forked from guilhem_lavaux/JaxPM
jaxdecomp proto (#21)
* adding example of distributed solution * put back old functgion * update formatting * add halo exchange and slice pad * apply formatting * implement distributed optimized cic_paint * Use new cic_paint with halo * Fix seed for distributed normal * Wrap interpolation function to avoid all gather * Return normal order frequencies for single GPU * add example * format * add optimised bench script * times in ms * add lpt2 * update benchmark and add slurm * Visualize only final field * Update scripts/distributed_pm.py Co-authored-by: Francois Lanusse <EiffL@users.noreply.github.com> * Adjust pencil type for frequencies * fix painting issue with slabs * Shared operation in fourrier space now take inverted sharding axis for slabs * add assert to make pyright happy * adjust test for hpc-plotter * add PMWD test * bench * format * added github workflow * fix formatting from main * Update for jaxDecomp pure JAX * revert single halo extent change * update for latest jaxDecomp * remove fourrier_space in autoshmap * make normal_field work with single controller * format * make distributed pm work in single controller * merge bench_pm * update to leapfrog * add a strict dependency on jaxdecomp * global mesh no longer needed * kernels.py no longer uses global mesh * quick fix in distributed * pm.py no longer uses global mesh * painting.py no longer uses global mesh * update demo script * quick fix in kernels * quick fix in distributed * update demo * merge hugos LPT2 code * format * Small fix * format * remove duplicate get_ode_fn * update visualizer * update compensate CIC * By default check_rep is false for shard_map * remove experimental distributed code * update PGDCorrection and neural ode to use new fft3d * jaxDecomp pfft3d promotes to complex automatically * remove deprecated stuff * fix painting issue with read_cic * use jnp interp instead of jc interp * delete old slurms * add notebook examples * apply formatting * add distributed zeros * fix code in LPT2 * jit cic_paint * update notebooks * apply formating * get local shape and zeros can be used by users * add a user facing function to create uniform particle grid * use jax interp instead of jax_cosmo * use float64 for enmeshing * Allow applying weights with relative cic paint * Weights can be traced * remove script folder * update example notebooks * delete outdated design file * add readme for tutorials * update readme * fix small error * forgot particles in multi host * clarifying why cic_paint_dx is slower * clarifying the halo size dependence on the box size * ability to choose snapshots number with MultiHost script * Adding animation notebook * Put plotting in package * Add finite difference laplace kernel + powerspec functions from Hugo Co-authored-by: Hugo Simonfroy <hugo.simonfroy@gmail.com> * Put plotting utils in package * By default use absoulute painting with * update code * update notebooks * add tests * Upgrade setup.py to pyproject * Format * format tests * update test dependencies * add test workflow * fix deprecated FftType in jaxpm.kernels * Add aboucaud comments * JAX version is 0.4.35 until Diffrax new release * add numpy explicitly as dependency for tests * fix install order for tests * add numpy to be installed * enforce no build isolation for fastpm * pip install jaxpm test without build isolation * bump jaxdecomp version * revert test workflow * remove outdated tests --------- Co-authored-by: EiffL <fr.eiffel@gmail.com> Co-authored-by: Francois Lanusse <EiffL@users.noreply.github.com> Co-authored-by: Wassim KABALAN <wassim@apc.in2p3.fr> Co-authored-by: Hugo Simonfroy <hugo.simonfroy@gmail.com> Former-commit-id: 8c2e823d4669eac712089bf7f85ffb7912e8232d
This commit is contained in:
parent
a0a79277e5
commit
df8602b318
26 changed files with 1871 additions and 434 deletions
|
@ -1,96 +0,0 @@
|
|||
# Can be executed with:
|
||||
# srun -n 4 -c 32 --gpus-per-task 1 --gpu-bind=none python test_pfft.py
|
||||
from functools import partial
|
||||
|
||||
import jax
|
||||
import jax.lax as lax
|
||||
import jax.numpy as jnp
|
||||
import numpy as np
|
||||
from jax.experimental.maps import Mesh, xmap
|
||||
from jax.experimental.pjit import PartitionSpec, pjit
|
||||
|
||||
jax.distributed.initialize()
|
||||
|
||||
cube_size = 2048
|
||||
|
||||
|
||||
@partial(xmap,
|
||||
in_axes=[...],
|
||||
out_axes=['x', 'y', ...],
|
||||
axis_sizes={
