jaxdecomp proto (#21)

* adding example of distributed solution

* put back old functgion

* update formatting

* add halo exchange and slice pad

* apply formatting

* implement distributed optimized cic_paint

* Use new cic_paint with halo

* Fix seed for distributed normal

* Wrap interpolation function to avoid all gather

* Return normal order frequencies for single GPU

* add example

* format

* add optimised bench script

* times in ms

* add lpt2

* update benchmark and add slurm

* Visualize only final field

* Update scripts/distributed_pm.py

Co-authored-by: Francois Lanusse <EiffL@users.noreply.github.com>

* Adjust pencil type for frequencies

* fix painting issue with slabs

* Shared operation in fourrier space now take inverted sharding axis for
slabs

* add assert to make pyright happy

* adjust test for hpc-plotter

* add PMWD test

* bench

* format

* added github workflow

* fix formatting from main

* Update for jaxDecomp pure JAX

* revert single halo extent change

* update for latest jaxDecomp

* remove fourrier_space in autoshmap

* make normal_field work with single controller

* format

* make distributed pm work in single controller

* merge bench_pm

* update to leapfrog

* add a strict dependency on jaxdecomp

* global mesh no longer needed

* kernels.py no longer uses global mesh

* quick fix in distributed

* pm.py no longer uses global mesh

* painting.py no longer uses global mesh

* update demo script

* quick fix in kernels

* quick fix in distributed

* update demo

* merge hugos LPT2 code

* format

* Small fix

* format

* remove duplicate get_ode_fn

* update visualizer

* update compensate CIC

* By default check_rep is false for shard_map

* remove experimental distributed code

* update PGDCorrection and neural ode to use new fft3d

* jaxDecomp pfft3d promotes to complex automatically

* remove deprecated stuff

* fix painting issue with read_cic

* use jnp interp instead of jc interp

* delete old slurms

* add notebook examples

* apply formatting

* add distributed zeros

* fix code in LPT2

* jit cic_paint

* update notebooks

* apply formating

* get local shape and zeros can be used by users

* add a user facing function to create uniform particle grid

* use jax interp instead of jax_cosmo

* use float64 for enmeshing

* Allow applying weights with relative cic paint

* Weights can be traced

* remove script folder

* update example notebooks

* delete outdated design file

* add readme for tutorials

* update readme

* fix small error

* forgot particles in multi host

* clarifying why cic_paint_dx is slower

* clarifying the halo size dependence on the box size

* ability to choose snapshots number with MultiHost script

* Adding animation notebook

* Put plotting in package

* Add finite difference laplace kernel + powerspec functions from Hugo

Co-authored-by: Hugo Simonfroy <hugo.simonfroy@gmail.com>

* Put plotting utils in package

* By default use absoulute painting with

* update code

* update notebooks

* add tests

* Upgrade setup.py to pyproject

* Format

* format tests

* update test dependencies

* add test workflow

* fix deprecated FftType in jaxpm.kernels

* Add aboucaud comments

* JAX version is 0.4.35 until Diffrax new release

* add numpy explicitly as dependency for tests

* fix install order for tests

* add numpy to be installed

* enforce no build isolation for fastpm

* pip install jaxpm test without build isolation

* bump jaxdecomp version

* revert test workflow

* remove outdated tests

---------

Co-authored-by: EiffL <fr.eiffel@gmail.com>
Co-authored-by: Francois Lanusse <EiffL@users.noreply.github.com>
Co-authored-by: Wassim KABALAN <wassim@apc.in2p3.fr>
Co-authored-by: Hugo Simonfroy <hugo.simonfroy@gmail.com>
Former-commit-id: 8c2e823d4669eac712089bf7f85ffb7912e8232d
This commit is contained in:
Wassim KABALAN 2024-12-20 11:44:02 +01:00 committed by GitHub
parent a0a79277e5
commit df8602b318
26 changed files with 1871 additions and 434 deletions

