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Some notes on the issue of how to treat evolving number density and bias in BLSS applications.
Here, results are written in terms of the perturbative bias expansion (this note originates from
another note which was eventually intended to become a paper...). Everything can be simply
generalized to a bias function F (δm), for example, although the result is not guaranteed to be a
correct description of galaxies. The conclusions are: 1. There is no need to distinguish between
radial selection function and mean number density, as the selection can be incorporated into the
bias parameters. 2. It is preferable to use the mean galaxy density n̄g(z) inferred from the data
in fine-grained z bins. If a constant n̄g is assumed for example, this leads to large line-of-sight
perturbations in δg, which are in general inconsistent with the prior on P (k). Even when using a
n̄g(z) measured from the data, it is certainly a good idea to allow for an overall n̄g to be a free
parameter in order to absorb any unmodeled k = 0 mode.

When describing observed galaxy samples, two effects need to be considered:

1. Sample selection: in practice, tracers are chosen based on some observable property (luminosity, color, ...). Of
course, there is significant scatter in the relation of these quantities to say, halo mass. How does this scatter
enter into the bias expansion ? It is trivially incorporated, as described in Sec. I (see also Sec. 9.2 in [1]).

2. Light-cone effects: large surveys cover a volume with significant extent along the line-of-sight direction. Thus,
one cannot assume that all tracers are measured on a fixed time slice, and has to take into account that their
number density and bias parameters evolve.

I. SAMPLE SELECTION (SEE ALSO SEC. 9.2 IN [1])

Let α denote a physical observable (say, luminosity) that is used to select tracers. Given a selection function S(α),
the observed galaxy density at position x, τ is (we neglect projection effects including RSD throughout)

nobs
g (x, τ) =

∫
α

S(α)ng(x, τ ;α) =

∫
α

S(α)n̄g(τ ;α) [1 + δg(x, τ ;α)] . (1)

Let us apply the bias expansion to the “conditional” overdensity δg(x, α):

δg(x, τ ;α) =
∑
O

bO(α)O(x, τ) , (2)

where O are operators such as δm, δ2
m − 〈δ2

m〉, and so on. Importantly, we assume throughout that 〈δg〉survey = 0,
which implies

〈O〉survey = 0 . (3)

Note that when adopting a non-perturbative bias model, such as δg = F (δm), then this correspondingly requires
〈F (δm)〉survey = 0.

Eq. (2) also takes into account that the distribution of α at each point (x, τ) can depend on {O} as well (more red
galaxies in dense regions for example). Thus,

nobs
g (x, τ) = n̄g(τ)

[
1 +

∑
O

bSO O(x, τ)

]
, (4)

with

bSO =

∫
α

S(α)bO(α) . (5)

One further expects that the relation between observables and the physical properties of the halos that determine
the bias parameters is stochastic. This is similarly absorbed into the stochastic fields which need to be included for
a consistent bias expansion anyway. Thus, in the context of the general perturbative bias expansion, we do not have
to worry about splitting the sample into individual physical populations. Moreover, there is no need to attempt to
distinguish a “true” mean galaxy density from a selection function, as the effects of the selction are incorporated in
the (z-dependent) bias parameters.
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II. LIGHTCONE EFFECTS

Let us focus on the issue that, in a galaxy survey covering a certain redshift interval ∆z, the population of galaxies
evolves, commonly referred to as “lightcone effects”. For this, we neglect all other projection effects, including RSD.
We also assume a small survey area on the sky (or at least small pair separation angle) so that we can work in the
flat-sky limit. The goal is to treat the measured galaxy density field on one effective time slice τ = τ̄ .

Following our approximations, the spacetime location of a galaxy detected at observed sky position n̂ and redshift
z is

(x, τ) = (xo + n̂χ(z), τo − χ(z)) , (6)

where a subscript o denotes spacetime coordinates of the observer. We now recenter the spatial comoving coordinates
to a convenient origin given by

o = n̄ χ̄ , χ̄ ≡ χ(z̄) , (7)

where z̄ is a reference redshift that we leave arbitrary for now (reasonable choices will be defined below) and n̄ is a
suitable center point of the survey footprint on the sky. Thus, in the following we let x 7→ x − o. In particular, the
line-of-sight coordinate becomes

x‖ ≡ n̄ · x = χ(z)− χ(z̄) = τ̄ − τ , (8)

where τ̄ = τo−χ(z̄) is the conformal time on the lightcone corresponding to the origin of the coordinate system. Note
that the flat-sky approximation implies that n̂ is treated as constant over the entire survey.

