")\n",
"\n",
"\n",
"plt.xscale(\"log\")\n",
"plt.yscale(\"log\")\n",
"\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 83,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([ 1, 2, 3, ..., 21824378, 21824463, 21825308],\n",
" dtype=int32)"
]
},
"execution_count": 83,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"clindex"
]
},
{
"cell_type": "code",
"execution_count": 86,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1.22 µs ± 15 ns per loop (mean ± std. dev. of 7 runs, 1,000,000 loops each)\n"
]
}
],
"source": [
"par = 21824378\n",
"\n",
"%timeit clindex_to_array_index[par]"
]
},
{
"cell_type": "code",
"execution_count": 85,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"541040"
]
},
"execution_count": 85,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"clindex_to_array_index[par]"
]
},
{
"cell_type": "code",
"execution_count": 87,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2.69 ms ± 130 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
]
}
],
"source": [
"%timeit numpy.where(clindex == par)[0][0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"numpy.where(clumparr[\"index\"] == 3)[0][0]"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [],
"source": [
"def is_sorted_np(arr):\n",
" return np.all(arr[:-1] <= arr[1:])"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [],
"source": [
"from numba import jit"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {},
"outputs": [],
"source": [
"def is_sorted(arr):\n",
" for i in range(1, len(arr)):\n",
" if arr[i-1] > arr[i]:\n",
" return False\n",
" return True\n",
"\n",
"@jit(nopython=True, boundscheck=False, fastmath=True)\n",
"def is_sorted2(arr):\n",
" for i in range(1, len(arr)):\n",
" if arr[i-1] > arr[i]:\n",
" return False\n",
" return True"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 49,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"is_sorted2(clumparr[\"index\"])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2.59 ms ± 85.3 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
]
}
],
"source": [
"%timeit is_sorted_np(clumparr[\"index\"])"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"ks = np.argsort(clumparr[\"index\"])"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.alltrue(clumparr[\"index\"][ks] == clumparr[\"index\"])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Ultimate clump: 6%|▌ | 33740/541043 [01:01<15:18, 552.21it/s] \n"
]
},
{
"ename": "KeyboardInterrupt",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
"\u001b[1;32m/mnt/zfsusers/rstiskalek/csiborgtools/notebooks/test.ipynb Cell 5\u001b[0m line \u001b[0;36m1\n\u001b[0;32m----> <a href='vscode-notebook-cell://ssh-remote%2Bglamdring.physics.ox.ac.uk/mnt/zfsusers/rstiskalek/csiborgtools/notebooks/test.ipynb#W6sdnNjb2RlLXJlbW90ZQ%3D%3D?line=0'>1</a>\u001b[0m reader\u001b[39m.\u001b[39;49mfind_parents(clumparr, verbose\u001b[39m=\u001b[39;49m\u001b[39mTrue\u001b[39;49;00m)\n",
"File \u001b[0;32m~/csiborgtools/csiborgtools/read/readsim.py:426\u001b[0m, in \u001b[0;36mCSiBORGReader.find_parents\u001b[0;34m(self, clumparr, verbose)\u001b[0m\n\u001b[1;32m 422\u001b[0m par \u001b[39m=\u001b[39m parindex[i] \u001b[39m# First we try the parent of this clump\u001b[39;00m\n\u001b[1;32m 423\u001b[0m \u001b[39mwhile\u001b[39;00m tocont:\n\u001b[1;32m 424\u001b[0m \u001b[39m# The element of the array corresponding to the parent clump to\u001b[39;00m\n\u001b[1;32m 425\u001b[0m \u001b[39m# the one we're looking at\u001b[39;00m\n\u001b[0;32m--> 426\u001b[0m element \u001b[39m=\u001b[39m numpy\u001b[39m.\u001b[39;49mwhere(clindex \u001b[39m==\u001b[39;49m par)[\u001b[39m0\u001b[39m][\u001b[39m0\u001b[39m]\n\u001b[1;32m 427\u001b[0m \u001b[39m# We stop if the parent is its own parent, so a main halo. Else\u001b[39;00m\n\u001b[1;32m 428\u001b[0m \u001b[39m# move onto the parent of the parent. Eventually this is its\u001b[39;00m\n\u001b[1;32m 429\u001b[0m \u001b[39m# own parent and we stop, with ultimate parent=par\u001b[39;00m\n\u001b[1;32m 430\u001b[0m \u001b[39mif\u001b[39;00m clindex[element] \u001b[39m==\u001b[39m clindex[element]:\n",
"File \u001b[0;32m<__array_function__ internals>:177\u001b[0m, in \u001b[0;36mwhere\u001b[0;34m(*args, **kwargs)\u001b[0m\n",
"\u001b[0;31mKeyboardInterrupt\u001b[0m: "
]
}
],
"source": [
"reader.find_parents(clumparr, verbose=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "venv_csiborg",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
2024-03-28 12:23:52 +00:00
"version": "3.11.7"
Overlap fixing and more (#107) * Update README * Update density field reader * Update name of SDSSxALFAFA * Fix quick bug * Add little fixes * Update README * Put back fit_init * Add paths to initial snapshots * Add export * Remove some choices * Edit README * Add Jens' comments * Organize imports * Rename snapshot * Add additional print statement * Add paths to initial snapshots * Add masses to the initial files * Add normalization * Edit README * Update README * Fix bug in CSiBORG1 so that does not read fof_00001 * Edit README * Edit README * Overwrite comments * Add paths to init lag * Fix Quijote path * Add lagpatch * Edit submits * Update README * Fix numpy int problem * Update README * Add a flag to keep the snapshots open when fitting * Add a flag to keep snapshots open * Comment out some path issue * Keep snapshots open * Access directly snasphot * Add lagpatch for CSiBORG2 * Add treatment of x-z coordinates flipping * Add radial velocity field loader * Update README * Add lagpatch to Quijote * Fix typo * Add setter * Fix typo * Update README * Add output halo cat as ASCII * Add import * Add halo plot * Update README * Add evaluating field at radial distanfe * Add field shell evaluation * Add enclosed mass computation * Add BORG2 import * Add BORG boxsize * Add BORG paths * Edit run * Add BORG2 overdensity field * Add bulk flow clauclation * Update README * Add new plots * Add nbs * Edit paper * Update plotting * Fix overlap paths to contain simname * Add normalization of positions * Add default paths to CSiBORG1 * Add overlap path simname * Fix little things * Add CSiBORG2 catalogue * Update README * Add import * Add TNG density field constructor * Add TNG density * Add draft of calculating BORG ACL * Fix bug * Add ACL of enclosed density * Add nmean acl * Add galaxy bias calculation * Add BORG acl notebook * Add enclosed mass calculation * Add TNG300-1 dir * Add TNG300 and BORG1 dir * Update nb
2024-01-30 16:14:07 +00:00
}
},
"nbformat": 4,
"nbformat_minor": 2
}