|
||||
'x': cube_size,
|
||||
'y': cube_size
|
||||
},
|
||||
axis_resources={
|
||||
'x': 'nx',
|
||||
'y': 'ny',
|
||||
'key_x': 'nx',
|
||||
'key_y': 'ny'
|
||||
})
|
||||
def pnormal(key):
|
||||
return jax.random.normal(key, shape=[cube_size])
|
||||
|
||||
|
||||
@partial(xmap,
|
||||
in_axes={
|
||||
0: 'x',
|
||||
1: 'y'
|
||||
},
|
||||
out_axes=['x', 'y', ...],
|
||||
axis_resources={
|
||||
'x': 'nx',
|
||||
'y': 'ny'
|
||||
})
|
||||
@jax.jit
|
||||
def pfft3d(mesh):
|
||||
# [x, y, z]
|
||||
mesh = jnp.fft.fft(mesh) # Transform on z
|
||||
mesh = lax.all_to_all(mesh, 'x', 0, 0) # Now x is exposed, [z,y,x]
|
||||
mesh = jnp.fft.fft(mesh) # Transform on x
|
||||
mesh = lax.all_to_all(mesh, 'y', 0, 0) # Now y is exposed, [z,x,y]
|
||||
mesh = jnp.fft.fft(mesh) # Transform on y
|
||||
# [z, x, y]
|
||||
return mesh
|
||||
|
||||
|
||||
@partial(xmap,
|
||||
in_axes={
|
||||
0: 'x',
|
||||
1: 'y'
|
||||
},
|
||||
out_axes=['x', 'y', ...],
|
||||
axis_resources={
|
||||
'x': 'nx',
|
||||
'y': 'ny'
|
||||
})
|
||||
@jax.jit
|
||||
def pifft3d(mesh):
|
||||
# [z, x, y]
|
||||
mesh = jnp.fft.ifft(mesh) # Transform on y
|
||||
mesh = lax.all_to_all(mesh, 'y', 0, 0) # Now x is exposed, [z,y,x]
|
||||
mesh = jnp.fft.ifft(mesh) # Transform on x
|
||||
mesh = lax.all_to_all(mesh, 'x', 0, 0) # Now z is exposed, [x,y,z]
|
||||
mesh = jnp.fft.ifft(mesh) # Transform on z
|
||||
# [x, y, z]
|
||||
return mesh
|
||||
|
||||
|
||||
key = jax.random.PRNGKey(42)
|
||||
# keys = jax.random.split(key, 4).reshape((2,2,2))
|
||||
|
||||
# We reshape all our devices to the mesh shape we want
|
||||
devices = np.array(jax.devices()).reshape((2, 4))
|
||||
|
||||
with Mesh(devices, ('nx', 'ny')):
|
||||
mesh = pnormal(key)
|
||||
kmesh = pfft3d(mesh)
|
||||
kmesh.block_until_ready()
|
||||
|
||||
# jax.profiler.start_trace("tensorboard")
|
||||
# with Mesh(devices, ('nx', 'ny')):
|
||||
# mesh = pnormal(key)
|
||||
# kmesh = pfft3d(mesh)
|
||||
# kmesh.block_until_ready()
|
||||
# jax.profiler.stop_trace()
|
||||
|
||||
print('Done')
|
|
@ -1,68 +0,0 @@
|
|||
# Start this script with:
|
||||
# mpirun -np 4 python test_script.py
|
||||
import os
|
||||
|
||||
os.environ["XLA_FLAGS"] = '--xla_force_host_platform_device_count=4'
|
||||
import jax
|
||||
import jax.lax as lax
|
||||
import jax.numpy as jnp
|
||||
import matplotlib.pylab as plt
|
||||
import numpy as np
|
||||
import tensorflow_probability as tfp
|
||||
from jax.experimental.maps import mesh, xmap
|
||||
from jax.experimental.pjit import PartitionSpec, pjit
|
||||
|
||||
tfp = tfp.substrates.jax
|
||||
tfd = tfp.distributions
|
||||
|
||||
|
||||
def cic_paint(mesh, positions):
|
||||
""" Paints positions onto mesh
|
||||
mesh: [nx, ny, nz]
|
||||
positions: [npart, 3]
|
||||
"""
|
||||
positions = jnp.expand_dims(positions, 1)
|
||||
floor = jnp.floor(positions)
|
||||
connection = jnp.array([[[0, 0, 0], [1., 0, 0], [0., 1, 0], [0., 0, 1],
|
||||
[1., 1, 0], [1., 0, 1], [0., 1, 1], [1., 1, 1]]])
|
||||
|
||||
neighboor_coords = floor + connection
|
||||
kernel = 1. - jnp.abs(positions - neighboor_coords)
|
||||
kernel = kernel[..., 0] * kernel[..., 1] * kernel[..., 2]
|
||||
|
||||
dnums = jax.lax.ScatterDimensionNumbers(update_window_dims=(),
|
||||
inserted_window_dims=(0, 1, 2),
|
||||
scatter_dims_to_operand_dims=(0, 1,
|
||||
2))
|
||||
mesh = lax.scatter_add(
|
||||
mesh,
|
||||
neighboor_coords.reshape([-1, 8, 3]).astype('int32'),
|
||||
kernel.reshape([-1, 8]), dnums)
|
||||
return mesh
|
||||
|
||||
|
||||
# And let's draw some points from some 3D distribution
|
||||
dist = tfd.MultivariateNormalDiag(loc=[16., 16., 16.],
|
||||
scale_identity_multiplier=3.)
|
||||
pos = dist.sample(1e4, seed=jax.random.PRNGKey(0))
|
||||
|
||||
f = pjit(lambda x: cic_paint(x, pos),
|
||||
in_axis_resources=PartitionSpec('x', 'y', 'z'),
|
||||
out_axis_resources=None)
|
||||
|
||||
devices = np.array(jax.devices()).reshape((2, 2, 1))
|
||||
|
||||
# Let's import the mesh
|
||||
m = jnp.zeros([32, 32, 32])
|
||||
|
||||
with mesh(devices, ('x', 'y', 'z')):
|
||||
# Shard the mesh, I'm not sure this is absolutely necessary
|
||||
m = pjit(lambda x: x,
|
||||
in_axis_resources=None,
|
||||
out_axis_resources=PartitionSpec('x', 'y', 'z'))(m)
|
||||
|
||||
# Apply the sharded CiC function
|
||||
res = f(m)
|
||||
|
||||
plt.imshow(res.sum(axis=2))
|
||||
plt.show()
|
Loading…
Add table
Add a link
Reference in a new issue