The observed galaxy density (neglecting all projection effects, as mentioned above) is

ng(x, τ) = n̄g(τ) [1 + δg(x, τ)] , (9)

where un the general bias expansion, we write the galaxy density perturbation at a given spacetime location (x, τ) as

δg(x, τ) =
∑
O

[bO(τ) + εO(q[x, τ ], τ)]O (q[x, τ ], τ) , (10)

where q[x, τ ] denotes the Lagrangian position of the fluid trajectory passing through (x, τ) (we will revert to Eulerian
expressions in the end; for now Lagrangian coordinates make the derivation more clear). Using the coordinates defined
above, we now have two options to simplify this description if we do not want to fully include lightcone effets:

1. Define

δobs
g (n̂, z) =

ng(n̂χ(z)− o, τ̄ − x‖)
n̄g(τ̄ − x‖)

− 1 , (11)

i.e. with respect to the mean density estimated for that redshift (e.g. by considering the total number of galaxies
in fine bins in z).

2. Define

δobs
g (n̂, z) =

ng(n̂χ(z)− o, τ̄ − x‖)
n̄g(τ̄)

− 1 , (12)

using the mean density at the pivot redshift z̄. It could also be t galaxy density averaged over the entire survey
volume. The key point is that a constant, rather than z-dependent value is used.

We consider both cases in turn.
1. In this case, we are normalizing the density using the “correct” mean density at each redshift (i.e., the best

estimate within the survey volume). Hence, the actual galaxy density at the point x on the lightcone is in this case

δobs
g (x)

actual
=

∑
O

[bO(τ) + εO(q[x, τ ], τ)]O (q[x, τ ], τ)
∣∣∣
τ=τ̄−x‖

. (13)

On the other hand, when ignoring light-cone effects, we assume

δobs
g (x)

ignoring l.c.
=

∑
O

[bO(τ̄) + εO(q[x, τ̄ ], τ̄)]O (q[x, τ̄ ], τ̄) . (14)
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The difference is that, first, we evaluate δlc
g at time τ̄ instead of τ = τ̄ − x‖. Second, we do not assign the galaxy the

position xfl = xfl(q, τ̄) that the fluid trajectory actually passes through at time τ̄ (as we cannot simply reconstruct
the fluid trajectories), but assign it x, which differs from the former by

x− xfl(q, τ̄) = s(q, τ)− s(q, τ̄) , (15)

where s is the Lagrangian displacement. One can then show that the leading corrections to Eq. (14) from the
evolution of bias parameters as well as the displacement is of order (Hx‖)2 ≤ (∆z)2 × δg , where ∆z is the full width
of the redshift bin. When choosing ∆z � 1, these are quite small, and the approximation Eq. (14) is sufficient for
current surveys (e.g. CMASS).

2. The second option differs from the first by a factor n̄g(τ̄ − x‖)/n̄g(τ̄). Instead of Eq. (13), we thus have

1 + δobs
g (x)

∣∣∣
(2)

actual
=

n̄g(τ̄ − x‖)
n̄g(τ̄)

[
1 +

∑
O

[bO(τ) + εO(q[x, τ ], τ)]O (q[x, τ ], τ)
∣∣∣
τ=τ̄−x‖

]

=

[ ∞∑
n=1

n̄−1
g

dnn̄g
d(ln a)n

∣∣∣
τ̄
(−Hx‖)n

][
1 +

∑
O

[bO(τ) + εO(q[x, τ ], τ)]O (q[x, τ ], τ)
∣∣∣
τ=τ̄−x‖

]
. (16)

The key difference to Eq. (13) is that now there is a modulation of δobs
g that is zeroth order in perturbations. That

is, the z-dependence of the mean (observed) galaxy density leads to a large-scale contribution to δobs
g . This needs to

be carefully marginalized over (e.g., by not imposing a prior on large-scale line-of-sight modes). On the other hand,
in option 1. above, the evolution effects only multiply perturbations, which greatly reduces their effect.
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