86 lines
2.5 KiB
Python
86 lines
2.5 KiB
Python
#+
|
|
# ARES/HADES/BORG Package -- ./scripts/check_gradients.py
|
|
# Copyright (C) 2014-2020 Guilhem Lavaux <guilhem.lavaux@iap.fr>
|
|
# Copyright (C) 2009-2020 Jens Jasche <jens.jasche@fysik.su.se>
|
|
#
|
|
# Additional contributions from:
|
|
# Guilhem Lavaux <guilhem.lavaux@iap.fr> (2023)
|
|
#
|
|
#+
|
|
import matplotlib
|
|
matplotlib.use('Agg')
|
|
from ares_tools import read_all_h5
|
|
import pylab as plt
|
|
from sys import argv
|
|
|
|
file='dump.h5'
|
|
|
|
if (len(argv) > 1):
|
|
file = argv[1]
|
|
|
|
print('Reading from %s.' % file)
|
|
g=read_all_h5(file)
|
|
|
|
#ss=16
|
|
#step=10
|
|
|
|
ss=4#8*8
|
|
step=5
|
|
|
|
prior = g.scalars.gradient_array_prior[::ss,:,:].flatten()
|
|
prior_ref = g.scalars.gradient_array_prior[::ss,:,:].flatten()
|
|
|
|
dpr_adj_re= prior.real
|
|
dpr_ref_re= prior_ref.real
|
|
dpr_adj_im= prior.imag
|
|
dpr_ref_im= prior_ref.imag
|
|
|
|
lh = g.scalars.gradient_array_lh[::ss,:,:].flatten()
|
|
lh_ref = g.scalars.gradient_array_lh_ref[::ss,:,:].flatten()
|
|
|
|
dlh_adj_re= lh.real
|
|
dlh_ref_re= 1*lh_ref.real
|
|
dlh_adj_im= lh.imag
|
|
dlh_ref_im= 1*lh_ref.imag
|
|
|
|
fig = plt.figure(figsize=(12, 6))
|
|
fig.subplots_adjust(left=0.08, right=0.98, bottom=0.1, top=0.95, wspace=0.25, hspace=0.16)
|
|
|
|
ax1=plt.subplot(2,2,1) # left subplot in top row
|
|
plt.axhline(0.0, color='black', linestyle=':')
|
|
plt.plot(dpr_adj_re[::step],'ro',markersize=5.)
|
|
plt.plot(dpr_ref_re[::step],color='blue')
|
|
ax1.yaxis.get_major_formatter().set_powerlimits((-2, 2))
|
|
ax1.xaxis.set_ticklabels('')
|
|
plt.ylabel('dPSI_prior_real')
|
|
|
|
ax2=plt.subplot(2,2,2) # right subplot in top row
|
|
plt.axhline(0.0, color='black', linestyle=':')
|
|
gg,=plt.plot(dpr_adj_im[::step],'ro',markersize=5.)
|
|
rr,=plt.plot(dpr_ref_im[::step],color='blue')
|
|
ax2.legend((gg,rr),('gradient','finite diff'))
|
|
ax2.yaxis.get_major_formatter().set_powerlimits((-2, 2))
|
|
ax2.xaxis.set_ticklabels('')
|
|
plt.ylabel('dPSI_prior_imag')
|
|
|
|
ax3=plt.subplot(2,2,3) # left subplot in bottom row
|
|
plt.axhline(0.0, color='black', linestyle=':')
|
|
plt.plot(dlh_adj_re[::step],'ro',markersize=5.)
|
|
plt.plot(dlh_ref_re[::step],color='blue')
|
|
ax3.yaxis.get_major_formatter().set_powerlimits((-2, 2))
|
|
plt.xlabel('voxel ID')
|
|
plt.ylabel('dPSI_likelihood_real')
|
|
|
|
ax4=plt.subplot(2,2,4) # right subplot in bottom row
|
|
plt.axhline(0.0, color='black', linestyle=':')
|
|
plt.plot(dlh_adj_im[::step],'ro',markersize=5.)
|
|
plt.plot(dlh_ref_im[::step],color='blue')
|
|
ax4.yaxis.get_major_formatter().set_powerlimits((-2, 2))
|
|
plt.xlabel('voxel ID')
|
|
plt.ylabel('dPSI_likelihood_imag')
|
|
|
|
plt.savefig('check_gradient.png')
|
|
|
|
#plt.scatter(dpr_adj_re,dpr_ref_re)
|
|
#plt.show()
|