View file

@ -1,96 +0,0 @@
# Can be executed with:
# srun -n 4 -c 32 --gpus-per-task 1 --gpu-bind=none python test_pfft.py
from functools import partial
import jax
import jax.lax as lax
import jax.numpy as jnp
import numpy as np
from jax.experimental.maps import Mesh, xmap
from jax.experimental.pjit import PartitionSpec, pjit
jax.distributed.initialize()
cube_size = 2048
@partial(xmap,
in_axes=[...],
out_axes=['x', 'y', ...],
axis_sizes={
'x': cube_size,
'y': cube_size
},
axis_resources={
'x': 'nx',
'y': 'ny',
'key_x': 'nx',
'key_y': 'ny'
})
def pnormal(key):
return jax.random.normal(key, shape=[cube_size])
@partial(xmap,
in_axes={
0: 'x',
1: 'y'
},
out_axes=['x', 'y', ...],
axis_resources={
'x': 'nx',
'y': 'ny'
})
@jax.jit
def pfft3d(mesh):
# [x, y, z]
mesh = jnp.fft.fft(mesh) # Transform on z
mesh = lax.all_to_all(mesh, 'x', 0, 0) # Now x is exposed, [z,y,x]
mesh = jnp.fft.fft(mesh) # Transform on x
mesh = lax.all_to_all(mesh, 'y', 0, 0) # Now y is exposed, [z,x,y]
mesh = jnp.fft.fft(mesh) # Transform on y
# [z, x, y]
return mesh
@partial(xmap,
in_axes={
0: 'x',
1: 'y'
},
out_axes=['x', 'y', ...],
axis_resources={
'x': 'nx',
'y': 'ny'
})
@jax.jit
def pifft3d(mesh):
# [z, x, y]
mesh = jnp.fft.ifft(mesh) # Transform on y
mesh = lax.all_to_all(mesh, 'y', 0, 0) # Now x is exposed, [z,y,x]
mesh = jnp.fft.ifft(mesh) # Transform on x
mesh = lax.all_to_all(mesh, 'x', 0, 0) # Now z is exposed, [x,y,z]
mesh = jnp.fft.ifft(mesh) # Transform on z
# [x, y, z]
return mesh
key = jax.random.PRNGKey(42)
# keys = jax.random.split(key, 4).reshape((2,2,2))
# We reshape all our devices to the mesh shape we want
devices = np.array(jax.devices()).reshape((2, 4))
with Mesh(devices, ('nx', 'ny')):
mesh = pnormal(key)
kmesh = pfft3d(mesh)
kmesh.block_until_ready()
# jax.profiler.start_trace("tensorboard")
# with Mesh(devices, ('nx', 'ny')):
# mesh = pnormal(key)
# kmesh = pfft3d(mesh)
# kmesh.block_until_ready()
# jax.profiler.stop_trace()
print('Done')

View file

@ -1,68 +0,0 @@
# Start this script with:
# mpirun -np 4 python test_script.py
import os
os.environ["XLA_FLAGS"] = '--xla_force_host_platform_device_count=4'
import jax
import jax.lax as lax
import jax.numpy as jnp
import matplotlib.pylab as plt
import numpy as np
import tensorflow_probability as tfp
from jax.experimental.maps import mesh, xmap
from jax.experimental.pjit import PartitionSpec, pjit
tfp = tfp.substrates.jax
tfd = tfp.distributions
def cic_paint(mesh, positions):
""" Paints positions onto mesh
mesh: [nx, ny, nz]
positions: [npart, 3]
"""
positions = jnp.expand_dims(positions, 1)
floor = jnp.floor(positions)
connection = jnp.array([[[0, 0, 0], [1., 0, 0], [0., 1, 0], [0., 0, 1],
[1., 1, 0], [1., 0, 1], [0., 1, 1], [1., 1, 1]]])
neighboor_coords = floor + connection
kernel = 1. - jnp.abs(positions - neighboor_coords)
kernel = kernel[..., 0] * kernel[..., 1] * kernel[..., 2]
dnums = jax.lax.ScatterDimensionNumbers(update_window_dims=(),
inserted_window_dims=(0, 1, 2),
scatter_dims_to_operand_dims=(0, 1,
2))
mesh = lax.scatter_add(
mesh,
neighboor_coords.reshape([-1, 8, 3]).astype('int32'),
kernel.reshape([-1, 8]), dnums)
return mesh
# And let's draw some points from some 3D distribution
dist = tfd.MultivariateNormalDiag(loc=[16., 16., 16.],
scale_identity_multiplier=3.)
pos = dist.sample(1e4, seed=jax.random.PRNGKey(0))
f = pjit(lambda x: cic_paint(x, pos),
in_axis_resources=PartitionSpec('x', 'y', 'z'),
out_axis_resources=None)
devices = np.array(jax.devices()).reshape((2, 2, 1))
# Let's import the mesh
m = jnp.zeros([32, 32, 32])
with mesh(devices, ('x', 'y', 'z')):
# Shard the mesh, I'm not sure this is absolutely necessary
m = pjit(lambda x: x,
in_axis_resources=None,
out_axis_resources=PartitionSpec('x', 'y', 'z'))(m)
# Apply the sharded CiC function
res = f(m)
plt.imshow(res.sum(axis=2))
plt.show()