JaxPM_highres/jaxpm/distributed.py

199 lines
6.4 KiB
Python
Raw Normal View History

jaxdecomp proto (#21) * adding example of distributed solution * put back old functgion * update formatting * add halo exchange and slice pad * apply formatting * implement distributed optimized cic_paint * Use new cic_paint with halo * Fix seed for distributed normal * Wrap interpolation function to avoid all gather * Return normal order frequencies for single GPU * add example * format * add optimised bench script * times in ms * add lpt2 * update benchmark and add slurm * Visualize only final field * Update scripts/distributed_pm.py Co-authored-by: Francois Lanusse <EiffL@users.noreply.github.com> * Adjust pencil type for frequencies * fix painting issue with slabs * Shared operation in fourrier space now take inverted sharding axis for slabs * add assert to make pyright happy * adjust test for hpc-plotter * add PMWD test * bench * format * added github workflow * fix formatting from main * Update for jaxDecomp pure JAX * revert single halo extent change * update for latest jaxDecomp * remove fourrier_space in autoshmap * make normal_field work with single controller * format * make distributed pm work in single controller * merge bench_pm * update to leapfrog * add a strict dependency on jaxdecomp * global mesh no longer needed * kernels.py no longer uses global mesh * quick fix in distributed * pm.py no longer uses global mesh * painting.py no longer uses global mesh * update demo script * quick fix in kernels * quick fix in distributed * update demo * merge hugos LPT2 code * format * Small fix * format * remove duplicate get_ode_fn * update visualizer * update compensate CIC * By default check_rep is false for shard_map * remove experimental distributed code * update PGDCorrection and neural ode to use new fft3d * jaxDecomp pfft3d promotes to complex automatically * remove deprecated stuff * fix painting issue with read_cic * use jnp interp instead of jc interp * delete old slurms * add notebook examples * apply formatting * add distributed zeros * fix code in LPT2 * jit cic_paint * update notebooks * apply formating * get local shape and zeros can be used by users * add a user facing function to create uniform particle grid * use jax interp instead of jax_cosmo * use float64 for enmeshing * Allow applying weights with relative cic paint * Weights can be traced * remove script folder * update example notebooks * delete outdated design file * add readme for tutorials * update readme * fix small error * forgot particles in multi host * clarifying why cic_paint_dx is slower * clarifying the halo size dependence on the box size * ability to choose snapshots number with MultiHost script * Adding animation notebook * Put plotting in package * Add finite difference laplace kernel + powerspec functions from Hugo Co-authored-by: Hugo Simonfroy <hugo.simonfroy@gmail.com> * Put plotting utils in package * By default use absoulute painting with * update code * update notebooks * add tests * Upgrade setup.py to pyproject * Format * format tests * update test dependencies * add test workflow * fix deprecated FftType in jaxpm.kernels * Add aboucaud comments * JAX version is 0.4.35 until Diffrax new release * add numpy explicitly as dependency for tests * fix install order for tests * add numpy to be installed * enforce no build isolation for fastpm * pip install jaxpm test without build isolation * bump jaxdecomp version * revert test workflow * remove outdated tests --------- Co-authored-by: EiffL <fr.eiffel@gmail.com> Co-authored-by: Francois Lanusse <EiffL@users.noreply.github.com> Co-authored-by: Wassim KABALAN <wassim@apc.in2p3.fr> Co-authored-by: Hugo Simonfroy <hugo.simonfroy@gmail.com> Former-commit-id: 8c2e823d4669eac712089bf7f85ffb7912e8232d
2024-12-20 11:44:02 +01:00
from typing import Any, Callable, Hashable
Specs = Any
AxisName = Hashable
from functools import partial
import jax
import jax.numpy as jnp
import jaxdecomp
from jax import lax
from jax.experimental.shard_map import shard_map
from jax.sharding import AbstractMesh, Mesh
from jax.sharding import PartitionSpec as P
def autoshmap(
f: Callable,
gpu_mesh: Mesh | AbstractMesh | None,
in_specs: Specs,
out_specs: Specs,
check_rep: bool = False,
auto: frozenset[AxisName] = frozenset()) -> Callable:
"""Helper function to wrap the provided function in a shard map if
the code is being executed in a mesh context."""
