borg_public/libLSS/tests/test_messenger3.cpp
2023-05-29 10:41:03 +02:00

136 lines
3.8 KiB
C++

/*+
ARES/HADES/BORG Package -- ./libLSS/tests/test_messenger3.cpp
Copyright (C) 2014-2020 Guilhem Lavaux <guilhem.lavaux@iap.fr>
Copyright (C) 2009-2020 Jens Jasche <jens.jasche@fysik.su.se>
Additional contributions from:
Guilhem Lavaux <guilhem.lavaux@iap.fr> (2023)
+*/
#include "libLSS/mpi/generic_mpi.hpp"
#include "libLSS/tools/static_init.hpp"
#include "libLSS/mcmc/global_state.hpp"
#include "libLSS/samplers/rgen/gsl_random_number.hpp"
#include "libLSS/samplers/core/types_samplers.hpp"
#include "libLSS/samplers/ares/gibbs_messenger.hpp"
#include "libLSS/samplers/core/powerspec_tools.hpp"
#include "libLSS/samplers/ares/powerspectrum_a_sampler.hpp"
using namespace LibLSS;
typedef GSL_RandomNumber RGenType;
int main(int argc, char **argv)
{
StaticInit::execute();
MPI_Communication *mpi_world = setupMPI(argc, argv);
Console::instance().setVerboseLevel<LOG_DEBUG>();
MarkovState state;
SLong *N0, *N1, *N2, *N2_HC, *NUM_MODES, *localN0, *startN0, *fourierLocalSize;
SDouble *L0, *L1, *L2, *K_MIN, *K_MAX;
RGenType randgen;
ArrayType1d *ps;
IArrayType *k_keys;
state.newElement("random_generator", new RandomGen(&randgen));
state.newElement("fourierLocalSize", fourierLocalSize = new SLong());
state.newElement("localN0", localN0 = new SLong());
state.newElement("startN0", startN0 = new SLong());
state.newElement("N0", N0 = new SLong());
state.newElement("N1", N1 = new SLong());
state.newElement("N2", N2 = new SLong());
state.newElement("N2_HC", N2_HC = new SLong());
state.newSyScalar("messenger_signal_blocked", false);
state.newSyScalar("power_sampler_a_blocked", false);
state.newSyScalar("power_sampler_b_blocked", false);
state.newElement("NUM_MODES", NUM_MODES = new SLong());
state.newElement("K_MIN", K_MIN = new SDouble());
state.newElement("K_MAX", K_MAX = new SDouble());
NUM_MODES->value = 100;
K_MIN->value = 0;
K_MAX->value = 2.;
state.newElement("L0", L0 = new SDouble());
state.newElement("L1", L1 = new SDouble());
state.newElement("L2", L2 = new SDouble());
localN0->value = 64;
startN0->value = 0;
N0->value = 64;
N1->value = 64;
N2->value = 64;
N2_HC->value = 33;
fourierLocalSize->value = 64*64*33;
L0->value = 200;
L1->value = 200;
L2->value = 200;
MessengerSampler s(mpi_world);
MessengerSignalSampler s2(mpi_world);
PowerSpectrumSampler_a p(mpi_world);
// Initialize (data,s)->t sampler
s.init_markov(state);
s2.init_markov(state);
p.init_markov(state);
ArrayType1d::ArrayType& k_val = *state.get<ArrayType1d>("k_modes")->array;
int Nk = NUM_MODES->value;
s2.setMockGeneration(true);
// Fill up powerspectrum
ps = state.get<ArrayType1d>("powerspectrum");
for (int k = 1; k < Nk; k++) {
(*ps->array)[k] = pow(k_val[k], -2);
}
// Build some mock field
ArrayType *field = state.get<ArrayType>("data_field");
field->eigen().fill(0);
// Setup messenger parameters
ArrayType *mmask = state.get<ArrayType>("messenger_mask");
mmask->eigen().fill(-1);
(*mmask->array)[16][16][16] = 0;
state.get<SDouble>("messenger_tau")->value = 1.; // Remove any sign of data. I should add a mechanism to generate unconstrained realizations
// First round is unconstrained
s2.sample(state);
s2.setMockGeneration(false);
field->eigen() = state.get<ArrayType>("s_field")->eigen();
s.sample(state);
s2.sample(state);
p.sample(state);
s.sample(state);
s2.sample(state);
p.sample(state);
s.sample(state);
s2.sample(state);
p.sample(state);
{
H5::H5File f("dump.h5", H5F_ACC_TRUNC);
state.saveState(f);
}
StaticInit::finalize();
doneMPI();
return 0;
}