if gpu_mesh is None or gpu_mesh.empty:
return f
else:
return shard_map(f, gpu_mesh, in_specs, out_specs, check_rep, auto)
def fft3d(x):
return jaxdecomp.pfft3d(x)
def ifft3d(x):
return jaxdecomp.pifft3d(x).real
def get_halo_size(halo_size, sharding):
gpu_mesh = sharding.mesh if sharding is not None else None
if gpu_mesh is None or gpu_mesh.empty:
zero_ext = (0, 0)
zero_tuple = (0, 0)
return (zero_tuple, zero_tuple, zero_tuple), zero_ext
else:
pdims = gpu_mesh.devices.shape
halo_x = (0, 0) if pdims[0] == 1 else (halo_size, halo_size)
halo_y = (0, 0) if pdims[1] == 1 else (halo_size, halo_size)
halo_x_ext = 0 if pdims[0] == 1 else halo_size // 2
halo_y_ext = 0 if pdims[1] == 1 else halo_size // 2
return ((halo_x, halo_y, (0, 0)), (halo_x_ext, halo_y_ext))
def halo_exchange(x, halo_extents, halo_periods=(True, True)):
if (halo_extents[0] > 0 or halo_extents[1] > 0):
return jaxdecomp.halo_exchange(x, halo_extents, halo_periods)
else:
return x
def slice_unpad_impl(x, pad_width):
halo_x, _ = pad_width[0]
halo_y, _ = pad_width[1]
# Apply corrections along x
x = x.at[halo_x:halo_x + halo_x // 2].add(x[:halo_x // 2])
x = x.at[-(halo_x + halo_x // 2):-halo_x].add(x[-halo_x // 2:])
# Apply corrections along y
x = x.at[:, halo_y:halo_y + halo_y // 2].add(x[:, :halo_y // 2])
x = x.at[:, -(halo_y + halo_y // 2):-halo_y].add(x[:, -halo_y // 2:])
unpad_slice = [slice(None)] * 3
if halo_x > 0:
unpad_slice[0] = slice(halo_x, -halo_x)
if halo_y > 0:
unpad_slice[1] = slice(halo_y, -halo_y)
return x[tuple(unpad_slice)]
def slice_pad(x, pad_width, sharding):
gpu_mesh = sharding.mesh if sharding is not None else None
if gpu_mesh is not None and not (gpu_mesh.empty) and (
pad_width[0][0] > 0 or pad_width[1][0] > 0):
assert sharding is not None
spec = sharding.spec
return shard_map((partial(jnp.pad, pad_width=pad_width)),
mesh=gpu_mesh,
in_specs=spec,
out_specs=spec)(x)
else:
return x
def slice_unpad(x, pad_width, sharding):
mesh = sharding.mesh if sharding is not None else None
if mesh is not None and not (mesh.empty) and (pad_width[0][0] > 0
or pad_width[1][0] > 0):
assert sharding is not None
spec = sharding.spec
return shard_map(partial(slice_unpad_impl, pad_width=pad_width),
mesh=mesh,
in_specs=spec,
out_specs=spec)(x)
else:
return x
def get_local_shape(mesh_shape, sharding=None):
""" Helper function to get the local size of a mesh given the global size.
"""
gpu_mesh = sharding.mesh if sharding is not None else None
if gpu_mesh is None or gpu_mesh.empty:
return mesh_shape
else:
pdims = gpu_mesh.devices.shape
return [
mesh_shape[0] // pdims[0], mesh_shape[1] // pdims[1],
*mesh_shape[2:]
]
def _axis_names(spec):
if len(spec) == 1:
x_axis, = spec
y_axis = None
single_axis = True
elif len(spec) == 2:
x_axis, y_axis = spec
if y_axis == None:
single_axis = True
elif x_axis == None:
x_axis = y_axis
single_axis = True
else:
single_axis = False
else:
raise ValueError("Only 1 or 2 axis sharding is supported")
return x_axis, y_axis, single_axis
def uniform_particles(mesh_shape, sharding=None):
gpu_mesh = sharding.mesh if sharding is not None else None
if gpu_mesh is not None and not (gpu_mesh.empty):
local_mesh_shape = get_local_shape(mesh_shape, sharding)
spec = sharding.spec
x_axis, y_axis, single_axis = _axis_names(spec)
def particles():
x_indx = lax.axis_index(x_axis)
y_indx = 0 if single_axis else lax.axis_index(y_axis)
x = jnp.arange(local_mesh_shape[0]) + x_indx * local_mesh_shape[0]
y = jnp.arange(local_mesh_shape[1]) + y_indx * local_mesh_shape[1]
z = jnp.arange(local_mesh_shape[2])
return jnp.stack(jnp.meshgrid(x, y, z, indexing='ij'), axis=-1)
return shard_map(particles, mesh=gpu_mesh, in_specs=(),
out_specs=spec)()
else:
return jnp.stack(jnp.meshgrid(*[jnp.arange(s) for s in mesh_shape],
indexing='ij'),
axis=-1)
def normal_field(mesh_shape, seed, sharding=None):
"""Generate a Gaussian random field with the given power spectrum."""
gpu_mesh = sharding.mesh if sharding is not None else None
if gpu_mesh is not None and not (gpu_mesh.empty):
local_mesh_shape = get_local_shape(mesh_shape, sharding)
size = jax.device_count()
# rank = jax.process_index()
# process_index is multi_host only
# to make the code work both in multi host and single controller we can do this trick
keys = jax.random.split(seed, size)
spec = sharding.spec
x_axis, y_axis, single_axis = _axis_names(spec)
def normal(keys, shape, dtype):
idx = lax.axis_index(x_axis)
if not single_axis:
y_index = lax.axis_index(y_axis)
x_size = lax.psum(1, axis_name=x_axis)
idx += y_index * x_size
return jax.random.normal(key=keys[idx], shape=shape, dtype=dtype)
return shard_map(
partial(normal, shape=local_mesh_shape, dtype='float32'),
mesh=gpu_mesh,
in_specs=P(None),
out_specs=spec)(keys) # yapf: disable
else:
return jax.random.normal(shape=mesh_shape, key=seed)